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ON ANALYSIS OF QUASIHYPERBOLIC 
EQUATIONS OF LINEAR VISCOELASTICITY 

BRILLA J., BRATISLAVA, Czechoslovakia 

1. Introduction 

When dealing with initial-boundary value problems of the linear viscoelas-
ticity we arrive at the foUowing class of equations 

Au = J2AkD>u = r , * € 12, t € (0,oo) , (1) 
fc=0 

where Q is a bounded domain in R2 with a smooth boundary S , Ak 

are strongly elliptic differential operators of order 2m , m is one in the 
case of a viscoelastic membrane, 2 in the case of a viscoelastic plate and 4 
in the case of a viscoelastic sheU. Then u is a transverse displacement, a 
stress function or a sheU function and D* = d*/#t* . 

In the case of membranes and plates, the right hand side of (1) assumes 
the form 

r - i2^Di(f-pD7u)t (2) 

where a* are material constants, a, = 1 , / is the transverse loading and 
p is the mass density per unit area element. For real materials r = s or 
r = « + l . 

Operators Ak can assume also a tensor form 

An(.) s - C * u ( . )kJi t it jtktl = 1,2,3 , (3) 

where we apply the summation rule with respect to double indices of space 
variables and a comma foUowed by indices denotes the differentiation with 

respect to space variables. C*u are tensors of elastic and viscoelastic moduli 
and u is a vector of the displacement. 

We shaU consider Dirichlet boundary conditions and nonhomogeneous 
initial conditions. When p = 0 the equation (1) describes quasistatic 
problems and for p 5-. 0 dynamic problems of the viscoelasticity. For 
m = r + 1 we arrive at equations 

p.7J+1u + £B,,D*u = X > . 0 » / = r , (4) 
hmO JbacO 

where 
Bk s= Ak + ak-2p • 
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For r = s we have equations 

pDr
t^u + ar-ipDr

t+
lu + flBhDiu 

A=0 

(5) 

= X>#/ = r. 
fc«0 

Multiplying (1) by the inverse of the operator _Cl.oafc^ w e &rrc-ve for 
0 = r and homogeneous initial conditions with exception of no and u_ at 

/>.D?« + A,u + [ GM(<-r)u(i ,r)<ir = r . (6) 
./o 

where Gr__(/) is an elliptic operator with respect to space variables. 
Similary for r = s + 1 we obtain 

PD?tl + A-D.Ii + (A r - i — Or-aArJll 

(7) 

+ /'a-2(t - r)tx(x,r)dr = r , 
•to 

where for real materials Ar-i — ar_2Ar and Gr-2 are positive definite 
operators. Thus we have arrived at two different classes of equations. 

2, Variational formulation 

For variational formulation of problems under consideration we apply 
Laplace transform. Let f(xtt) 6 -M-R4,Hm,a) , what is the weigthed 
Hilbert space with the norm 

!!L»(A+,J •-,-» = /_JI/HW2"* • («) 

Then applying Laplace transform to (1) we arrive at 

5S = AS +PI>P*+3S= EP*A*S + P E ^ , W « 

(9) 

= i>p*7 + 7. = r, 
*=-o 

where /, denotes Laplace transform of initial conditions. From the principle 
of nonnegative work we have proved [1], that in the case of real materials the 
operator A is for real nonnegative values of p positive definite and 

i,*kVk - 0 (10) 
h-o 

cannot have positive roots. Then for real nonnegative values of p it holds 

(BS,S) > K | | S | | a , K > o . ( i i) 
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Thus we can construct the functional of the generalised potential energy 

2V(Z) = (BZ,Z) - 2(/,S) (12) 

and formulate the following variational theorem 

Theorem 1. The solution u of (9) minimizes the functional of the 
generalized potential energy (12) for nonnegative real values of p and makes 
it stationary for other valres of p . Conversely, the element which minimizes 
(12) for nonnegative real values of p gives the solution of (9). The solution 
of (1) is given by inverse Laplace transform. 

Further we introduce complex Sobolev spaces of functions, which are 
parametrically dependent on the transform parameter p and analytic with 
respect to p in the right hand halfplane pj = {p|R« P > <* > 0} . W e 
define the norm in Hm(Qycr) as 

<ад- j[ .£l->" = P« . (iз) ІІЯ"Ч 

where or is a multiindex. 
Now we associate with B a bilinear form and consider 

*(-.») = ^(*«.«) = (-£?.«)• (14) 

There exists such neighbourhood of real positive axis of p , where the 
bilinear form H(u, v) fulfils the conditions of the Lax-Milgram theorem and 
we have : 

Theorem 2. For F /jp'+a € JT*m(n,a) = (H?(Q,a))l there exists a 
unique weak solution tie Hm(Q, a) and it holds 

II S llir-ov, < C\\F/p'« |U-.(„,,). (15) 

This estimate is valid for fixed values of p € pj . When we want to 
derive global a priori estimates, we have to introduce new functional spaces. 

3. Spaces with dominant mixed derivatives. 

In contradistinction to elliptic equations the highest order of derivatives 
of partial differential equations for time dependent problems is different for 
different variables, e. g for time and space variables. Therefore for an anal­
ysis of time dependent problems it is convenient to introduce anisotropic 
Sobolev spaces. J. L. Lions and £. Magenes [2] have applied anisotropic 
Sobolev spaces with dominant ordinary derivatives for analysis of parabolic 
and hyperbolic equations. Howerer, in the case of hyperbolic equations they 
arrive at incompatibility of initial conditions and trace spaces. 
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We have dealt with analysis of quasiparabolic and quasihyperbolic equa­
tions [3] and have introduced spaces of analytic functions valued in Sobolev 
spaces for an analysis of Laplace transform of these equations and weighted 
anisotropic Sobolev spaces with dominant mixed derivatives for the analy­
sis of original equations. As the considered equations have dominant mixed 
derivative* the introduced spaces are more convenient for their analysis then 
spaces with dominant ordinary derivatives. 

We shall consider the spaces KTO'f(fl,<7) of functions parametrically 
dependent on the transform parameter p and analytic in pa with the norm 

II 7 Ife-tn,) = sup / ~ (1 + W*)H 7 (ft + %)!&-«,,*» , (16) 
pi>* . /-oo 

where p = p\ + «pa . For r = 0 we arrive at Hardy spaces of functions 
valued in Sobolev spaces. 

Simultaneously we introduce weighted anisotropic Sobolev spaces en­
dowed with the norm 

ll/lll.-.;<n.**,( = j f {II/I&- + \\D\f\?H.}e-*"dt, (17) 

where we assume that 

Dtf(xt 0) = 0 , k = 0.1,..., r - 1 . (18) 

Then similarly as in [4] we can prove the following theorem . 
Theorem 3. Laplace transform is an isomorphic mapping of Hm$(ft, R+t a) 

onto fTm'r(-V) . 

When we deal only with the original time-space formulation of problems 
we can apply spaces Hm,r(Q1R

¥
1<r) without the condition (18). 

The norms (16) and (17) correspond to forms of operators for qua-
sistatic problems of the linear viscoelasticity. 

When we want to decide what spaces are convenient for special classes of 
differential equations, it is necessary to analyse properties of eigenvalues and 
eigenfunction expansions of solutions . 

-f. Analysis of hyperbolic equations with damping 

We analyse the equation 

(D? + kDt + Ao)u = r (W) 

where AQ is a symmetric elliptic operator of the order 2m . We consider 
homogeneous Dirichlet boundary conditions and following initial conditions 

u(*,0) = uo, Diu(z,0) = m . (20) 

Then denoting by An, Xn eigenvalues and orthonormal eigenfunctions of 
AQ , respectively, Laplace transform of the solution assumes the form 
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_S» £ > 2 + kP + \n)-*[fn + (P+ *)Uon + kuln]Xn . (21) 

where fn = (7,Kn) . 
For nonlinear eigenvalues we have 

Pni,2 = - i [ t - ( * 3 - 4 A n ) i ] . (22) 

Thus, Pnî  *re of the order m and for higher values of n assume 
complex conjugate values, which for k = 0 i.e. for hyperbolic equations are 
imaginary. 

Hence by the inverse transform we arrive at 

« = £ { - /'/n(r)e-*<^sinu;w(t - r)dr 

+ t-0«""**( sinWn* + COBLJnt) + —«"" sin a/nt > Ku , 

where we have denoted 

b = i* , u,„ = (AJ - A-/*)* 

(23) 

(24) 

Now, as also hyperbolic equations can be written in the form with mixed 
derivatives, we introduce the following norm 

n/iii,., = j f fa(\f\+\&*my *-***** (-5) 

We denote by xi"1 «-d <#» eigenvalues and orthonormal eigenfunctions of 
the operator D3m( . ) , respectively. When, applying the weighted Fourier 
transform 

t'Tsr ****** (26) 

the norm can be written in the form 

II7 IIU. = E r [i + xJV+*3)]217n ia*. (27) 

For analysis of the considered equation we restrict H2m*2 to the subspace, 
for which a <$ \m

 f i.e., for which a derivative with respect to the time 
variable corresponds to m-derivates with respect to space variables. 

Now applying the usual procedure we can derive the following inequality 
for * = 0 . 

II^/IIW) < *Cfa{\f\ + |-0*"*^*/l)ae-aH*« 
(28) 

where 
/4 = 2mk - j (29) 
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Analysis of trace properties for z € S are similar to that for anisotropic 
Sobolev spaces with dominant ordinary derivatives [2] . Then we have 

\\Dif\\H*r'HS,R+tt,) < c||/|U---.--(n*+,eO , (30) 

where 
H = 2m* - j - 1/2 , ej = 2k - (j - l/2)/m (31) 

for j < 2mk — 1/2 . v is an exterior normal to S . 

Hence we can formulate 

Theorem 4. Let j < 2mk , then / —» D{f are continuous linear 
mappings of 

jj*»W*(nfr+>l7) — F2m*">(fi) (32) 

and let ,; < 2mk — 1/2 , then / —> D{f are continuous mappings of 

H2rnk>2k(Sl,R+yo) -> H2mk-j-lfl>lk-u-lf2)*m(S}R+1a). (33) 

The functions Dj/ and D{/(.r,0) satisfy additional relations, called 
compatibility relations 

- W / l s U = 0JU>|/(*,O))|,. (34) 

In fact according to (33) it holds 

Dif\s € Br2'»fc->-1/3'2fc-0-1/2V«(S,/J+,a) (35) 

and then applying (32) we have : 

flkflJ/Wli-o € ir**-;-*»-»*(s), (36) 

where it should hold 2mk - j - Im - 1/2 > 0 . 

Hence 
/ - Ą-Oi/U ô (37) 

iв a continuous mapping of 

Я ^ ^ f П - Ä + . a ) - Я 2 m f c " J - , m - l / 2 (S) . (38) 

Similarly, according to (32) 

J^/U=o - Я 2 m *- , m (П) (39) 

therefore 

-Ч(->í/U)l- 6 я*"*-'™->-"2(s). (40) 

Then we can prove 
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Theorems. Let / € H°>°(Q, fl+, a) , ti« € H^Q), Wl € .ffm(17) 
and boundary tniiaes 

P i € j f*^i - - /a .Mi- i /aW»(5 | i ^ | I F ) | (41) 

0 < j < m - 1 , with the compatibility relations such that there exists 
a w^H2m^(Q}R*,a) satisfying 

Diw\s = 9j , 0 < j < m - 1 (42) 

and 
u>(*,0) = uo(.i), A^(x,0) = ux(x). (43) 

Then the solution of problem (19), (20) with Dirichlet boundary condi­
tions (41) satisfies 

u € H2m^(QtR*}a). (44) 

When we apply anisotropic Sobolev spaces with dominant ordinary deriva­
tives JT^ffi-.O.T) used bv J. L. Lions and E. Ma*enes (2) for analysis 

of hyperbolic equations, we have to consider the following relations for trace 
spaces 

DJ/(*,0) 6 H^2'l^7ym(Q) (45) 

and 
Dj/(s,r) 6 JTaw->-1'a-2-O'-1/a)/m(S;0f.r). (46) 

Then we have to consider initial conditions 

Uo(x) € ff3m/2(S7), 11,(2) € Hm'2(Q), (47) 

However also in the case of hyperbolic equations when applying weighted 
anisotropic Bpaces with dominant mixed derivatives we arrive at compatibility 
between initial conditions and trace spaces. 

5. Analysis of quasihyperbolic equations 

When dealing with this analysis we restrict ourselves to the class of equations 
with r = s . 

We consider the equation 

(Df
3 + kD] + A, A + Ao)u = r , (48) 

where A\ and A0 are symmetric elliptic operators of 2m order. We 
consider homogeneous Dirichlet boundary conditions and the following initial 
conditions 

u(x.O) = uo. ftu(i.O) = u-, D2u(i,0) = u2 . (49) 
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Then the Laplace transform yields 

tf + kj? + pAi + Ao)u 
(50) 

= f* +(p* + pk + Ai)uo + (p + k)ut + ua . 

For the sake of simplicity we assume that A\ and A0 are spectrally 
similar* We denote their eigenvalues by Aln and AQ* and assume that eigen­
vectors Xn are orthonormal. Then eigenvector expansion of the solution 
can be written in the form 

~w= t^+^+x^+xJ^^2^^^^ 
(51) 

+ (p + A;)uM + l*2,n]K» • 

For an analysis of (51) it is necessary to find nonlinear eigenvalues, which 
are the roots of the equations 

p3 + kp2 + Alnp + Aon = 0 . (52) 

It is possible to prove that the real roots of these equations pin have a 
finite limit 

Jim pm = Cn(K) < oo (53) 

and thus are of order 0 . The remaining two roots are complex conjugate. 
Their real parts, have a finite limit and their imaginary parts have an infinite 
limit of order m as n tends to infinity. 

Then the norm of the space IP71*3 convenient for analysis of this class 
of equations can be written in the form 

ll/llif--.-(ft,.R+,.T) 
(54) 

= E rijw2+I^/I2+w/i2} «-"-«*, 
a—2m 

where or is a multindex. 
For analysis of trace properties of thase spaces at t = 0 , we apply an 

equivalent norm 

11/16—- E F l C I / l + IAO-II + lflf/l^e-^rfn*. (55) 

When denoting by An
m and <j>n eigenvalues and orthonormal eigenfunc-

tions of the operator Da and applying the weighted Fourier transform (24) 
the norm (53) can be written in the form 

ii 7 HH-^ = E r (i+I - ^+»i*r +1 -»+"i3)2i /»i8* • (56) 
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The roots of the equation 

1 + (-a + w)Aj" + (-cr + i5)3 = 0 (57) 

have the same limit properties as the roots of (50) and can be written in the 
form 

(-C7 + X5)- = ConiX?) 

(58) 
1 ,.-_.. + 

( - * + ,*)„ = —coЛAÎ") - ic^шiФ) , 

where co» is of order 0 and c-** is of order m . 

Then the norm assumes the form 

II 7 I&.-J = E n & O n + ̂  + C^H&O. 
nml w 

+ (*-c m n ) a ](^ + 6 j J | 7 . | ^ , 

(59) 

where 6o„ = - a + l/2con , 6i* = a + Cc . 

Now using the common approach we can prove the following inequality 

Wti\Ww < c?||/|U..-Hiwt*^. (w) 

where 
^ = 2m - j . (61) 

Analysis of the solution (52) and of the proposed norm (57) shows that 
the solution is composed of functions belonging to fr3m*»3* and to H7m*t)0 

, to which terms with 1/(p — c„) belong. 

For traces of H2m^ it holds 

D//(*,0) € ff2m(!7) (62) 

and 

Dif\s € H2**-'-1*2-00 . (63) 
Thus for analysis of the equation (46) it is convenient to apply spaces 

H*»>3(Q,R+,<J) . 

Then we can prove 

Theorem 6. Let / • € fr°°(n,.R+,a) , m, 6 H^il) , tij 6 
/ / ^ ( O ) , u2eHm(Q) and $, € H*»->-ll2(S,_R+,a) , 0 < j < m - l . 
Then there exists a solution of (46) u 6 if3m>3(ft, #+,cr) . 
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Conclusion 

We have shown that weighted anisotropic functional spaces H7m',9'(Q9 r
+, a) 

with dominant mixed derivatives are convenient for analysis of quvasihyper-
bolic equations. They can be applied also for analysis of hyperbolic equation 
. The analysis in these spaces leads to a compatibility between initial condi­
tions and trace spaces for t = 0 . 
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