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FINITE ELEMENT SOLUTION OF NONLINEAR 
ELLIPTIC EQUATIONS WITH DISCONTINUOUS 

COEFFICIENTS AND APPROXIMATIONS 
IN SOBOLEV-SLOBODECKIJ SPACES 

FEISTAUER M., PRAGUE, Czechoslovakia 

ZENISEK A., BRNO, Czechoslovakia 

In this paper we present a complete theory of approximations of 

nonlinear elliptic problems with discontinuous coefficients by 

linear conforming triangular finite elements. 

1. Continuous problem 

Let us consider the following variational problem: 

Find u: 0 -> R such that 

(1.1) a) u - u* € V, b) a(u,v) = L(v) V v e V. 

Here V is a subspace of H1(0) = W1,2(0), u* € W1,p(0), p > 2, 0 is a 

bounded domain, a: [HX(0)]2 -• R1, a(u, . ) € (H1(0))# for each u € 
1 * 

e H (0) , L c V . (1.1) represents a weak formulation of a boundary 
value problem for the equation 

- E -~- fai(x,u(x),7u(x))l + aQ(x,u(x),7u(x)) = f(x) in 0 
i=l i ^ J 

with discontinuous c o e f f i c i e n t s . This means that 0 is decomposed 

into sets 0 . , . . . , $ such that 0„,...,0 are mutually disjoint 1 m 1 m ^ 
domains with Lipschitz-continuous piecewise C boundaries £0.,... 

k 3 
...,#0 . For each k = l,...,m the coefficients a. = a. in 0, x R 

m . i l k 
and f = f in 0, . Across r = dO n £0 . r * s, a. are k rs r s l 
di scont inuous . For simplicity let us set m = 2 . On <?Q we consider 

mixed Dirichlet-Neumann conditions 
2 

ulrD = V .? a . ( . , u , v u ) n . = <p^ on TN, 

^ p 

where r D
 u rw = *°» rn n PN ~ 0y "D = u lrD a n d ^N i s P i e c e w i s e c 

on Fvf. On T the so-called transition conditions are considered N rs 
(see [4, 10]). 

By assumptions on a. we distinguish two cases: a) general pseudo-

monotone case, when the form a(u,v) is Lipschitz-continuous, 

coercive and satisfies the generalized condition (S) (cf. [6]) and 

(1.1) has at least one solution; b) strongly monotone case with a 

Lipschitz-continuous and strongly monotone form a(u,v) and a unique 

solution to (1.1). 
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2. Discrete problem 

Let us consider systems <Qh> and <Gsh> (h e (0,h ), s = 1,2, 

h 0 > 0) of polygonal approximations of ft and ft , respectively, 5. = 

= Glh u -^2h, filh n - 2̂h~
 0' L e t ^h a n d ^sh d e n o t e triangulations of 

Qh and Gsh> respectively, with usual properties. By cr and a we 

denote the sets of all vertices of 7. and 7 ., respectively. We 

assume that 7^ = r±h u 7^, crh c ff, crh n « h c an, crsh n 0ftsh c *Qs, 

rD n FN c crh and the points from #8. u d*Q where either the 

condition of C -smoothness of <?Q or the condition of C -smoothness 
s 

of <p„ are not satisfied are elements of cr.. Let the system <^h>, h € 
e (0,h ) be regular ([1]). 

i 
Approximate solutions of (1.1) are sought in X, = {v e H ^QH*» 

v|T is affine V T € 7.}. The space V is approximated by a suitable 

subspace Vh c Xh and we set u, = r.u = Lagrange interpolate of u . 

The forms a and L are approximated by 

2 2 
a . ( u , v ) = £ f [ £ a f ( . , u , v u ) | ^ - + aA( . ,u ,Vu )v ldx , 

n s= l Ja 4 = 1 * c/xi o j 
sh 

th(v) = si 4 fSvdx + K "NhVds' 
(We assume that as and fs are defined on 8 :> Q . ) Further, the l s s 
integrals in a. and L, are evaluated by numerical quadratures which 

1 1 

yield the forms a,: Xh x Xh -> R and L.: VL -+ R and we come to the 

discrete problem used in practice: Find u,: fiL -• R such that 

(2.1) a) u h - u£ * Vh. b) ah(uh,vh) = L^v,,) V vh < V 

(For details see [4, 10]). 

By the techniques from [5, 6] we get 

2.2. Theorem. For each h e (0,hQ) problem (2.1) has at least one 

solution u,_ e x. . which is unique in the strongly monotone case. 
n n 

There exists a constant c > 0 such that 
( 2 . 3 ) l u h l i , 0 h - c V h 6 < ° > V -
( II* 111 O cienotes tne norm in H (fth) . ) 

* h 

3. Convergence 

By [6] the approximate solutions uh € xh can be associated with 

their suitable modifications uh e H (fi) satisfying the estimate 

|u.|| *-- c for all h e (0,h ) (with c independent of h). Hence, we 

can choose sequences 
(3.1) h -* 0+ and u. -• u weakly in H (0). 

n n 
n 

Let u e H1(R2) denote the Calderon extension of u € H (Q). The 
c 

convergence results are contained in the following theorems: 
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3.2. Theorem (general pseudomonotone case). If (3.1) holds, then 

[u. -u |L Q -> 0 and u is a solution of (1.1). 
n * h 

n 
Proof - see [4]. 

3.3. Theorem (strongly monotone case without regularity). If the 
form a is strongly monotone, then 

" ; iv^Ji.ct • °-
h-K)+ ' h 

Proof was carried out independently in [4] and [10]. 

Now let us consider the strongly monotone case provided the 

exact solution is regular, i. e. , 

(3.4) uS = u|0 € H2(Q ), s = 1,2. 
s 2 2 s s s 

Let u e H (R ) be a Calderon extension of u . Then we define an 
c c - 1 

extension u: Q u Q. -> R of u: 
h - s 

(3.5) u = u on fl, u = u on Q . - Q, s = 1,2, h € (0,hA). 

cc sn v/ 

3.6. Theorem. // (3.4) is valid, then there exists a constant 

c > 0 such that 
-"""h-l.Q * C h' h € (0'V' 

l". 

Proof was carried out independently in [4], with the "triple appli­

cation of Green's theorem" (first used in [2]) and the separation of 

discretization and numerical integration errors, and in [10], on the 

basis of the approach from [9, 5] without the use of Green's 

theorem. 

The approach from [40] has the importance in case of a weak 

regularity of the exact solution: 
(3.7) us -- u|Q € H1 + e(fl ), s = 1,2. 

I s s 
Here H1+€r(Q ) = W1+C,2(ft ), e «- (0,1), denotes a Sobolev-Slobodeckii s s 
space ([7, 8]). 

3.8. Theorem. Provided (3.7) holds and u is defined by a 
relation analogous to 3.5, where u^ is replaced 6y the appropriate 

s s 1+e 2 extension ug of u in H (R ), there exists c > 0 such that 
* h 

Proof is based on the following interpolation result from [3] 

|v-rhv| S c h* |v| Q . v « H 1 + * ( V 
h h 

and the estimate from [10] •• S n . €•' •• S li 

«uBlll ,0 - 5 S C h l u l l+e .Q 
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