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SOLVABILITY AND BIFURCATIONS 
OF SOME STRONGLY NONLINEAR EQUATIONS 

DRABEK P., PLZEN, Czechoslovakia 

1. Solvability of strongly nonlinear equations 

Let us consider the equation 

div( | V u ( x ) | p " 2 V u ( x ) ) + A 1 |u ( x ) | p " 2 u ( x ) + f ( x ,u ( x ) ) = g (x ) , 
x € X I , (1 .1) 

with the boundary condition 

| V u | p " 2 V u . n = 0 on BX1 (1.2) 
or 

u = 0 on SX1 , (1 .3) 

where A is a bounded domain in Rn with a smooth boundary 3X1 , ri is 

the outer normal, Vu = grad u, p > 1, fjXlxIR —* IR is a Carath6odory 

function and X , is the smallest eigenvalue of the problem 

div(|7u|p"27u) + A|u|p~2u - 0 (1.4) 

with the boundary conditions (1.2) or (1.3), respectively. Denoting by 

<p the eigenfunction corresponding to X ^, we can suppose y > 0 in X2 

(see e. g. £l] ). 

Put 

f (x) = lim inf f(x,s) and f+°°(x) = lim sup f(x,s). 
-00 

s ->-oo s -»+вo 
Let us denote p* « pn(n - p)" for p < n, and p*= +oo for p = n. 

For p = n, we shall assume that 

|f(x,s)l = m(x) + dsl*"
1
 (1.5) 

with an arbitrary oo < p * , c > 0, m € L^' (.CI), 00 = oi((X, -l)" 1. Set 

00 = 1 in the case p > n. Moreover, let there exist r > 0 and functions 

h , h+°°€ L ^ X l ) such that 

f(x,s) = h _(x) for s < - r , a.a. x 6 XI. 
~°° (1.6) 

f (x,s) « h+<* (x) for s > r , a.a. x € XI. 

THEOREM 1.1 (Nonllnearitiesjaf_a_£decr^^ Suppose (1.5), 

(1.6).Then the problem (1.1), (1.2) and (1.1), (1.3) has at least 

one weak solution for any g €. L '(XI) satisfying the condition 
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Xf+0O(x)<P(x) dx < fg(x)<P(x) dx < ff ^(x)<P(x) dx , (1.7) 
XL .a .A ~°° J 

where \Q is the positive eigenfunction corresponding to the smallest 
eigenvalue of the problem (1.4), (1.2) and (1.4), (1.3), respectively. 

EXAMPLE 1.1 Consider the BVP (1.1), (1.3), where f(x,u) = -|u|q"2u, 
where 1 < q = p. Then f+o0(x) « - o o , f ( x ) - - + o o . Hence BVP (1.1), 

""" ©l 
(1.3) has at least one weak solution u € W (.Q) for any g € L /(Xl). 

If the nonlinearity in (1.1) has the form 

-|u|q"1u for x € XI, u = 0 , 

for x € XI, u < 0 . 
< ° 1 

1 < q = p, then (1.1), (1.3) has at least one weak solution u € Wp(.Q) 
for any g €. L # (XI) satisfying 

[g(x)<P(x) dx < 0 . 
XI J 

Further, denote 
f""°°(x) * lim sup f(x,s) and *+00(x) * lim inf f(x,s) 

s -»-oo s -^+o0-cr0 
and suppose that there exist r > 0 and functions h~ , hi ̂  € L ,(X1) 
such that 

f(x,u) - Í 
I 0 

f(x,s) «= h" (x) for s < - r , a.a. x € X2, 

f(x,s) • h+o0 (x) for s > r , a.a. x € XI. 

Moreover, assume that 

(1.8) 

lim Isl1"^ f(x,s) = 0 for a.a. x € XI. (1.9) 
| 3 | ~5* +00 

THEOREM 1.2 (Nonlinearites^of^an^^increasing^tjrge^). Let us suppose 
(1.5), (1.8), (1.9) and p > n. Then the problem (1.1), (1.2) has at 
least one weak solution for any g € L^^Xl) satisfying the condition 

jV°°(x) dx < .fg(x) dx < ff + o a(x) dx . (1.7,') 
XI XI XI + 0° 

Suppose, now, that 1 < p * n and there exists h € L^^Xl) such that 

|f(x,s)| » h(x) for all s € (R, a.a. x e XI . (1.10) 

THEOREM 1.3 (Nonlinearijiss^oj^an^^increasing tjrge^). Let us suppo
se (1.5) and (1.10). Then the problem (1.1), (1.2) has at least one 
weak solution for any g € L # (XI) satisfying (1.7,'). 

GO 

EXAMPLE 1.2 Consider the BVP (1.1), (1.2), where f(x,u) -- arctg u. 
Then f"°°(x) = - | , f+e0 (x) -- f . Hence BVP (1.1), (1.2) has at least 
one weak solution u € wJ;(Xl) for any g € L J ( X 1 ) satisfying 

p Ot> 

-% < rmeasA]"1 J g(x) dx < % . 

n 
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Consider the equaiion of the type 

div(|7u(x)|p"2Vu(x)) + Jl1|u(x)|
p"2u(x) - |u(x)|q"2u(x) + 

+ f(x,u(x)) « g(x) , x € .0. (1.11) 

with q > p and f having the growth not stronger then the (p - 1) - th 

power. 

THEOREM 1.4 (Eguationswitha./higher.order^tern^): Let q > p. 

Then the problem (1.11), (1.2) and (1.11), (1.3) has at least one we

ak solution u € W*(.Q.) n LC-O.) and u e fij;(n ) n L (II), respectively, 
" " #-v ' " 9 l 

for any right hand side g € L '(il) (q, « q(q - 1) ). 

REMARK 1.1. The proofs of Theorems 1.1 - 1.4 can be found in Boccar-

do, Drabek and Kucera C3] . In fact, more general results are proved 

in £"}~] , where the terms div (| Vu|p~ Vu) and |u|q u in our equa

tions (1.1) and (1.11) may be replaced by more general ones. In Anna

ns and Gossez [2 3 the assertion similar to our Theorem 1.1 is proved 

by using a different approach. 

2. Bifurcations of strongly nonlinear equations. 

Let h « h(X , x, s) be a Carath6odory 's function defined on 
IR x £1 x IR such that h(Jl, x, 0) « 0 and 

lim |s|1~ph(<^, x, s) * 0 
s -> 0 

uniformly for a.a.x € SX. and X from a bounded interval. 

Consider the equation 

div(|7u(x)|p"2Vu(x)) + ^|u(x)|p*"2u(x) * h(l, x, u(x)), 

x 6 SI , (2.1) 

with the boundary condition (1.2) or (1.3). Let us denote X = Wp(H) 

or X * Wjldl) if (1.2) or (1.3) is considered, respectively. We say 

that C = {(A, u)6 IR x X, (X, u) solves (2.1), (1.2) or (2.1), 

(1.3)} is a continuum of nontrivial weak solutions of (2.1), (1.2) 

or (2.1), (1.3), respectively, if it is connected in [R x X. 

THEOREM 2.1 (Global bifurcation). Let us suppose that all the 

assumptions stated above are fulfilled. Then there exists a continuum 

C of nontrivial weak solutions of (2.1), (1.2) or (2.1), (1.3) which 

contains in its closure the point (JL , 0) € IR x X and C is either un

bounded in IR x X or C contains in its closure a point (A , 0)6 IR x X, 

where X>A+ is an eigenvalue of (1.4), (1.2) or (1.4), (1.3), res

pectively. 

REMARK 2.1. The proof can be found in Drabek £5l. It is based on 

the degree theory and on some ideas from Rabinowitz C7]. Theorem 2.1 
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generalizes analogous results for aemilinear problems. It generalizes 

also 'local bifurcation results' for homogeneous problem, proofs of 

which are based on the Ljusternik - Schnirelmann theory (see e. g. Fu-

Cik et al. [6] ) . 

REMARK 2.2. It is possible to strengthen the assertion of Theorem 

2.1 by using the simplicity of X * and some ideas from Dancer [~4l. 
Essentially, under the same assumptions as in Theorem 2.1 it is possi

ble to prove that there exist two maximal connected subsets C , C~ of 

C containing («^-,>0)€ JR x X in their closure, C+ (C~) 'bifurcating in 

the direction of' <P (- y>) and such that either 

(i) both C , C~ are unbounded in /R x X, or 

(ii) both C*, C~ contain in their closure a common point different 

from (A 1 9 0) € (R x X . 
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