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PARTIAL DIFFERENTIAL INEQUALITIES 
AS EQUATIONS WITH HYSTERESIS 

K R E J C I P., P R A G U E , Czechoslovakia 

The aim of this note is to emphasize the parallelism between 

inequalities of evolution type, free boundary problems and equations 

with hysteresis. Hysteresis thus arises as a natural feature of 

classical problems of mathematical physics. This approach can give 

new results if we profit from the knowledge of the structure of the 

hysteresis memory. 

I. An ordinary 'differential inequality. 

Problem. For a given interval K c R , 0 « K = K and a function 

e: [0,T] -* R1 find a:[o,T] -* R1 such that 

a(t) « K V t £ [0,T] , (t) 

(a' - e") (a - z) < 0 Vz eK, a.e. t € [ O , T ] , (2) 

a(0) = PK(e(0)) , C3) 

i 
where P„ is the projection of R onto K. 

IS. 

E&Y§i£§i-i5£§EE£Il£Stion. Relations (1) - (3) represent Prandtl's 

constitutive law for a one-dimensional elasto-plastic material, where 

e, a are the strain and stress, respectively, Int K is the domain 

of elasticity with modul 1 and 8K are the yield points. 

In [6] we can find the proof of the following theorem (cf. also 

[3], [1])-

Theorem. VOK cvtKy eftW2'1(0,T) thcKC cxZsts a unZque solutZon 
atW1'°°(0,T) oi (1) - (3). MoKeoveK, the mappZng fR: W

2'1(0,T) •* 

W '°°(0,T): e «- a thus de^Zned can be extended to an opeKatoK 
C([0,T]) -* C([0,T]) and W 1' p(0,T) -* W 1 ' p ( 0 , T ) , 1 < p < «> Such that 

(i) fR: C([0,T]) -*- C([0,T]) ZS LZpSchZtz, 

(ii) f •. W 1 , 1(0,T) -*-W1'1(0,T) Zs LZpSchZtz, 
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(iii) fR: W
1'p(0,T) -+W1'p(0,T) is continuous, but not Lipsckitz 

unlzSS K = {0} OK K = R1 , 

( iv) fK: W '°°(0,T) •> W '°°(0,T) is discontinuous unless K = {0} 

The following properties can be derived immediately from (1)-(3) 

5.l£.§-iSl3§E.IGl3liD2.E# f K (eos ) = f K ( e ) o s 

for every i n c r e a s i n g b i j e c t i o n s : [ O , T ] •*• [ O , T ] . 

M2D2.l.;2Di£i!l=Y • 

(fK(e1> T fK ( e2» ( e l ' - e2> i 2" It (fK'e1} " f K ( 6
2 0 a ' e ' 

for every e,., e 2 e W ' ( 0 , T ) . 

5D2£2Y-iD§9y.li.i.ti.ri§ • 

\ f 2 ( e ) (t) - \ f 2 ( e ) (s) < f f K ( e ) e ^ dT Ve € W 1 ' 1 ( 0 , T ) , 

1 ( f v ( e ) ) > 2 ( t ) - l (fv(e))'2{s) < í ( f v ( e ) ) ' e " .dx 

Ve € W 2 ' 1 (0 ,T) for a . e . 0 < s < t < T. 

Memory (cf. [4], [5]). Let the expression me.moKy denote the set of 

those values of e (T) , T e [o,t], which are necessary for 

determining the value of f__(e) (t) . This set is always Ainitz. 
K 

I!f.*n?iD2l22Y.• T n e operator fK is called VKandtl kystzKzsis opdK&toK 

coKK&Sponding to K. 

II. One-dimensional one-phase Stefan problem. 

Problem. Find the functions 0(x,t) (temperature) and s(x) (inter

face between ice and water) such that 

6(x,t) = 0 for t < s(x) (ice) , (4) 

6t - 6xx = 0 for t > s(x) (water) , (5) 

9x(x,s(x)) s'(x) = -k(x) (conservation of energy) , (6) 

where k(x) is a given function (latent heat). 
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We prescribe e.g. the Newton boundary condition 

6
x
(0

f
t) = b(6(0

f
t) - 0..(t)) and 6(1

f
t) = 0 , (7) 

where b > 0 and 9
1
 are given. 

The weak formulation of (4) - (7) (cf. [2]) consists in 

transforming the problem into a parabolic inequality. In [6] it is 

shown that this problem is equivalent to the system 

W
t "

 f
R

+
<

W
X

}
X

 =
 "

K ( X ) ( 8 ) 

w
t
(O

f
t) = -K(0) + b(f

R +
(w

x
) (0

f
t) - T^t)) (9) 

w(1,t) = w(x
f
0) = 0 , (10) 

where K(x) = -f k(y)dy
f
 T., (t) = f 8..(T)dT , 

J
x '

 J
0 ' 

w(x
f
t) = f f 8 (x

f
a)da dr - tK(x) , 

JnJ«rv)
 x 

and f is the Prandtl hysteresis operator corresponding to 

R = [0
f
+°°) . The hysteresis formulation yields under the same 

assumptions slightly more regular solutions. The free boundary t=s(x) 

appears as the interface between memory levels of the operator f
R
 , 

i.e. the cardinality of the memory passes from 1 to 2. 

III. L o n g i t u d i n a l vibrations of an elasto-plastic beam. 

Problem. Find the functions a(x
f
t) (stress), e(x,t) (strain), 

u(x,t) (displacement), v(x,t) (velocity) satisfying the system 

e = u , v = u. (11) 

a = f
K
(e), K = [-h

f
h] (Prandtl's constitutive law) (12) 

u.. = a (equation of motion) (13) 

with initial conditions 

v(x
f
0) = v

Q
( x )

f
 u(x

f
0) = u

Q
(x). (14) 

Instead of rewriting (11) - (13) in the form of a hyperbolic 

inequality (cf. [2]
f
 [7]) we investigate the system 

(15) 

v
t =

 f
K

( є )
x 
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Its hyperbolicity is confirmed by the finite speed of 

propagation. The construction of the solution relies on energy 

estimates which are stronq enough for ensuring the global solvability 

of (15), (14) even with more complex (nonlinear) constitutive laws 

(cf. references in [6]). We can observe again a nontrivial 

(noncharacteristic) free boundary between the regions of elasticity 

(<-"t ̂  et) and elasticity (a = e ). 
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