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LECTURES ON LYUSTERNIK-SCHNIRELMAN THEORY FOR INDEFINITE 

NONLINEAR EIGENVALUE PROBLEMS AND ITS APPLICATIONS 

Eberhard Zeidler 

Introduction 

The purpose of these lectures is to give an introduction to the 

Lyusternik-Schnirelman theory and its typical applicaťions based on 

the ideas outüned in the papers of LYUSTERNIK (1930), KRASNOSEL ' SKII 

(1956), VAINBERG (1956), BROWDER (1968), (1970a), (1970b), COFFMAN 

(1969), (1971), (1973;,,. AMANN (1972), FUCÍK, NEČAS (1972a), FUðlK, 

NEČASj SOUČEK, SOUČEK (1973), RABINOWITZ (1973), (1974), ZEIDLER 

(1978). 

The Lyusternik-Schnirelman theory is concerned with nonlinear 

eigenvalue problems in Banach spaces X of tћe type 

(1) Au = &Bu, u є X , X e E 

generalizing linear eigenvalue problems of the type 

(2) Au = Xu , u є X , X є Щ , 

where A is a linear symmetric and compTetely continuous operator in 

a Hilbert space X . 

AMANN (1972) has considered the problem (1) without definiteness 

restrictions upon A for the first time, and thus my lectures have 

been strongly influenced by his paper. In the indefiriite case it is 

possible that there exists only a finite number of eigenvalues in 

(1), C 2 ) . 

It is our goal to study the indefinite case extensively and to 

emphasize the connection between the results obtained for nonlinear 

and linear operators. 

In Section 5 we shall formulate two general theorems strengthe-

nlng the results of all the papers mentioned above (see Remarks 3, 4, 
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5 in Section 5 ) . In Section 7 we shall restrict our main theorems to 

the case of linear operators. In this way we shall see that our re-

sults obtained for nonlinear operators are maximal in acertain sense. 

These lectures are organized as follows: 

1. Notation 

2. Some typical eigenvalue problems 

N 

2.1. Nonlinear equations in IR 

2.2. Linear integral equations and the Hilbert-Schmidt theory 

2.3. Nõnliпeãr integral equations 

2.4. Nonlinear elliptic partial differential equations 

3. Couranťs maximum-minimum principle 

4. The genus of symmetric closed sets not containing the origin 

5. The main theorems in infinite-dimensional Banach spaces 

6. Sketched proofs of the main theorems 

7. Restriction to the case of linear operators 

8. An important special case of the main theorems concerning non-

linear operators 

9. Applications to nonlinear elliptic partial differential equations. 

10. The main theorems in finite-dimensional Banacћ spaçes 

11. Applications to abstract Hammerstein equations 

12. Applications to Hammerstein integral equations 

References 

The contents of these lectures is closely related to Chapter 42 

of the third volume of my "Lectures on Nonlinear Functional Analysis" 

(see ZEIDLER (1978)). Here we shall prove only the statements which 

are not contained in my book. 

Furthermore, for the sake of technical simplicity we shall con-

sider only simple but typical applications. 

Remarks on the historical development of the Lyusternik-Schnirel-

man theory can be found in the papers of KRASNOSEL'SKII (1956), 

VAINBERG (1956), BR(ШDER (1970a), RABINOWITZ (1974). 

12 ЇЧłcik, Kufner 177 



Acknowledgments. I would like to express my gratitude to Prof. 

M. A. KRASNOSEĽSKII for telling me the sophisticated proof of Pro-

position 7 in Section 4. 

Furthermore, I would like to thank my friends from the Organizing 

Committee for their invitation to this inteŕesting and well-organized 

Spring School. 

1. Notation 

•k 

Let X be a Banach space. The space dual is denoted by X . 

We set <x*,x> = x*(x) for all x є X, x* є. X . The symbols u -» u 

and u -* u denote the weak and the strong convergence in X , res-

pectively. 

The set of all real or natural numbers is denoted by 1R or ІN, 

respectively. 

Let A be an operator from the Banach space X into the Banach 

* 

space X . A is said to be completely continuous iff it is conti-

nuous and maps bounded sets into relatively compact sets. A is sâid 

to be strongly continuous iff u -* u implies Au -*• Au (n -*• «>) . 

A is said to be monotone iff <Au - Av, u - v> = 0 for all 

u, v « X . 

A is said to be uniformly шonotone iff 

<Au - Av, u - v> Ł c(||u-v||) ||u-v|( for all u, v e X 

where c : [0, +«) -*• [0, +«) is a real strictly monotone continuous 

function with c(0) = 0 and c(t) -*•+«> as t -*•+«> . 

A is said to be bounded iff A maps Ъounded sets into bounded 

sets. A is said to be a potential operator iff there exists a 

Gateaux-differentiable real functional a on X such that a'(u)-Au 

for all u Є X . The operator a is called the potential of A . 

Figure 1 gives a survey on the connection between important ope-

rator properties. All the definitions and proofs can be found in 

Chapter 27 of ZEIDLER (1977). 
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2. Some Typical Eigenvalue Problems 

Let us consider four simple examples concerning 

N 
i) nonlinear equations in 1R , 

ii) linear integral equations, 

iii) nonlinear integral equations, 

iv) nonlinear elliptic partial differential equations. 

N 
2.1. Nonlinear equations in JR . We start with the real eigen-

."'' N 
value problem in B. 

(3) i f | - i - X ? i , i - 1 N . 

where x = (F^, . . . ,£N) e ]R
N, X tg R . 

Proposition 1. (LYUSTERNIK (1930)). 

N Suppose g : JR —> !IR has continuous first partial derivatives 

and is even. 

Then for each r > 0 3 the eigenvalue problem (3) has at least 

N distinct po.irs of eigenvectors (x, -x) with | |x| | = r . 

This basic result of the Lyusternik-Schnirelman theory is a spe­

cial case of Theorem 3 in Section 10. 

Let A = (a..) be a symmetric N x N - matrix. Set g(x) = 

-1 N i a 

= 2 £ a. . £ . £ . . Then the equation (3) is equivalent to Ax = Xx, 
i,j=l XJ x J 

i.e. Proposition 1 generalizes the well-known fact that A has N 

linearly independent eigenvectors. 

2.2. Linear integral equations and the Hilbert-Schmidt theory. 

Next we consider the linear integral equation 

(4) f a(x,y) u(y) dy = Xu(x), u & L 2 (G) , X e JR , 

G 
N 

where G is an open bounded nonempty set in IR , N ^ 1 . 

The equation (4) is equivalent to the operator equation 

(4f ) Au = Xu , u e X = L2(G) , X e U . 
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X is a real separable Hilbert space. Suppose that the real measurable 

function a : G x G -> IR is symmetric, i.e. 

(5) a(x,y) = a(y,x) for all x,y g G , 

and 

(6) 0 < J a2(x,y) dxdy < «, . 

GXG 

Then the operator A : X ~* X is symmetric and completely continuous, 

A ^ 0 . 

The following main theorem of the Hilbert-Schmidt theory descri­

bes the solutions of the equations (4), (4 f). 

Pvoposition 2. (cf. e.g. RIESZ-NAGY (1952), Chapter VI.) 

Suppose : 

X is a veal sepavable Hilbevt spaoe with a soalav pvoduot 

c I .) , -
A : X —>X is a lineav symmetric completely continuous opeva-

tov, A ^ 0, dim X = oo . 

Then : 

1} The equation 

(7) A u - X u , u e X s A e I R 

has at least one eigenvalue X ± 0. 

2) Evevy eigenvalue X # 0 of A has a finite multiplicity. 

3) Theve exists an infinite sequence of eigensolutions ( u . , A . ) 

with (u.ju.) = 6.. fov i,j = 1,2,... and 

(8) u = I (u|u.) u. fov all u e. X . 
i=l i i 

L/ (u,A), u ^ 0, X <= CR is an avbitvavy eigensolutio.n of (7), 

then theve exists a numbev X . with X . = X j and in (8) i t holds 

(u| u.) = 0 fov all j with X . i X . 

2.3. Nonlinear integral equations. As another example let us 

consider the Hammerstein integral equation 
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(9) |a(x,y) f(u(y)) dy = Au(x), u e L2(G),A € R, f odd 

. G 

sponding 1 

|a(x,y) u( 

G 

and the corresponding linear equation 

(10) |a(x,y) u(y) dy = Au(x) , u e L 2(G), A C R . 

In Section 12 we shall prove, roughly speaking, the following 

result : Suppose (5) and (6) are satisfied. Suppose that the linear 

integral equation (10) has only positive eigenvalues. 

Then, under certain assumptions on f , the nonlinear integral 

equation (9) has an infinite number of distinct eigenvalues. 

2.4. Nonlinear elliptic partial differential equations. For the 

sake of simplicity let us study the boundary value problem 

N 
|P-2^ = „l„|P--

on Эö 

(11) -Л У D, (D,u|D.,u|
p
""

z
) = u|u|

p
""^ф(x) on G , 

i=l
 Ł X Ł 

where x = (gj, ...,{•„), D. = 9/3£i, p ^ 2 . Let G be an open 

N 
bounded nonempty set in JR. , N ^ 1 . 

Suppose | : G -*- JR is a continuous function with 

(12) min <J>(x) > 0 . 
xcG 

Definition 1. A function u belonging to the Sobolev spaoe 

X = w (G) is said to be a generalized solution of (11) iff 

(11') Ab(u,v) = a(u,v) for all v 6 X , 

where 
r N 

Б(u,v) - l I) u|D u|
P
~- D v 

l i-1 

ã(u,v) = íф(x) u|u| p
~

2
v dx . 

G 

By integration by parts it is easily seen that every regular solution 

u of (11*) is a solution of (11) as well. This justifies the term of 

generalized solution (see e. g. ZEIDLER (1977), p. 94). 
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Furthermore, it is not difficult to prove that there exist ope-

rators A,JB : X -* X with 

b(u,v) = <Bu,v> , a(u,v) = <Au,v> for all u,v <s X . 

Therefore, the equation (11') is equivalent to 

(11") XBu = A u , u e X , X € R . 

A, B are odd potential operators with potentials 

b(u) = p"1 | I |D±u|
p dx , a(u) = p"1 L(x)|u|p dx , 

G i = 1 G 

and all the hypotheses of the following Proposition 3 are satisfied 

with B = Bj, B2 = 0 (see ZEIDLER (1978), p. 120). 

Proposition 3. 

Suppose : 

(13) X is a real reflexive separable Banaoh space, dim X = °°. 

•k 

(14) A, B : X -+ X are odd potential operators with potentials a, b; 

a(0) = b(0) = 0 . 

(15) B = Bj + B2 , B± : X -* X* . 

(16) B, is bounded, continuous and uniformly monotone, B.(0) «- 0 . 

(17) A, B2 are strongly continuous. 

(18) <Au,u> > 0, <B2u,u> ̂  0 for all u + 0 . 

Let a > 0 be an arbitrary fixed real number. 
Then : 

For each m = 1,2, ... there exists an eigensolution 

(um> Xm> °f 

(19) XBu = Au , b(u) = a (u e X, X s H) 

with u ?-0 , X > 0 and u -- 0, X -> +0 as m -> «> . m m m m 

Proposition 3 is a special case of Theorem 2 in Section 5 (see 

also Proposition 8 and Corollary 2 in Section 8). 
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If we suppose that the function <j> has zeros on G , then the 

definiteness condition <Au,u> > 0 if u ?- 0 is not satisfied. No­

netheless , it holds 

(18') <Au,u> = 0 4-=J> a(u) = 0 . 

This condition or the weaker condition 

(181 ') Au *- 0 -<*> a(u) = 0 

will play a crucial role in our main theorems (see Theorem 1, Theo­

rem 2 in Section 5, and Section 9 for applications to partial diffe­

rential equations). * 

3. Courant's Maximum-Minimum Principle 

The Lyusternik-Schnirelman theory generalizes Courant's maximum-mini­

mum principle. Therefore, let us formulate this principle in such a 

way that later the generalization will be obvious. 

As in Proposition 2 (Hilbert-Schmidt theory) we shall make the 

following assumptions : 

(i) X is a real separable infinite-dimensional Hilbert space 

with a scalar product (.j.) . 

(ii) A : X -* X is a linear symmetric completely continuous 

operator, A 4- 0 . 

Set 

a(u) = 2_1(Au|u) , b(u) = 2~1(u|u) . 

Definition 2. Denote by S the boundary of the unit ball* i.e. 

S = ( u e x : | | u | | = l } . 

Denote by S, the boundary of an arbitrary k-dimensional unit 

bait in x > i.e. 

S, = S n X, X, = k~ d i m e n s i o n a l linear subspace of X. 
k k ' k c 

Let % be the set of all S, with k > m , m = 1, 2, . . . . 
m J k — 

Define 

(20) & = ( L € £m : ±a(u) > 0 for all u € L} . 
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Set 

(21) ±*« 

sup+ min (±2a(u) ) 
L££~ ueL 

O if g; 0 . 

Obviously, ±\1 >^ ±\~ .> . . . ^ 0 . 

Pvoposition 4 (the maximum-minimum pvineiple of COURANT (1920); 

see also FISCHER (1905), WEYL (1911)). 

Suppose ±\~ > 0 ( + or - ) . Then : 

1) \ = \~ is an eigenvalue of the opevatov A . All eigen­

values X 7- 0 of A ave obtained in this way. 

2) The multiplicity of \ is equal to the numbev of indices 

j with XT = X . 

3) Theve exist eigenvectovs u,, 

such that 

±\~ = min 2a(u) 
m ueL 

s + 
wheve L = S f) lin {u-,...,u }e £' . 1 m m 

A with(u |u.)= 6.. 

REMARK 1. Our main theorems in Section 5 will generalize the 

maximum-minimum principle (21) to nonlinear operators A . 

The basic idea due to LYUSTERNIK (1930) is to replace & by 

a l a r g e r c l a s s H 2 j£ . The s e t s K €. *~, a r e c h a r a c t e r i z e d by a m m m 

topological invariant generalizing the dimension of spheres. 

LYUSTERNIK (1930) used the notion of category. Here we shall use the 

notion of genus (see Section 4 ) . 

P r o o f of Proposition 4. We choose eigensolutions (u.,X.) 

of the operator i 

£ (u|u.)u. for all u e X 

2a(u) = (Au|u) = I A (u|u ±r-
i=l 

(I) Suppose that A has at least r positive eigenvalues 

|u||2 = l („|„ ) 2 

1=1 

counted according to their multiplicity. Without any loss of genera-
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lity we can assume that 

Xx >, X2 >, ••• >, Xr > 0 , Xr >, X if r > j . 

If L e SC , i.e. L = S n X, , dim X. j_ s , and s 4 r , then 

we can choose u e L such that 

(u|u) = 1 , (u|u±) = 0 , i = l,...,s-l . 

Hence 

2a(u) < Xg I (u|u ±)
2 = Xs||u||

2 = Xs , i.e. X+ < Xg . 
i=s 

Set Lg = S n lin { u . j , . . . , u > € £ and observe that (u|u.) = 0 

if u € L and i > s , i.e. 

1 . I I.. I 12 _ ? , . *2 j (u|u.) Z for all u є L 
i=l

 X s 

Hence 

9 
2a(u) >, X

g
 l (u|u

jL
) = X fór all u e L 

Since 2a(u ) = X , we obtain 

Xs >. min 2a(u) = Xg , 
U€L 0 

+ s 

i.e. Xs = Xg if s = 1,...,r . 

(II) Let X > 0 , i.e. & 7- 0 . Our proof will be complete 
m . m 

if we can show that there exist at least m positive eigenvalues 

counted according to their multiplicity. 

Suppose there exist only r positive eigenvalues of A with 

r < m . Without any loss of generality we can assume that 

xi =;•••->= x > ° a n d *A 4 X
r+1 = °

 i f 3 > r • 

Let L 6 £ c SJ . . As in part (I) of our proof we can choose 

u € L with 2a(u) < \ . < 0 , i.e. min a(u) 4 0 . This is a 
u£L + 

contradiction to min a(u) > 0 for all L e. & , q.e.d. 
m 

ueL 

4. The Genus of Symmetric Closed Sets Not Containing the Origin 

Definition 3. Let. X be a real Banach space. A subset M £ X 

is called symmetric iff u e M => -u e M . 
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A symmetric closed set M « X - {0} is said to have genus n , 

notation Y( M) " n * iff there exists 

(22) an odd continuous map f : M -* Rn - {0} 

and n is the smallest natural number with this property. 

If there is no such natural number n > we set y(M) = + °° . 

For the empty set 0 we define Y(0) = ° • 

The following Proposition describes a crucial property of the 

genus. 

Proposition 5. 

Let S = { u e X : | |u| | •> 1} be the unit sphere in a real Banach 

space X . 

Then Y( S) = <- i m x • 

The proof is given, for example, in ZEIDLER(1978), p. 102. This proof 

is an easy consequence of Borsuk's antipodal theorem (see e.g. 

ZEIDLER (1976)). 

REMARK 2. The definition of genus given here is that used by 

COFFMAN (1969). It is equivalent to an earlier definition given by 

KRASNOSEL'SKII (1952), (1956). This equivalence has been proved by 

RABINOWITZ (1973). The genus appears also in CONNER, FLOYD (1960), 

where it is called the coindex. 

In Lyusternik's category approach to nonlinear eigenvalue pro­

blems (see LYUSTERNIK (1930), (1934), (1947)) an important role is 

played by the fact that real k-dimensional projective spaces ,P , 

obtained by identifying the antipodal points of a k-dimensional unit 

sphere, have the category k + 1 with respect to P n . The proof 

of this deep topological result is due to SCHNIRELMAN (1930) (see 

also SCHWARTZ (1969), BROWDER (1970 a)). 

It was Krasnosel'skii's idea to simplify proofs of the main re­

sults of the Lyusternik-Schnirelman theory by using the notion of 
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genus. For example, the proof of Proposition 5 is extremely simpler 

than the proof of Schnirelman*s theorem concerning the category of 

projective spaces, Furthermore, there is no need to pass to projecti­

ve spaces when using the genus. 

Now let us summarize some further properties of the genus. 

Proposition 6. Let X be a real Banaah spaae. Suppose M, M, 

are symmetric closed subsets of X - {0 } . 

Then : 

1) Mx £ M 2 -* Y < M X ) 4 Y ( M
2
} * 

2) If F : M, -* M_ is a continuous odd map} then 

Y (M,) _< Y ( M O ) • Furthermore, if F is an odd homeomovphism from M, 

onto M2J then y {W.^) = Y^M?^ * 

3) Y <
Mi v M

2
 U * • • u M k ) < Y <

Mi) + • • • + Y <M
k> > l 4 k < °° • 

4) Y ( M I ^ < °° ** Y (M2 ~ fli^ >r-.y ^n2J 

5) M is a compact set -> y (M) < =o . 

6) If M, is a compact set, then there exists an open symmetric 

set U such that Mj £ IJ and Y(
Mi) = Y <U) . 

7) Y W < dim x • 

8) If M is a finite nonempty set, then y (M) = 1 . 

9) Let X, s. X be an an-dimensional subspace with 1 <_ m < oo . 

Suppose P : X -* X, is a linear, continuous projector onto X, . 

Then : y (M) > m =j> M n (I - P) (X) -- 0 . 

10) If Mjil M 2 = 0, t h e n Y (
Mi u M 2>

 = m a x M M i ) > Y ( M 2 ) ) . 

P r o o f . The proofs of 1) ... 9) are given, for example, in 

ZEIDLER (1978), p. 102 . 

Let us prove 10). Since y (0) = 0 , the case M, = 0 or M„ = fl 

is trivial. Suppose M ^ M 2 # 0 . Then 1) implies 

max (Y (M 1), Y (*-2 ) ) £ y (M1 U M 2 ) . 

If Y^
Mi) = °° o r Y (M2^ * °° » t h e n 10^ i s P r o v e d-

Now, suppose y(M..) = n. . Then there exist continuous odd maps 
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f : M 1 - * i R ± - { 0 } , i = l , 2 . 

Define 

f (u) = f . (u) if u e M . 

Hence 

f : M1 U M 2 ~* tR
m - {0} , m = max (n 1,n 2), 

i.e. Y ( M X O M 2) 4 max{Y(M1),Y(M2) }, q,e,d. 

The following Proposition 7 seems to be new. 

Pvoposition 7 (Kvasnosel3skii). 

Let X be a veal Banach space with dim X = » . Set 

S = {u e X : ||u||= 1} . Suppose M £ S is a compact set. 

Then, fov evevy m € IN 3 theve exists a compact symmetvic sub­
set K £ S - M with Y ( K ) > m • 

m ' nr = 

P r o o f . If X is a Hilbert space, Proposition 7 follows 

easily from orthogonal decomposition arguments (see ZEIDLER (1978), 

p. 113). If X is an arbitrary Banach space, then the proof is more 

sophisticated. The following proof based on a selection theorem of 

MICHAEL (1956) is due to KRASNOSEL'SKII (oral communication during 

his stay in Leipzig, December 1977). Figure 2 describes the main ide<a 

of the proof. 

Step 1. A selection theorem of MICHAEL (1956). 

Suppose : 

i) T is a metric space, X is a real Banach space, 

ii) There exists a lower semi-continuous map <f> : T -*• 2 , 

i.e. if T e T, u e <J>(T), and U(u) S X is a neighbourhood of u , 

then there exists a neighbourhood V ( T ) S. T of T such that 

cj>(Tr ) n U(u) ?- 0 for all x» e V ( T ) . 

iii) For all T e T , <|> (T) is a nonempty closed convex subset 

of X . 
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Then there exists a continuous function f : T -*• X with 

f(T) e <J>(T) for all T e T . 

Step 2-i. Since M is compact, 

there exists a linear finite-dimen­

sional subspace XQ of X such 

that dist(u,XQ) < h for all 

The 

Fig. 2 

u 6 M . 

Step 3. Set T = X/XQ 

elements T of the factor space 

X/x0 are the sets T = uQ + XQ. 

T is a Banach space under the norm 

||T||T - inf{||u|| : u 6 T} . 

Hence 

inf{||u1 - u2||x : u ±e T ±} -- inf{||v|| : v c ^ - T £ } 

= IIxx - T 2 | | T . 

Step 4. Define <j> by 

<J>(T) = {u 6 T : ||u||x < (4/3)||T{|} . 

For all T € T , $(T) is a nonempty closed and convex set. 

We assert that • is lower semi-continuous. Suppose this is not 

true. Then there exist elements T « T , u « +(T) , a neighbourhood 

U(u) of u and a sequence CT ) such that 

T -* T in T n -*• » and Ф (т )п U(u) = 0 for all n « W . 

Choose a small number n > 0 and an element v e. T with v c U(u) 
a n d
 II

 v
ll £((4/3) - n) | | T | | . Furthermore, there exists a sequen­

ce of elements u e T such that 

n n 

||v-u n||< C4/3)||T - Tn||T for all n 6 N . 

Now, from u -* v , | | T | | -* | | T | | (n -» °°) we obtain 

I I u I I 4 (4/3)1 lT I I if n ^ nn, i.e. u, € <J>(T ) /) U(u) if n i n. n n u n n 1 

This c o n t r a d i c t s <J> (T ) <% U(u) - 0 for a l l n e t * . 

190 



Stép 5. The Michael selection theorem in Step 1 implies that 

there exists a continuous map fQ .: T = X/XQ -* X such that 

f
Q
(т) є ф(т) £ т for all т є T . 

Define f(т) - (f
Q
Cт) - f

Q
(-т))/2 . Then f : T -* X is a conti-

nuous odd map with f(т) e т for all т в T . 

f is also a homeomorpћism. This follows from 

ll-ҷ - т 2 | | T < Hfcтp - f C т 2 ) | | x . 

Furtћermore, the construction of fC
T
) yields 

l|т|| < ||fCт)И. < C4/3) Ц т Ц • 

Step 6. Define gCт) = f (т)/| |f Cт) І | . 

Set S
f
 = íт e T = X/X

Q
 : ||т|| = 1} . Then g : S' -»• S is a conti-

nuous odd map. 

Since dim X = «» , dim X
Q
 < » , we have dim X/XL = «> . For 

every m є Ш , there exists an Cm—l)-dimensional unit sphere S я S', 

i.e. ү(S ) = m . Hence ү(g(S )) ̂  m (see Proposition 5 and Propo-

sition 6,2)). 

We claim gCS
ш
) П M ф 0 . Indeed, 

inf{||v - u||
x
 :v є т , u є X

0
}. - ||т|| 

and gCт) є т/||f(т)|| . Hence 

distCg(
T
),X

0
) = ||т||/||

f
Cт)|| > 3/4 

for all т : ||т||= 1 . Now, g(S ) n M = 0 follows from 

dist(.u,X
0
) < h for all u e M . 

Thus we have constructed symmetric compact seťs K. 5 g(S ) =- S 

with R^П M = 0 and YCK^) >. m , q. e. d. 

5. The Main Theorems in Infinite-Dimensional Banach Spaces 

We turn now to the nonlinear eigenvalue problem 

(23) Au - XBu , b(u) = a (u e X, X £ R) 
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where a > 0 is a fixed real number. The condition b(u) = a nor­

malizes the eigenvector u . 

If (u,X) is an eigensolution of (23) with <Bu,u> # 0, then 

X = <Au,u>7<Bu,u> . 

Problem (23) generalizes the linear eigenvalue problem 

(23f) Au = Au, b(u) = a (u 6 X, U R) 

studied in Section 2.2 and Section 3, where X is a real separable 

infinite-dimensional Hilbert space, A : X —> X* = X is a linear sym­

metric completely continuous operator A ?- 0 , B = I (identity) and 

a(u) = 2~1<Au,u> = 2~1(Au|u), b(u) = 2_1(u|u) . 

( (.|.) is the scalar product in X . We identify X* = X , i.e. 

(u|v) = <u,v>.) In this special linear case all the hypotheses of 

the following two theorems are satisfied. 

Theovem 1 (Eigensotutions of the equation (23)). 

Suppose that the following conditions hold : 

(24) X is a veal veflexive sepavable Banach space, dim X = ~ • 

(25) A,B : X -* X* ave continuous odd potential opevatovs with 

potentials a, b;a(0) = b(0) = 0 . 

(26) A is stvongly continuous. 

(27) Au = 0 =^a(u) = 0 . 

(28) B is unifovmly continuous on bounded sets of X . 

(29) B satisfies the condition 

(S), : u -*• u, Bu -> v ** u -> u (n -> °°) . 
I n n n 

(30) u 9- 0 4<Bu,u> > 0 . 

( 3 1 ) The level set N = {u e X : b ( u ) = a } 

is bounded (e.g. b ( u ) -> +°° as \ | u | | —> °°) . 

(32) inf <Bu,u> > 0 . 
u£N 

a 

(33) Fov each u g- 0 theve exists a veal numbev r(u) > 0 such 

that b(r(u)u) = a (i.e. each vay through the ovigin intev-
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sects N
a
 ; see Fig. 3). 

(34) a i 0 on N 

Then3 undev all these assumptions3 

the following statements ave tvue : 

1) The level set N is homeo-
a 

movphic to the unit spheve. Theve 

exist veal numbevs c,d such that 

0 < c < : | | u | | < = d on N 
2) The cvitical levels $ ,$~ m m 

Define3 fov all m e N 

(35) 

(35 + ) 

Fig. 3 

* sup min I 2а(u) | 
KєП, ueK 

sup+ min (±2a(u)) , 
K€«t~ ueK 

m 
0 i f # * = 0 , 

wheve 

Ҡ {K £ N : K compact3 symmetvic3 y(K) >̂  m} 

%~ = {Ke ft : ±a(u) > 0 on K} 
m m 

Then %m ± 0 fov all m £ IN and 

> 0 , -ls> з2
 >...>. 0, 

з > ± $ ; >_ . . . > o ±3, <_ 

Fuvthevmove3 0 as m -» « 
m m 

3.) Lyustevnik3 s maximum-minimum pvinciple genevalizing Couvant31 

maximum-minimum pvinciple. 

a) If $ > 0 3 then the equation (23) has an eigensolution 

( 3 6 ) u
m * 0. X

m
 ^ 0» |2*(u )| = $

m
 . 

m m ' m ' m 

b) If ±$~ > 0 (+ ov -)3 then the equation (23) has an eigen­

solution 

(36
±
) »£ * 0, X± * 0, 2a(u±) = „* . 

J/ A -is homogeneous3 i . e . Atu = tpAu fov all t > 0, u •= X 

and a fixed p ̂  0 3 t/_en 
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a(u) = <Atu,u> dt = (1+p) <Au,u> , i . e . 

±X~ = ±(l+p)8~/2<Bu ,u > > 0. 
m r m mm 

4) The global multiplicities x( a» N )» X +(
a» N ) • Obsevve that 

$ > 0 «=» theve exists K e H with a(u) ^ 0 on K . 
m m 

±8~ > 0 *=> theve exists K e 12/ with ±a(u) > 0 on K m m 

"e/ine 

X = sup {m r $ m > 0} 

sup {m . ±$~ > 0} 
x± = 

0 if $~ = 0 . 

Then : 

a) x = max{x+»X_) _ 1 • 

2?j J/* t h e set {u e N : a(u) = 0} is compact3 then 

x = x + = oo or x = ' X_. = °° • 

c) If a(u) 5- 0 on N (e.^. a(u) = 0 <=> u = 0 ) , then 

X = X+• = '•°° > X_ = 0 ov x = X_ = °° , X + = 9 • 

d; J/" XQ -£s a lineav subspace of X a n d a(u) ?- 0 on 

N n XA 3 then x _ dim Xn . a 0 ~ 0 

If ± a ( u ) > 0 on N n XQ (+ ov -)y then X± _ dim XQ . 

5) Existence of an infinite numbev of distinct eigenvectovs 

a) If x = °° then3 fov all m e (N ., t h e equation ( 2 3 ) h<zs #n 

eigensolution (u , X ) : u _ N , X ^ 0 , | 2 a ( u ) | = $ ^ m m m a m ' m ' m 

bJ --"/ X+ = °° (+ or ~) then3 fov all m e JN ., the equation ( 2 3 ) 

has an eiqensolution ( u ~ , X~) : u~ _ N , X~ ?- 0 , ~ m m m a m 
~ • + v + 2 a ( u ~ > = 8~ . m wm 

Since 8 , 8~ -* 0 as m —> <» aZ-Z- tne sequences (u ) , (u~) m m ~ m m 

contain an infinite numbev of distinct eigenvectovs on N 

6) Existence of an infinite numbev of distinct eigenvalues. 

Suppose a(u) = 0 => <Au,u> = 0 . 
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Let (u , X ) be an arbitrary sequence of eigensolutions of the 

equation (23) with a(u ) -* 0 as m —>• <*> . Then X -> 0 as m -" °°. 
m m 

This together with the fact that $ , 3~ —> 0 as m -> «» impli­
es X , X~ -* 0 as m -* oo for the sequences (u , X ) , (u~ , X~) 

m m m m m m 

in "aj, ~bj. This means that if x - m a x (x+> X ) = °° > then the equa­

tion (23) has an infinite number of distinct eigenvalues. 

7) Weak convergenoe of the eigenvectors. 

Suppose a(u) = 0 4-=> u = 0 . 

Then x = °° • Furthermore, Z-et (u ) be an arbitrary sequence 

on N w i t h a(u ) —> 0 ; then u ~-- 0 a m ' m 

This together with the fact that $ , $~ -> 0 as m -> °° implies 

for the sequences (u , A ), J ^ m m J 

(u~, X~) in 5 a j , 5 b j . m m 

8) Existence of at least one eigenvalue if A,B are not 

necessarily odd. 

If there exists an element u~ e N (+ or -) with ±a(u~) > 0~ , 

then the equation (23) has an eigensolution 

u~ ?- 0 , A~ + 0 , ±a(u~) = max ±a(u) . 

(Here we do not suppose that A ,B are odd. j a 

Corollary 1 (multiplicity of the critical levels B ,~~) . 

Under the assumptions made in Theorem I it holds : 

al} X? Bm = Bm+l " ••• " Bm+p-l > 0, P > 1 , then 

Y({u € N : u eigenvector in (23), |2a(u)| = 6 }) ̂  p . 

ap) The equation Au = XBu, b(u) = a (a > 0 fixed) has at least 

X = max(x,, x_) distinct pairs of eigenvectors (u, -u) with non­

zero eigenvalues obtained by the maximum-minimum principle (35) . 

bn) If ± 31 = ±6",, - ... =±3~, , > 0, p > 1 , f+ or ~j , t h e n -7 J Mm Mm+1 "m+p-l » f == » 

Y ( { U ~ £ N : u~ eigenvector in (23), 2a(u~) = 3~}) ^ p . 

£>„j The equation Au = XBu, b(u) = a(a > 0 fixed) has at least 

X, + x_ distinct pairs of eigenvectors (u, -u) with nonzero eigen-r.. 
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.values obtained by the maximum-minimum pvinciple (35+) ̂  

The purpose of the next theorem is to weaken the continuity 

assumptions upon B . 

Theovem 2. 

Let all the assumptions made in Theovem 1 hold except of, the 

following changes : 

(28T) Replace (28) ( B is unifovmly continuous on bounded sets) by 

the weakev assumption : B is bounded. 

(29f) Replace (29) ( B satisfies the condition (S)1 ) by the stvon-

gev assumption : 

(S)_.:u —* u, Bu -* v, <Bu ,u > -><v,u> 4 u -> u (n -> «) O n ' n n ' n n 

(27*) Replace (27) (Au = 0 =» a(u) = 0) by the stvongev assumption 

a(u) = 0<=?-<Au,u> = 0 . 

Then all the statements of Theovem 1 ave tvue. 

An important special case of Theorems 1, 2 will be considered 

in Section 8. 

REMARK 3. Theorem 1, points 1), 3a), 5a) and Corollary l^a^ 

with respect to the critical levels 

K = SUpK€fc tninueK|2a(u)| 
m 

have been proved by AMANN (1972). On Amann's paper X is supposed 

to be a uniformly convex Banach space. 

Since X = max (X,,X_) by Theorem 1, 4a), Corollary l>b2) gi­

ves in general more eigenvectors than Corollary l,a 2). This is the 
± 

reason why we have introduced the critical levels 3 
J m 

In Corollary 1' of Section 7 we shall show that the multipli­

city result in Corollary ljb2) is a straightforward generalization 

of the corresponding results for linear o p e r a t o r s . 

REMARK 4 . Under the additional definiteness assumption 

(37) Au = O H " = 0, a(u) > 0 if u ^ 0 , 
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Theorem 1, points 1), 2 ) , 3 ) , 5 ) , 7) have been proved by FUCAK, 

NEC\AS (1972a), for Banach spaces equipped with the so-called usual 

structure. 

In the case (37) it holds 3 = $ +, 6~ = 0 ,Y L = °° • DANCER 
m m m + 

(1976) has shown that every real reflexive separable Banach space has 

the usual structure. 

Furthermore, under the assumption (37), Corollary l,a.) has 

been proved also by FUfJlK, NEfJAS (1972a), the notion of genus y(.) 

being replaced by ord(.) (order of a set). However, ord(.) gives not 

so good multiplicity results as y(-) • Suppose, for example, that 

there exist only two nonzero critical levels $, = $„ , i.e. x = 2 . 

Then the paper of FUC'lK, NEfJAS implies 

ord ({u e N : Au = XBu}) ^ 2 . 

On the other hand, ord { u . , -u, } -= 2 . Therefore we cannot conclude 

that there exist at least the distinct pairs of eigenvectors. In 

contrast to this, y(M) ^ 2 implies that M contains an infinite 

number of distinct pairs (u, -u) . 

REMARK 5. Theorem 2 is closely related to general theorems 

due to BROWDER (1968), (1970a), (1970b). However, in these papers it 

is assumed that 

(38) <Au, u> = 0 «-=* u = 0 

Since X - {0} is connected, it follows immediately from (38) 

that <Au,u> has the same sign for all u 4- 0 . Hence 
1 

<Atu,u> a(u) 5 <Atu,u> dt =*- 0 <=» u = 0 . 

0 

Theorem 2 removes the condition (38). In case of a linear ope­

rator A the condition (38) means Au = 0 <=.• u = 0 (see Theorem 

1', 7') ) , 
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6. Sketched Proofs of the Main Theorems 

6.1- Proof of Theorem 1, 1 ) , 4 ) , 5 ) , 6 ) , 7). 

Proof of 1) Set <f> (u) = r(u)u . It is easily seen that <f> is 

an odd homeomorphism from the unit sphere S onto the level set 

N (see e.g. ZEIDLER (1978), p. 108). 

Proof of 4a) Obviously, x.> X_ 4 X • Now, suppose 3 > 0 . 

This is equivalent to the existence of a symmetric compact set 

K € K with a(u) ?- 0 on K . Define 

YT = {u € K i ±a(u) > 0} . 

K"~ is symmetric, compact,K H K = 0, and by Proposition 6,10) 

Y(K) = max ( Y ( K + ) , Y ( K ~ ) ) , Y (K) ^ m . 

Hence K+ £ H+ or K~ € 1£™ , i . e . 0+ > 0 or -0~ > 0 m m m m 

Thus max(x+ , X_) >. X . 

Proof of 4b) Set N = {u e N : a(u) - 0} . Suppose $ is an 

odd homeomorphism from the unit sphere S in X onto N . 

• By the hypothesis N is compact, i.e. cf> (N) is compact in 

S . Proposition 7 yields that for each m e. N there exists a compacc 

symmetric subset K £ S - $~ (N) with y (K ) >_ m , i.e. <j> (K ) is m m — m 

a compact symmetric subset of N with (f> (K ) n. N = 0 and 

Y(<f>(K )) > m . Hence m i n , T J . N|2a(u)| > 0 , i.e. 0 > 0 . Thus m = ue 9 (K ) ' ' m 

X = °° • 

Proof of 4c) "N is connected. Hence a(N ) is connected, too. 

Thus a(u) f- 0 on N implies that a(u) has the same sign for 

all u € N . Suppose a(u) > 0 on N
a • Then fc~ = 0 , i.e. x_ = 0-

It follows from 4a), 4b) that x ~ X. = °° * 

Proof of 4d) Suppose a(u) ^ 0 on K = N^n X Q . Let 

dim X 0 < °° . K is compact symmetric set. cj> (K) is a sphere in 

X Q . By Proposition 5, Y C ^ ' C - O ) = dim X Q . Hence Y ( K ) = dim XQ 

by Proposition 6,2). Thus min|2a(u)| > 0 , i.e. 0 m > 0 , 
ueK 

m = dim X. . 
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Therefore x ~ m • Similarly we obtain the other assertions 

in 4d). 

Proof of 5) Compare Theorem 1,3) and the definition on X>X+ 

in Theorem 1,4). 

Proof of 6) Suppose Au - X Bu , u € N for all m e IN 
rr m m m m a 

and a(u ) —•• 0 as m -*• «>. Let (X f) be an arbitrary subsequence 

of (X ) . Since (u f) is bounded, we can choose a subsequence 

(u ,.) with u ..—- u as m"-*- <*> , i.e. a(u) = 0 . Hence <Au,u> = 0 , 
mT * m* 

i . e . <Au" t f , Of . f> - * < A u , u > -= 0 . T h e r e f o r e 

X = <Au , , u m , i > / <BQ , , , u > -* 0 a s ro -* «> . 
m» » -nII.» m m mi t 

Thus we have shown that the sequence (X ) has only one accumulation 
m 

point, i.e. X -* 0 as m -**«> . 

Proof of 7) Proceed similarly as in the proof of 6) . 

6.2. Sketched proofs of Theorem 1, 2 ) , 3 ) , 8) and Corollary 1. 

All the assertions of Theorem 1, 2 ) , 3), 8) and Corollary 1 

have been proved in ZEIDLER (1978), p. 112 with respect to the cri­

tical levels B . The corresponding proofs for £~ work similarly, 

m m 

The proofs in ZEIDLER (1978) combine various ideas taken from 

the papers of AMANN (1972), FUClK, NECJAS (1972a), FUCJIK, NECJAS, 

SOUCJEK, SOUdEK (1973) and DANCER (1976). 

A sketched proof o-f Theorem 1, 2). The proof for 3 —» 0 as 

m -*°° in ZEIDLER (1978.) is based on the following 

Lemma 1 (DANCER). Let X be a reflexive separable -infin-ite-

dimensional Banaoh spaoe. 

Then> for each ne IN s there exist continuous odd operators 

P : X -> X with finite dimensional ranges suoh that 

u - - u = > P u -- u (n -»»«> ) . n n n 

This lemma shows that every reflexive separable Banach space 
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has the usual structure in the sense of FUfJIK, NECJAS (1972a). Hence we 

obtain by a similar argument as in FUfJIK, NECJAS (1972a) that 

(39) $ ~* 0 as m -*> °° 
m 

+ 
he convergence $' -* 0 as m -* 

m 

A sketched proof of Theorem 1,3). The proof of this crucial 

assertion given in ZEIDLER (1978), p. 112 is based on the following 

Lemmas. 

Lemma 2 (TROYANSKI (1971); an equivalent norm on X) .In every re­

flexive Banaoh spaoe X we oan introduce an equivalent norm | | . | L 

suoh that X j X are locally uniformly convex. 

This implies that the duality map J : X* -* X** = X is continu­

ous with respect to ||*|li (see e*g- ZEIDLER (1978), p. 146). 

Lemma 3 (curves on the level set N ). Set 
v a 

Du = Au - (<Au, u>/<Bu,u>) Bu , 

Eu = JDu - (<Bu, JDu>/<Bu,u>) u . 

Define curves on N by g(t, u) = r(u + tEu) (u + tEu) . 
Then the maps g, gt : f-t, t 1 x N -*• N are bounded, oonti-r e» o t L » 0

J a a 

nuous3 and t «-> g(t, u) , t »->• g (t, u) are equicontinuous on 

f-t , t 1 with respect to all u e N L o oJ r a 

Furthermore, g(0, u) = u, <Au, g t(0, u)> = ||Du|| 

REMARK 6. This lemma has been proved by AMANN (1972). Since we 

do not suppose that X is uniformly convex, we cannot prove, as in 

Amann's paper, that g, g ' are uniformly continuous on |-t , t 1 x N 

(see Remark 7 ) . 

Lemma 4 (the critical sets L , L~). 
a a 

Set Lc = {u e N a : | | 2a(u) | - s j < a - I |Du| |
2 < a} . 

Suppose 3 > 0 . 

Then for each a > 0 there exists ]x(o) > 0 such that 
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m l n | 2 a ( . u ) | > 3 - u ( a ) => L n K ^ gf m a 
U€K 

for all K e 1R, . y m 

2) Set L± = {u e N : | 2a ( u ) - $~ | <; tf , | | Du | | 2 < a } . g a m 

Suppose ±3~ > 0 ( + or - ) . 
c c m 

Then for each a > 0 there exists u~ ( a ) > 0 sue/z t h a t 

min ( ± 2 a ( u ) ) > ± 3 " - u ~ ( a ) -» L~ r) K # 0 
u^K 

f o p aZZ K e -tfT . m 

REMARK 7. This crucial lemma is related to the Main Lemma in 

the paper of FuClK, NECAS (1972a). 

The proof of Lemma 4, 1) is based on the careful deformation 

argument along the curves t |-*-g(t, u) , due to AMANN (1972). The si­

tuation described in Remark 6 complicates the proof. 

Lemma 1, 2) follows by a similar argument. 

Lemma 5 (local Palais-Smale oondition; AMANN(1972)) .Let (u ) 

be a sequence on N . Suppose Dun-»0, a(u ) -* 3 , 3^-0 (n -* °°) • 

Then there exists a convergent subsequence (u •) with 

u , —*- u as n -*• °° and Du = 0 3 i . e . u is an eigenvector of (.2 3). 

Now, Theorem 1, 3) is an easy consequence of Lemma 4 and 

Lemma 5. 

Sketched proof of Theorem 1,8). This assertion follows by a 

slight modification of Lemma 4 and by Lemma 5 (see ZEIDLER (1978), 

p. 114). 

Sketched proof of Corollary 1. The assertion a,), b,) follow 

from Lemma 4, Lemma 5 and Proposition 6, 6) by an argument due to 

LYUSTERNIK (1930) (see ZEIDLER (1978), p. 114). 

Now a„) and b„) in Corollary 1 are easy consequences of a 1 ) , 

b , ) . Observe that Y(M) >. 2 implies that M is an infinite set. 
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6.3. A sketched proof of Theorem 2. 

The proof is based on a Galerkin procedure due to BROADER (1968), 

(1970a), (1970b). In ZEIDLER (1978), p. 116 it is shown that this 

procedure converges also if we replace the definiteness condition (38) 

(<Au, u> = 0 <-> u = 0) by weaker condition <Au, u> = 0^*a(u) = 0 . 

± 
It is important that we can prove $ , $ -> 0 as m -*• °° 

m m 
without using the uniform continuity of B on bounded sets. 

7.. Restriction to the Linear Case 

To check the quality of the statements for nonlinear operators 

made in Theorem 1 and Corollary 1 let us consider the special case 

of linear operators. The following Theorem 1* and Corollary 1' show 

that our results in Section 5 are maximal in a certain sense (Theo--

rem 1, X ) corresponds to Theorem 1'„ x')). 

For fixed a > 0 , consider the equation 

(40) Au = Au , b(u) = a (u e X, U l ) . 

Define N(A) - {u s « : Au - 0} •. 

Theorem ly 

Suppose : 

i) X is a real separable infinite-dimensional Eilbert space 

with a scalar product (•!•)• 

ii) A : X ~* X is a linear completely continuous symmetric 

operator, A ̂  0 . 

Hi) Set B = I (identity) 3 a(u) = 2~ (Au|u), 

b(u) = 2 _ 1(u|u). 

Then : 

0) All the hypotheses made in Theorem 1 and Theorem 2 are sa­

tisfied. 

2* ) 3 3* ). Let \~~ be defined as in (21) by Courant3s maxi-
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mum-minimum principle. Then g~ = 2aX~ . 
m m 

The set of all X~ 7- 0 is equal to 'the set of all nonzero ei­

genvalues of A counted according to hheir multiplicity (see Pro­

position 4). 

43) x. and X_ av& equal respectively to the number of all 

positive and negative eigenvalues of A counted according to their 

multipl-voity. 

a3) x = max (x+, X_) >.-•-. 

b3) N = {u 6 N : a(u) = 0} is compact 
a 

dim N(A) < « , X + = °° » X_ = 0 

.or dim N(A) < °° , x_ = °° » X + ~ ° « 

If N is compactj then N = N n N(A) . 

c3) See 73) . 

63 ) < Au,u> = 0 "**=** a(u) = 0; X~-> 0 as m -»- °° . 
m 

7J J The following conditions are equivalent : 

a) a(u) 9- 0 on N , 

bj" a(u) = 0 -*•*• u - 0 , 

c) N(A) = {0} , X + = " , X_ = 0 

or N(A) = {0}, x_ =
 ra » X + = 0 , 

d) x = °° s and if (u ) is an arbitrary sequence on N 

with a(u ) -»• 0 as m->°° „ t h e n u ~~ 0 and 

Corollary I3 . b3) Let p >_ 1 be the multiplicity of ±\ > O 

(+ or -). Then ± 3~ = + >0 and ү( {u N 

b3) The equation (40) has at least x
+
 + 

m+1 * *" m+p-

eigenvector in (40)_, 2a(u~) = 3~} ) = p. 

X distinct pairs 

of eigenvectors (u, -u) belonging to nonzero eigenvalues. 

There exist operators A such that the equation (40) has 

.exactly x + X distinct pairs of eigenvectors (u, -u) belonging 

to nonzero eigenvalues. 
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Proof of 0). This is easy to check. 

Proof of 2'), 3'). Without any loss of generality we can assu­

me a =• HE , i. e. N = { u € X : | | u | | = l } . 

(I) First we shall show : If ±3" > 0 (+ or ~ ) , then 3~ is 

m m 
an eigenvalue of A . 

Indeed, Theorem 1, 3) says that there exists an eigensolution 

+ + ± + ± 
Au = \ um , b(u ) = h with 2a(um) = 3m , i.e. m m m m m m 

2a(u±) = (Au^u 1) = X . Hence 3* = X m m1 m m m m 

(II) Consider eg ~ introduced in (20). By Proposition 5, 

i£- £ Kl~ y i . e . ±X~ < ±3_ for all m e IN . 
** m ^m m — m 

(III) Let 3, > 0 . Then x"T ̂  3-j" by (I) and Proposition 4, 1). 

Thus x| =- 3[ by (II) . 

+ + + + + -'-
(IV) Now, let us prove X9 = 32 • Indeed, L < 3. < B. = X 

by (II), (III). If X* - X"[ , then 3~2 = X* . 

Next suppose X ' < X. . Proposition 4, 1) and (I) yield either 

t- + ,+ 
J2 - -1 ° r 32 = X2 

l2 = \ [ . x »-=«.. P X M 2 

Y({u : Au = \[ u, | |u| | = 1} >. 2 . 

„+ ,+ + ,+ 
X, or 32 = X2 . 

Let 3o - A". . Then 3 . = 3o > 0 . Corollary 1 implies 

Proposition 5 shows that the multiplicity of X. is at least p = 2 

However, from X. < X' , _, .. . / o\ -i J *-i, *. *.i. 1 2 and Proposition 4,2) we conclude that the 

(V) By induction we obtain 2'), 3') 

Proof of 4 9 ) . See 2'). 

Proof of 4 'b' ) . => » Let N be compact. Then dim N(A) < °°, 

since N(A) n N £ N . Hence X +
 == °° o r X_ = °° by 4'). 

Let X +
 = °° • Prove X__ = ° • 

Suppose x4 X_ > 0 . Choose on orthonormal sequence 
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— u Ul 
u - / 2 a X+ (-£- + * ) (1 

m ' 1 ' 

Observe that (u7|u ) = 0 , llu I'm ' ' n 

I I 
-)~'г, m = 1,2... 

u M = 2a , a(u )= 0 , i.e. u € N 
m I l ' x m/ ' m 

for all m € IN . N is compact by hypothesis. Thus (u ) contains 

a convergent subsequence u . -*• u as m' -> <» . Since A -*• 0 it fol~ 
& H m ' m 

lows that u —*• u//._~a as m' -> «> . This contradicts 
m» 

I |u+ - u +| I2 = 2 if m -- n . 1 ' m n ' ' 

«= : Let dim N(A) < ~ , x +
 = °° » X _ = ° • Then X~ = 0 , i.e. 

a(u) ^ 0 for all u e X . Hence N = {u € N : Au = 0} , i.e. 

N = N O N(A) . Thus N is compact. 

Proof of 7*). a) <$==> b) <#=» c) . See 4'b>) . 

a) *=--> d) . See Theorem 1, 7). s 

d) ==> a ) . Let x ~ °° > -• • e • X _ - = c o o r X_ = °° • 

Suppose x +
 = °° • According to c) we have to prove N (A) = {0} 

and x_ = 0 • 

(VI) First assume N ( A ) ^ {0} . i.e. there exists an element u 

with Au = 0 , | | u | | = 1 . Choose an orthonormal system of eigenvec-

res-_. ._ 

pectively. Bessel's inequality yields 

+ v2 ,| , | 2 

+ + 
tors u,, u-, 

+ + 
belonging to the eigenvalues A-,, A~, 

I H u
m > __ I lul I - i.e. % ~* 0 as 

i = l 

Set u = / a ( u + u ) if m > 2 . Observe that (uIu ) = 0 for all 
m m = i m 

m >_ 2 , i . e . u € N and 2 a ( u ) = 2 a a ( u ) = a X -> 0 a s m - > ° ° . — m a nr nr m 

By the hypothesis d) we obtain u --• 0. This contradicts u --» /au 

(VII) Secondly, assume x > 0 » i.e. A, < 0 . Set 

_ - (-4 * 
, + 

and proceed as in (VI). 

л i UІI 
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Proof of Corollary l'b!). The set o f all eigenvectors on N 

with a = h belonging to the eigenvalue - A- > 0 is equal to the 

unit sphere S in the p-dimensional eigenspace. Now, bj) follows 

from Proposition 5. 

Proof of Corollary T bA). Compare Theorem 1', 2'). 

If A has only simple nonzero eigenvalues and Au = 0 <?=> u = 0 , 

then A has exactly x +
 + X_ pairs of eigenvectors (u, -u) , q.e.d. 

8. An Important Special Case of the Main Theorems 

In this Section we shall restrict our main theorems to a spe­

cial situation. This will be useful for applications to partial equa-

differential equations in the next Section. 

Proposition 8. 

Suppose: 

(41) X is a real reflexive separable infinite-dimensional Banaoh 

space. 

(42) A, B : X ->X* are potential operators with potentials a, b 

and a(0) = b(0) = 0 . 

(43) A is strongly continuous. 

(44) <Au, u> - 0 -3»-> a(u) = 0 . 

(45) a i 0 on N = { u e X : b(u) = a } (a > 0 fixed). 

(46) B = B 1 + B 2, B± : X -> X* . 

(47) B] is bounded, continuous3 uniformly monotone and B1(0) = 0. 

(48) B? is strongly continuous and. <B2u, u> ̂  0 for all u & X . 

Then: 

1) The equation 

(49) Au = ABu , b(u) = a 

has an eigensolution u ̂  0, A =£ o » 
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2) Suppose that k3 B ave odd. In this case i t holds: 

a) If ](-<». then fov evevy m e IN theve exists an eigen-

solution (u , X ) of (49) with u ^ 0, A j- 0 and X -» 0 m' m J v ' m m m 

as m -*» , i.e. theve exists an infinite numbev of distinct eigen-

veatovs and eigenvalues. 

(If the set {u £ N : a(u) = 0 } is compacty ov if theve exists 

a lineav infinite-dimensional subspace X_£ X and a(u) ̂  0 on 

X Q o N j t h e n x = °° • 1 

2?; 1/ a(u) = 0 ̂ > u = 0 (e.g. <Au» u> > 0 if u ?- 0) ., t h e n 

X = °° and u -*0 as m -* oo in a). 
m 

cj J/ B, is unifovmly continuous on bounded sets3 then the 

equation (49) has at least x+
 + X_ distinct paivs of eigenvectovs 

(u, -u) belonging to nonzevo eigenvalues. 

(If theve exists a lineav subspace XQ£ X with ±a(u) > 0 

on N n X~ (+ ov -), then Y^> dim X_ .) 

Covollavy 2. Let A(0) = 0 . The condition (44)., i . e . 

<Au, u> = 0 «-=-> a(u) = Oj is satisfied if one of the following con­

ditions holds : 

(44a) The veal function t •-> <Atu, u> is monotone on [fj,l] 

fov all u £ X (e.g. A is monotone). 

(44b) The veal function t »-»• a(tu) is convex on [o» l] fov 

all u e X (e.g. A is convex). 

(44c) <Au, u> > 0 if u # 0 . 

(44d) A is homogeneous^ i . e. Atu = tpu for all u € X, t > 0 

and fixed p ̂ 0 . 

Proof of Corollary 2. Set (J)(t) = <Atu, u> . Then <j>(0) = 0. 

Now, consider 1 

a(u) = f<j>(t) dt and d a ( t u ) = cf>(t) • 
I dt 
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Proof of Proposition 8. Using 

3 1 U ' "l v 

and the relations mentioned in Figure 1 we see easily that all the 

hypotheses of Theorem 2 are satisfied (see ZEIDLER (1978), p. 106). 

Now, the proof follows from Theorem 2 and Corollary 1. 

9. Application to Nonlinear Elliptic Equations 

Proposition 8 will be now applied to nonlinear elliptic equa­

tions. For technical convenience we shall consider only a simple exam­

ple related to Section 2.4. 

Consider the boundary value problem 

N 
(50) -X( I Di(Diu|Diu|

P Z) + f'(u)) = gt(u)<Kx) on G , 
i=l 

u = 0 on 3G , 

N 
where G is an open bounded nonempty set in K. , N ^ 1 , and 

x = (C1, ..., £ N ) , D± = 9/3Ci, p > 2 . 

Suppose f, g g C (E) with the growth conditions 

|f(u)| , |g(u)| < c + d|u|P , 

|f'(u)|, |g'(u)| < c + d|u|P_1 

for all u € E where c, d are fixed positive constants. 

Definition 4. A function u belonging to the Sobolev space 

°1 / 
X = W (G) is said to be a genevalized solution of (50) iff 

(50') Xb(u, v) = ã(u, v) fov aЪЪ v e. X and b(u) = ot , 

wheve b = b, + b
?
, and 

b
x
(u, v) ľ D.u|D.u|P 2 D.v dx 

x=l 

b„(u, v) = | f'(u)v dx, a(u, v) Ь (x) g* (u)v dx 
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b ^ u ) = P І І D i U І 1 5 d x , b 2 ( u ) = f f ( u ) d x , a ( u ) = j ф ( x ) g ( u ) dx . 

G І = 1 G G 

REMARK 8. (50ł) is obtained from (50) by multiplying (50) by 

v € C (G) and integrating by parts. 

Proposъtъon 9. Suppose ф e C (G) and ф (x) ;> 0 for aЪЪ 

x є G^ ф jŕ 0 on G . A£?su??7e 

( 5 1 ) fř ( u ) u >. 0 fov aЪЪ u Є R , 

( 5 2 ) g ' ( u ) u > 0 ъf u ф 0 , g ( 0 ) = 0 . 

Let a > 0 Ъe an arЪъtrary fъxed numЪer. 

Then : 

1) The equatъon (50 ) has an eъgensoЪutъon u Ф 0, X > 0 . 

2) Suppose f, g are even. Then for aЪЪ^ m € IN 3 the equatъ-

on (50
f ) has an eъgensoЪutъon (u , X ) wъth u ^ 0, X > 0 and 

m
,
 m m m 

X -> 0 as m ->• °° . 
m 

If ф (x) > 0 on G ^ t h e n u

m
-*" 0 ъn X as m -> » . 

P r o o f . (I) It is not difficult to show that there exist 

operators A, B^.B^ : X ->• X* with <Au, v> = ã(u, v) , 

<B.u, v> = b.(u, v) for all u, v є X . 

A, B. are potential operators with the corresponding potenti-

als a, b. , respectively. A, B„ are strongly continuous, B, is 

continuous, bounded and uniformly monotone (see ZEIDLER (1978), p.120) 

(II) From (52) it follows that g(u) > 0 if u ф 0. Hence 

<Au, u> = 0 ' ̂ a ^ u ) = 0 . 

(III) Set K = {x є G : ф(x) - 0} . Since ф І 0 on G , we ha-

ve G - K ф 0 . Let X
Q
 be the set of all u e C~(G) with 

supp u(x) c G - K . Obviously, X
Q
 is an infinite-dimensional linear 

subspace of X and a(u) > 0 for all u є X - {0} . 

Now Proposition 9 is a consequence of Proposition 8, q.e.d. 
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REMARK 9. If we combine Tћeoremsl, 2 with the general results pro-

ved by BROWDER (1970b) concerning the properties of operators inďu-

ced by general classes of quasilinear elliptic differential equations 

of 2m-tћ order, tћen it is possible to generalize Proposition 9 ri-

gorously. 

10. The Main Theorem in Finite-Dimensional Banach Spaces 

For fixed a > 0 consider the nonlinear eigenvalue proЪІem 

(53) Au - XBu , b(u) = o (u є X , X e R) . 

Set N = {u € X : b(u) = a) . 
a 

Theorem 3. 

Suppose : 

i) X is a real finite-dimensional Banąch space. 

ii) A, B : X -*• X* are oontinuous potentiat operators with 

potentials a, b respeotively; a(0) = b(0) = 0 . 

iii) <Bu, u> > 0 if u ф 0 . 

iv) For every u Ф 0 there exists a real number r(u) > 0 

such that b(r(u)u) • o . 

Then : 

1) The eąuation (53) has an eigensoЪution u Ф 0, X є R . 

2) If A, B are oddл then (53) has at least dim X dis-

tinot pairs of eigenvectors (u, -u). 

Corollary 3, If Av ф 0 for all v б N
a л then all the eigen-

values of (53) are different from zero, 

Corollary 4 (multiplicity). Suppose that all the hypotheses 

of Theorem 3 are satisfied. Suppose A, B are odd. Define critical 

levels 

o ш sup min a(u), m = 1, ..., dim X , 
m
 KfiJt ucK 

m 
where ü І8 defined as in Theorem 1. 

m * 
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Then : 

a) % ф 0 for aЪЪ m = 1, ..., dim X . 

m
 J 

b) Zf K =
 *»+l

 =
 • • •

 =
 *.+p-l • P Ł ̂  • t h s n 

ү({u e N : u is eigenvector in (53), a(u) = $ } ) . > p . 

P r o o f . See e.g. ZEIDLER (1978), p. 115. 

11. Application to Abstгact Hammerstein Equations 

Now we shall apply Theorem 1, Theorem 3 to the eigenvalue pro-

blem 

(54) KF(u) - Лu (u € X, Л 6 R) , 

<u, w>У = a > 0 for all w e к" (u) 

Theorem 4. 

Suppose : 

i) X is a reaЪ refЪexive separaЪЪe Banach space. 

ii) K : X ->• X* is a Ъinear oompЪeteЪy continuous operator 

with <Kv, v> ̂  0, <Kv, w> = <Kw, v> for aЪЪ v, w є X . 

iii) F : X* ->• X is a continuous potentiaЪ operator with a 

potentiaЪ ф • 

iv) ф(0) = F(0) = 0 ; ф(u) ф 0, KF(u) ф 0 if u ф 0 . 

Then : 

1) For aЪЪ a > 0 , the equation (54) has at Ъeast one eigen-

soЪution u ф 0, Л ф 0 . 

2j Suppose F ѓs odd. 

aj Then for aЪЪ a > 0 , the equation (54) /гas at Ъeast 

dim K(X) distinct pairs of eigenvectors (u, -u) Ьe-

Ъonging to nonzero eigenvaЪues. 

&,> Jf dim K(X) = «> then, for aЪЪ a > 0 , the equation 

(54) has an infinite numЪer of distinct eigenvaЪues Л 

with Л ->• 0 as m ->• oo . 
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REMARK 10. Under stronger assumptionв this result is contai-

ned in VAINBERG (1956) and COFFMAN (1971). 

Theorem 4,2a) is a special case of a шore general result due to 

AMANN (1972). 

A sketched proof of Theorem 4. A proof of Theorem 4 is given 

in ZEIDLER (1978), p. 121. The main idea of the proof due to AMANN 

(1972) is 

i) to factorize K = S*S (S : X ->• H , H a Hilbert space) 

by a general factorization theorem due to BROWDER, GUPTA 

(1969) (see also ZEIDLER (1977), p. 107); 

ii) to replace (54) by the equivalent problem 

(54*) SF(S*v) = Лv 

in the Hilbert space H (v = S*~ u ) ; 

iii) to apply the Lyusternik-Schnirelman theory to (54ł)« 

If we set A = SFS* , then A is a potential operator with a poten-

tial a(u) = ф (S*u) and a(u) = 0 «-=> Au = 0 <=*• u = 0 . 

Theorem 1, point,s 8), 5 ) , 6) lead to Theorem 4, points 1 ) , 2a), 

2b), respectively. In the case dim K(X) < «> one has to use Theo-

rem 3 . 

12. Application to Haшmerstein Integral Equations 

For technical convenience we shall apply Theorem 4 only to a 

simple example. Consider an integral equation 

(55) \u(x) = k(x, y) f (u(y)) dy (u & X , X 6 IR) 

N 
where G is an open bounded nonempty set in JR , N ^ 1 . Set 

X = X* = L
2
(G). 

The corresponding linear integral equation reads 

(56) Au(x) = k(x, y) u(y) dy (u c X, A c IR) . 

G 

212 



Proposition 9, 

Suppose : 

i) k ( . , , ) is a real measurable function on G x G with 

k(x, y) = k(y, x) for all x, y c G and 

0 < I k2(x, y) dxdy < 

GxG 

ii) i ' is a real continuous function on R with 

|f(u)| 4 c + d|u| for all u <s E, c, d are positive con­

stants and ±f(u) > 0 if ±u > 0 . 

Hi) The linear integral equation (56) has only positive ei­

genvalues. 

Then : 

1) For every a > 0 > the equation (55) has an eigensolution 

u e X j X $ 0 with 

(60) fu(x) w(x) dx = a for all w £ K_1u . 

G 
2,1 Suppose f is odd. The for every a > 0 3 the equation (55 

has an infinite number of eigensolutions (u , X ) with (60) > 

X 4 0 and X -> 0 as m -> °° , i.e. there exists an infinite number 
m . m 

of distinct eigenvalues. 

P r o o f . We write (56) as Xu = Ku and (55) as Xu =- KFu, 

u € X . From iii) we obtain <Kv, v> > 0 if v ^ 0. F is a potenti­

al operator with a potential 
u (x) u (x 

!< •(u) - J( j f(v) dv) dx . 

G 0 

Now Proposition 9 is a consequence of Theorem 4 with dim K(X) = 

(see also ZEIDLER (1978), p. 69), q.e.d. 
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