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HOMOGENIZATION AND CORRECTORS 
FOR NONLINEAR ELLIPTIC EQUATIONS 

FRANCU J., BRNO, Czechoslovakia 

INTRODUCTION 

We deal with a homogenization problem for a nonlinear equation 

(1) Au + g(.,u) « f . 

The nonlinear elliptic operator A : H1(G) —> H"1(G) is of type 

Au m - div a(.,Du), where the coefficient a(x,t) : 6 * R n — » Rn is 

strongly monotone and Lipschitz continuous in variable t . 

The homogezation consists in considering a sequence of equations 

(1) denoted by superscript £ 6 E » [e± > 0 , s^—> o} with a limit 

equation of the same type denoted by superscript o , and in investi

gation of convergence of the corresponding solutions uc to the so

lution u° of the limit equation. In periodic case the sequence of 

operators A€ has periodic coefficients with diminishing period e 

defined by a6(x,t) « a(x/e-t) , where a(y,t) is a function perio

dic in variable y . In the generalized non-periodic case the dimi

nishing period of the coefficients is replaced by H-convergence (Tar

ter [2]) of the operators. This "external" characterization of opera

tor convergence by means of their solutions can be replaced by N-con

dition requiring existence of auxiliary functions Ne satisfying 

some convergences. These functions appear in a formula for coeffici

ent a0 of the limit operator A0 . In case of linear operators this 

"internal" characterization of operator convergence was introduced by 

Zhikov-Kozlov-Oleinik-Ngoan [4]. 

The homogenization result (Giachetti [5]) yields weak convergence 

ue _ u° —»> 0 i n H * ( G ) . For a fixed small € > 0 the function u° 

represents an approximation of solution u& to the problem (1). This 

approximation can be improved by adding a corrector. Correctors for 

linear problems were introduced by Bensoussan-Lions-Papanicolaou [3]. 

Using the auxiliary functions Nc for u° 6 C2(G) we obtain the 

corrector N€(xfDu°) such that the corrected solution Ue « u° + NG 

converges strongly t u*- U* —* 0 . Thus for a small fixed e > 0 the 

function Ue approximates u£ together with its gradient Due, This 

is important for applications, since e.g. in elasticity a€(.,Dut) 

describes stresses. 

In the first section we shall deal with operator convergences and 
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their characterizations, the second contains homogenization results 

with correctors. For proofs, more details and comments see [6]. 

1. OPERATOR CONVERGENCES 

We shall deal with a special class of nonlinear operators of type 

(2) A : u i * - div a(.,Du) 

in a bounded domain G in Rn with Lipschitz boundary. The Carathe-

odory functions 

(3) a(x,t) : G x Rn — • R° 

are supposed to satisfy the following assumptions 

(a(x,t) - a(x,s),t - s) > <* |t - s|2 oc > 0 , 

(4) |a(x,t) - a(x,s)| < M | t - s| M > 0 , 

a(x,0) m 0 m 

IDefinition. The class of operators A : H (G)-—> H~ (G) of type (2) 

with coefficients (3) satisfying (4) will be denoted by £(*,M,G) . 

We introduce operator convergences on the class £(<*#M,G) . The 

sequences will be denoted by superscript e € E « {€i> 0 , E^—* 0} . 
For homogenization the following notion of H-convergence (Tartar [2]) 

seems to be the most convenient operator convergence : 

|Definition. We say that a sequence {Ae} H-converges to an operator 

A0, iff for each ue , u° € H1(G), f € H-"1(G) the following irapli-

I cation holds : 

ue — * u° in H^G) and A eu £ a - div ae(.,Due) * f 

l(5) imply ac(.,Due) =- a°(.,Du°) in [L2(G)J
n . 

Remarks. 

(a) The introduced H-convergence represents a weak inverse operator 

convergence besides G-convergence (Spagnolo [l]) and strong G-conver

gence (in linear case Zhikov-Kozlov-Oleinik-Ngoan [4]). 

(b) In the definition we can replace the equality A6ue - f by 

(7) AGue « fe > f° in H-^G) 

without change of the concept. 

Further we introduce another characterization of operator conver

gence inspired by N-condition introduced for linear operators in [4]. 

Definition. We say that the sequence of coefficients ae satisfies 

N-condition with respect to the coefficient a iff there exists 

a sequence of functions Ne(x,t) : G « R n — > R continuous in x and 

Lipschitz continuous in t such that for € — * 0 the functions NE 

satisfy the following convergences locally uniformly in t : 

(Nl) N e — ^ 0 in H*(G) , 
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(N2) a e ( . . t • D N«(..t)) -a°(.,t) in [ U G ) ]
n
 , 

(NЗ) - div[a
є
(.. t + D

x
N

Є
(..t )) - a°(. •t)J 0 in H" 

l
(G) 

(N4) D
t
N

є 
• 0 in [L

2
(G)]

Л 
for a. . t Є R

n
 . 

Th or ro 
r
 L t A

Є
, A° € Є(*,M ,G) and let a . a° be th cor 

ding coefficients. Then the following implications hold : 

(i) If A
e
 satisfy N-condition with respect to A

0
 , then A

c
 H-con

verge to A°. 

(ii) If A
e
 H-converge to A

0
 then a

e
 satisfy N-condition with 

respect to a° with functions N
e
 satisfying (Nl) - (N3). 

Remark. In linear or periodic cases H-convergence implies even (N4). 

In the nonlinear non-periodic case the proof of (N4) is not complete. 

For the proof see [6j. The functions N
e
 are defined as the solu

tion to the problem : 

(8) Find N£(.,t)€ H*(G) satisfying A6(tx + Ne(.,t)) » A°(txX 

2. HOMOGENIZATION AND CORRECTORS 

We consider a sequence of boundary value problems 

Aeue + g€(..ue) « fG in G , 
(9) 

ue » u>e on 1^ . (ae(.,Du£),n) * y c on 1"̂  , 

where 3G - H L/ Q and n is the unit normal vector to 2G . The 
corresponding homogenized problem has the form 

A°u° + g°(..u°) » f° in G , 

* ' O O --. , O* ... O*. . O f— 

u « ^ on T0 . ( a w ( . .Du u ) ,n ) - yr on \ 1 . 

We adopt the following assumptions : 

Ac . A0 6 8(-c.M,G) , . A€ H-converge to A° , 

g e . g° : G x R —> R are Caratheodory functions, 
| g e ( x , t ) | « h0(x) + c | t l , c > 0 . hQ c L2(G) , 
g € ( x , t ) s i g n t £. - hjL(x) . hx € L2(G) . 
9 e ( . » t ) - g ° ( . . t ) — > 0 in L«(G) uniformly in t , 
f€ , f ° € H"-1(G) , f e — * f ° in H - 1(G) . 
y e . y ° 6 H*(G) . y e — - * y ° i n H1(G) , 

ye .y/°€ 4 ( q ) . y£—>y° in L^^) . 
Under the introduced assumptions the problems have solution, which 

need not be unique. We can formulate the following result : 

I Theorem. Let {ue} be a sequence of solutions to the problem (9). Then there exists a subsequence {ue>} C {u&} such that 

(--) 
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u*1 - u° » 0 in H1(G) , 
( 1 2 ) a*U.«Hi*) - a°(.,Du°) — > 0 in [L2(G)]

n . 

where u° is a solution to the homogenized problem (10). 

Let moreover u° € C (G) and let the coefficients ac satisfy 

N-condition with respect to a0 with functions Nc(x,t). Then using 

correctors we can define the corrected solution 

(13) Ue(x) « u°(x) + Ne(x,Du°(x)) , 

such that the convergences (12) become strong : 

ue
%. u6' — * 0 in H1(G) , 

( 1 4 ) a*'(..Du^ - a6'(.,DU*) — * 0 in U 2(G)]
n . 

If the homogenized equation admits unique solution, or ue—-* u° , 

then the whole sequences (12) and (14) converge. 

Periodic case. Let the coefficients a€ of operators A€ be defined 

(15) a*(x,t) - a(x/e.t) , 
where a(y,t) is a function periodic in variable y with period Y, 

Y m [o/y.^] x...* [o,yp] satisfying conditions (4). Let N(y,t) be the 

solution periodic in y to the following problem : 

(16) - div a(y,t * DyN(y,t)) « 0 , Jy N(y,t)dy « 0 . 

Then the following theorem holds: 

Theorem. The operators A c H-converge to a constant coefficient 

operator A with coefficient 

(17) a°(t) « JY a(y,t * DyN(y,t))dy / meas(Y) . 

Further the coefficients ac satisfy N-condition with respect- to a0 

with auxiliary functions Ne(x,t) - £ N(x/£,t) , where N is defi

ned by the problem (14). 
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