EQUADIFF 5

Alexander Ženíšek

Finite element methods for linear coupled thermoelasticity

In: Michal Greguš (ed.): Equadiff 5, Proceedings of the Fifth Czechoslovak Conference on Differential Equations and Their Applications held in Bratislava, August 24-28, 1981. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1982. Teubner-Texte ur Mathematik, Bd. 47. pp. 387--390.

Persistent URL: http://dml.cz/dmlcz/702327

Terms of use:

© BSB B.G. Teubner Verlagsgesellschaft, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Alexander Ženíšek Brno, Czechoslovakia

According to [1], the statical two-dimensional problem of linear coupled thermoelasticity can be formulated in the following woy: Let Ω be a bounded domain in the x_{1}, x_{2}-plane with a sufficiently smooth boundary Γ. Find a displacement vector $\underline{u}\left(x_{1}, x_{2}, t\right)$ and a temperature $T\left(x_{1}, x_{2}, t\right)$ which satisfy the following equations and boundary and initial conditions:

$$
\begin{equation*}
T_{1_{1 i}}+Q=c_{1} \dot{T}+c_{2} T_{r} \dot{u}_{j}, j \quad \text { in } \Omega \times\left(0, t^{*}\right] \tag{1}
\end{equation*}
$$

(2) $\quad \sigma_{i j 1 j}+x_{i}=0(1=1,2)$ in $\Omega \times\left(0, t^{*}\right]$
(3) $\left.T\left(x_{1}, x_{2}, t\right)\right|_{\Gamma}=T\left(x_{1}, x_{2}\right), \quad t>0$
(4) $\left.\quad u_{i}\left(x_{1}, x_{2}, t\right)\right|_{\Gamma_{1}}=\bar{u}_{i}\left(x_{1}, x_{2}\right)(i=1,2), \quad t>0$
(5) $\left.\quad \sigma_{i j} \nu \nu_{j}\right|_{\Gamma_{2}}=p_{i}\left(x_{1}, x_{2}\right) \quad(i=1,2), \quad t>0$
(6) $T\left(x_{1}, x_{2}, 0\right)=T_{0}\left(x_{1}, x_{2}\right), \quad\left(x_{1}, x_{2}\right) \in \Omega$
(7) $u_{i}\left(x_{1}, x_{2}, 0\right)=u_{10}\left(x_{1}, x_{2}\right)(i=1,2), \quad\left(x_{1}, x_{2}\right) \in \Omega$
where
(8) $\quad \sigma_{i j}=D_{i j k I}\left[\varepsilon_{k I}-\alpha\left(T-T_{I}\right) \delta_{k I}\right]$
(9) $\varepsilon_{i j}=\left(u_{i, j}+u_{j \prime i}\right) / 2$
(10) $\quad D_{i j k l} \varepsilon_{i j} \varepsilon_{k l} \geqslant \omega_{0} \varepsilon_{i j} \varepsilon_{i j} \quad \forall \varepsilon_{i j}, \omega_{0}=$ const >0. A summation convention over a repeated subscript is adopted. A comma is enployed to denote partial differentiation with respect to spatial coordinates and a dot denotes the derivative with respect to time. Thus equation (1) is the coupled heat equation; the symbel Q denotes a prescribed rate of internal heat generation per unit volume, c_{1} and c_{2} are positive constants depending only on the material of a considered body and T_{r} is a positive constant which has the meaning of the temperature for which the material is stress-free. Equations (2) are Cauchy's equations of equilibrium, the symbols X_{1}, X_{2} denote prescribed components of body forces per unit volume. The functions on the right-hand sides of relations (3) - (7) are prescribed functions. The symbols Γ_{1}, Γ_{2} denote two disjoint subsets of Γ such that mes $\Gamma_{1}>0$ and $\Gamma=\Gamma_{1}+\Gamma_{2}$. In equation (5), ν_{1} and ν_{2} are components of the outward unit normal to Γ. In equation (8), α is the coefficient of linear thermal
expansion, $\delta_{i j}$ is the Kronecker delta and $D_{i j k l}$ are material constants. We consider isotropic materials only.

In what follows we shall suppose that the problem (1) - (10) has a solution $\underline{u}, \mathrm{~T}$. Then, according to $[1, \mathrm{pp} .38-40]$, this solution is unique.

We shall solve the problem (1) - (10) by the finite element method using curved triangular elements and numerical integration. We approximate the domain Ω by a domain Ω_{h} the boundary Γ_{h} of which consists of arcs of degree n. These arcs are the curved sides of curved triangles. On the triangulation τ_{h} of Ω_{h} we shall construct two finite element space:; V_{h} and W_{h} which are finite dimensional subspaces of $c^{0}\left(\Omega_{h}\right)$. For a given $t=t_{m}$ the displacement field \underline{u} will be approximated in the space $\nabla_{h} \times V_{h}$ and the temperature field T in the space W_{h}.

In applications we usually choose $n=3$. In this case the boundary Γ can be approximated piecewise either by arcs of the Hermite type or by arcs of the Lagrange type. The construction of the corresponding spaces V_{h} can be found in [2], [4], [5]. The spaces V_{h} have the following interpolation property: If $f \in H^{n+1}\left(\Omega_{h}\right)$ and $f_{I} \in V_{h}$ is the interpolate of f then

$$
\left\|f-f_{I}\right\|_{j, \Omega_{h}} \leqslant C h^{n+1-j}\|f\|_{n+1, \Omega_{h}} \quad(j=0,1)
$$

where the constant C does not depend on h and f.
In the case of curved elements the construction of the space W_{h} depends on the choice of the space V_{h}. We choose $p<n$ (usually $p=n-1$) and construct the space W_{h} in such a way (details are described in [8]) that it has the following interpolation property: If $f \in H^{p+1}\left(\Omega_{h}\right)$ and $f_{I} \in W_{h}$ is the interpolate of f then

$$
\left\|f-f_{I}\right\|_{j, \Omega_{h}} \leqslant C h^{p+1-j}\|f\|_{p+1, \Omega_{h}} \quad(j=0,1) .
$$

It should be noted that in the case of polygonal boundary Γ the spaces V_{h} and W_{h} can be constructed quite indepedently.

It is well-known that all numerical computations in the case of both curved and classical triangles are carried out on the unit triangle K_{0} which lies in the ξ_{1}, ξ_{2}-plane and has the vertices $(0,0),(1,0),(0,1)$ (see, e.g., [2], [5], [6]). Let us choose on K_{0} and on the segment $[0,1]$ certain quadrature formulas (see Theorem 1) and using them let us compute approximately the integrals

$$
\begin{gathered}
\tilde{D}_{h}(\nabla, w)=\int_{\Omega_{h}} v_{\rho_{i}} w_{i} d x, \quad(\nabla, w)_{0, \Omega_{h}}=\int_{\Omega_{h}} v w d x, \\
\tilde{a}_{h}(\underline{v}, \underline{\underline{W}})=\int_{\Omega_{h}} D_{i j k l} \varepsilon_{i j}(\underline{v}) \varepsilon_{k l}(w) d x,
\end{gathered}
$$

$$
(\underline{v}, \underline{w})_{0, \Omega_{h}}=\int_{\Omega_{h}} \nabla_{i} w_{i} d x,\left\langle\underline{p}_{h}, \underline{v}\right\rangle \Gamma_{\Gamma_{2}}=\int_{\Gamma_{h 2}} p_{h i} v_{i} d s
$$

where $p_{h i}$ denotes the function which we obtain by "transferring" the function p_{i} from the curve Γ_{2} onto the curve $\Gamma_{h 2}$ (details are in [6]), $\Gamma_{h 2}$ being the approximation of Γ_{2}. Then we obtain the forms $D_{h}(\nabla, w),(\nabla, w)_{h}, a_{h}(\underline{v}, \underline{w}),(\underline{v}, \underline{w})_{h},\left\langle\underline{p}_{h}, \underline{v}\right\rangle_{h}$.

Further, let us define the sets

$$
v_{h 0}=\left\{v \in v_{h}: v=0 \text { on } \Gamma_{h 1}\right\}, \quad v_{h u}^{i}=\left\{v \in v_{h}: v=\bar{u}_{i}^{a p r} \text { on } \Gamma_{h 1}\right\},
$$

$$
W_{h O}=\left\{w \in W_{h}: w=0 \text { on } \Gamma_{h}\right\}, \quad W_{h T}=\left\{w \in \mathbb{T}_{h}: w=\text { apr on } \Gamma_{h}\right\}
$$

where $\Gamma_{h 1}$ is the approximation of Γ_{1} and $\bar{u}_{i}^{a p r} \in V_{h}$ and $\bar{T}^{a p r} \in W_{h}$ are the interpolates of the functions \bar{u}_{i} and \bar{T}, respectively.

Let us choose an integer M, set $\Delta t=t^{*} / M$ and define $t_{m}=$ $=m \Delta t(m=0,1, \ldots, M)$. Let us use the notation $f^{m} \equiv f^{m}\left(x_{1}, x_{2}\right)=$ $=f\left(x_{1}, x_{2}, m \Delta t\right)$. If we use one-step A-stable methods for the time discretization then we can define the discrete problem for approximate solving the variational problem which corresponds to the problem (1) - (10) in the following way:

For each $m=0,1, \ldots, M-1$ find a vector $\underline{u}_{h}^{m+1} \in V_{h u}^{1} \times V_{h u}^{2}$ and a function $T_{h}^{m+1} \in W_{h T}$ such that

$$
\begin{align*}
& \Delta t D_{h}\left(\sum_{j=0}^{4} \beta_{j} q_{h}^{m+j}, w\right)+c_{1}\left(\sum_{j=0}^{1} \alpha_{j} q^{m+j}, w\right)_{h}+ \tag{11}\\
& +c_{2} T^{T} r\left(\sum_{j=0}^{1} \alpha_{j} u_{h i}^{m+j} \rho_{i}, w\right)_{h}=\Delta t\left(\sum_{j=0}^{1} \beta_{j} Q^{m+j}, w\right)_{h} \quad \forall w \in W_{h 0}
\end{align*}
$$

$$
\begin{align*}
& a_{h}\left(\sum_{j=0}^{1} \beta_{j} \underline{u}_{h}^{m+j}, \underline{v}\right)-c_{3}\left(\sum_{j=0}^{1} \beta_{j} T_{h}^{m+j}-T_{r}, \nabla_{i}, i\right)_{h}= \tag{12}\\
& =\left(\sum_{j=0}^{1} \beta_{j} x^{m+j}, \underline{v}\right)_{h}+\left\langle\underline{p}_{h}, \underline{v}\right\rangle_{h} \quad \forall \underline{v} \in V_{h o} X V_{h o} \tag{13}
\end{align*}
$$

where c_{3} is a constant depending only on $D_{i j k l}$ and $\alpha, T_{0}^{a p r} \in W_{h}$ is an approximation of the function $T_{0}, \underline{u}_{0}^{\text {apr }} \in \nabla_{h} \times V_{h}$ is an approximation of the vector \underline{u}_{0} and

$$
\begin{equation*}
\alpha_{0}=-1, \quad \alpha_{1}=1, \quad \beta_{0}=\Theta, \quad \beta_{1}=1-\Theta \tag{14}
\end{equation*}
$$

where $\Theta \leq 1 / 2$ is any real number.
Theorem 1. Let the boundary Γ be of class C^{n+1}. Let every mriangulation τ_{ℓ} satisfy the condition $\overline{5} / h \geqslant c_{0}$, where $c_{0}=$ const >0, $\bar{h}=\min _{K \in \tau_{\Omega}} h_{K}$ and $h=\max _{K \in \tau_{A}} h_{K}$. Let a quadrature formula on the unit
triangle K_{0} for calculation of the form $D_{h}(V, w)$ be of degree of precision 2p - 1. Let quadrature formulas on K_{0} for calculation of the forms $(\nabla, w)_{h},(\underline{V}, \underline{w})_{h}$ and $a_{h}(\underline{V}, \underline{w})$ be of degree of precision $2 n-2$. Let a quadrature formula on the unit segment $[0,1]$ for calculation of the form $\left\langle\underline{p}_{h}, \underline{\eta}\right\rangle_{h}$ be of degree of precision $2 n-1$. Let the exact solution T, \underline{u} of the problem (1) - (10) satisfy $\partial^{k_{T}} \partial t^{k} \in I^{\infty}\left(H^{p+3}(\Omega)\right), \partial^{k} u_{i} / \partial t^{k} \in I^{\infty}\left(H^{n+1}(\Omega)\right)(k=0, \ldots, q+1$, $i=1,2$) where q is the order of the (1)-method ($q=1$ for $0<1 / 2$, $q=2$ for $(1)=1 / 2)$. Let $Q \in L^{\infty}\left(H^{p+1}(\Omega)\right), X_{i} \in I^{\infty}\left(H^{n}(\Omega)\right)$. Then for sufficiently small h there exists one and only one solution $T_{h}^{m}, \underline{u}_{h}^{m}(m=1, \ldots, M)$ of the problem (11) - (14) and it holds

$$
\left\|\tilde{\underline{u}}^{m}-\underline{u}_{h}^{m}\right\|_{1, \Omega_{h}}+\left\|\tilde{T}^{m}-q_{h}^{m}\right\|_{0, \Omega_{h}} \leqslant c\left(\Delta t^{q}+h^{p+1}+h^{n}+s_{0}\right)
$$

where C is a constant independent on h and $\Delta t, \tilde{u}$ and \tilde{T} are the Calderon extensions of \underline{u} and T, respectively, and

$$
s_{0}=\left\|\underline{u}_{h}^{0}-\underline{r}^{0}\right\|_{1, \Omega_{h}}+\left\|T_{h}^{0}-\eta^{0}\right\|_{0, \Omega_{h}}
$$

Σ and η being the Ritz approximations of $\tilde{\underline{u}}$ and \tilde{T}, respectively.
Theorem 1 is proved in [8]. The proof is a generalization of devices used in [3], [6] and [7]. The obtained result can be extended to the case of two-step A-stable methods.

References

[1] Boley BoA., Weiner J.H. : Theory of Thermal Stresses. John Wiley and Sons, New York - London - \$ydney, 1960.
[2] Ciarlet P.G. : The Finite Element Method for Flliptic Problems. North-Holland, Amsterdam 1978.
[3] Nedoma J. s The finite element solution of parabolic equations. Apl. Mat. 23 (1978), $408-438$.
[4] Zlámal M: The finite element method in domains with curved boundaries. Int. J. Numer. Meth. Fingng. 5 (1973), 367 - 373.
[5] Zlśmal M. : Curved elements in the finite element method. II. SIAM J. Numer. Anal. 11 (1974), 347 - 362.
[6] Zenišek A. $:$ Nonhomogeneous boundary conditions and curved triangular finite elements. Apl. Mat. 26 (1981), 121 - 141.
[7] Zenfšek A. $:$ Discrete forms of Friedrichs inequalities in the finite element method. (To appear in RoA. I. R. O. Humer. Anal.)
[8] Zenišek A. s Finite element methods for linear coupled thermoelasticity. (To appear.)

