NAFSA 1

Eberhard Zeidler
Lectures on Lyusternik-Schnirelman theory for indefinite nonlinear eigenvalue problems and its applications

In: Svatopluk Fučík and Alois Kufner (eds.): Nonlinear Analysis, Function Spaces and Applications, Proceedings of a Spring School held in Horní Bradlo, 1978, [Vol 1]. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979. Teubner Texte zur Mathematik. pp. 176--219.

Persistent URL: http://dml.cz/dmlcz/702410

Terms of use:

© Institute of Mathematics AS CR, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

LECTURES ON LYUSTERNIK-SCHNIRELMAN THEORY FOR INDEFINITE NONLINEAR EIGENVALUE PROBLEMS AND ITS APPLICATIONS

Eberhard Zeidler

Introduction

The purpose of these lectures is to give an introduction to the Lyusternik-Schnirelman theory and its typical applications based on the ideas outlined in the papers of LYUSTERNIK (1930), KRASNOSEL'SKII (1956), VAINBERG (1956), BROWDER (1968), (1970a), (1970b), COFFMAN (1969), (1971), (1973),. AMANN (1972), FUCfK, NECAS (1972a), FUČfK, NEČAS, SOUCEK, SOU̇EKK (1973), RABINOWITZ (1973), (1974), ZEIDLER (1978) .

The Lyusternik-Schnirelman theory is concerned with nonlinear eigenvalue problems in Banach spaces X of the type

$$
\begin{equation*}
\mathrm{Au}=\lambda \mathrm{Bu}, \quad \mathbf{u} \in \mathbb{X}, \quad \lambda \in \mathbb{R} \tag{1}
\end{equation*}
$$

generalizing linear eigenvalue problems of the type

$$
\begin{equation*}
A u=\lambda u, \quad u \in \mathbb{X}, \quad \lambda \in \mathbb{R}, \tag{2}
\end{equation*}
$$

where A is a linear symmetric and completely continuous operator in a Hilbert space X .

AMANN (1972) has considered the problem (1) without definiteness restrictions upon A for the first time, and thus my lectures have been strongly influenced by his paper. In the indefinite case it is possible that there exists only a finite number of eigenvalues in (1), (2).

It is our goal to study the indefinite case extensively and to emphasize the connection between the results obtained for nonlinear and linear operators.

In Section 5 we shall formulate two general theorems strengthening the results of all the papers mentioned above (see Remarks 3, 4, 176

5 in Section 5). In Section 7 we shall restrict our main theorems to the case of linear operators. In this way we shall see that our results obtained for nonlinear operators are maximal in acertain sense. These lectures are organized as follows:

1. Notation
2. Some typical eigenvalue problems
2.1. Nonlinear equations in \mathbb{R}^{N}
2.2. Linear integral equations and the Hilbert-Schmidt theory
2.3. Nonlinear integral equations
2.4. Nonlinear elliptic partial differential equations
3. Courant's maximum-minimum principle
4. The genus of symmetric closed sets not containing the origin
5. The main theorems in infinite-dimensional Banach spaces
6. Sketched proofs of the main theorems
7. Restriction to the case of linear operators
8. An important special case of the main theorems concerning nonlinear operators
9. Applications to nonlinear elliptic partial differential equations.
10. The main theorems in finite-dimensional Banach spaces
11. Applications to abstract Hammerstein equations
12. Applications to Hammerstein integral equations

References

The contents of these lectures is closely related to Chapter 42 of the third volume of my "Lectures on Nonlinear Functional Analysis" (see ZEIDLER (1978)). Here we shall prove only the statements which are not contained in my book.

Furthermore, for the sake of technical simplicity we shall consider only simple but typical applications.

Remarks on the historical development of the Lyusternik-Schnirelman theory can be found in the papers of KRASNOSEL'SKII (1956), VAINBERG (1956), BROWDER (1970a), RABINOWITZ (1974).

Acknowledgments. I would like to express my gratitude to Prof. M. A. KRASNOSEL'SKII for telling me the sophisticated proof of Proposition 7 in Section 4.

Furthermore, I would like to thank my friends from the Organizing Committee for their invitation to this intefesting and well-organized Spring School.

1. Notation

Let X be a Banach space. The space dual is denoted by X^{*}. We set $\left\langle x^{*}, x\right\rangle=x *(x)$ for all $x \in X, x^{*} \in X^{*}$. The symbols $u_{n} \rightarrow u$ and $u_{n} \rightarrow u$ denote the weak and the strong convergence in X, respectively.

The set of all real or natural numbers is denoted by \mathbb{R} or \mathbb{N}, respectively.

Let A be an operator from the Banach space X into the Banach space X^{*}. A is said to be completely continuous iff it is continuous and maps bounded sets into relatively compact sets. A is said to be strongly continuous iff $u_{n} \rightarrow u$ implies $A u_{n} \rightarrow A u(n \rightarrow \infty)$.

A is said to be monotone iff $\langle A u-A v, u-v\rangle \geqq 0$ for all $u, v \in X$.

A is said to be uniformly monotone iff

$$
\langle A u-A v, u-v\rangle \geqq c(\|u-v\| \mid)| | u-v| | \text { for all } u, v \in X
$$

where $c:[0,+\infty) \rightarrow[0,+\infty)$ is a real strictly monotone continuous function with $c(0)=0$ and $c(t) \rightarrow+\infty$ as $t \rightarrow+\infty$.
A is said to be bounded iff A maps bounded sets into bounded sets. A is said to be potential operator iff there exists a Gateaux-differentiable real functional a on X such that $a^{\prime}(u)=A u$ for all $u \in X$. The operator a is called the potential of A.

Figure 1 gives a survey on the connection between important operator properties. All the definitions and proofs can be found in Chapter 27 of ZEIDLER (1977).

Fig. 1: Properties of nonlinear operators

2. Some Typical Eigenvalue Problems

Let us consider four simple examples concerning
i) nonlinear equations in \mathbb{R}^{N},
ii) linear integral equations,
iii) nonlinear integral equations,
iv) nonlinear elliptic partial differential equations.
2.1. Nonlinear equations in \mathbb{R}^{N}. We start with the real eigenvalue problem iń \mathbb{R}^{N}

$$
\begin{equation*}
\frac{\partial g(x)}{\partial \xi_{i}}=\lambda \xi_{i}, \quad i=1, \ldots, N \tag{3}
\end{equation*}
$$

where $x=\left(\xi_{1}, \ldots, \xi_{N}\right) \in \mathbb{R}^{N}, \lambda \in \mathbb{R}$.
Proposition 1. (LYUSTERNIK (1930)).
Suppose $\mathrm{g}: \mathbb{R}^{\mathrm{N}} \rightarrow \mathbb{R}$ has continuous first partial derivatives and is even.

Then for each $r>0$, the eigenvalue problem (3) has at least N distinct pairs of eigenvectors ($\mathrm{x},-\mathrm{x}$) with $\|\mathrm{x}\|=\mathrm{r}$.

This basic result of the Lyusternik-Schnirelman theory is a special case of Theorem 3 in Section 10.

Let $A=\left(a_{i j}\right)$ be a symmetric $N \times N$ - matrix. Set $g(x)=$ $=2^{-1} \sum_{i, j=1}^{N} a_{i j} \xi_{i} \xi_{j}$. Then the equation (3) is equivalent to $A x=\lambda x$, i.e. Proposition 1 generalizes the well-known fact that A has N linearly independent eigenvectors.

2.2. Linear integral equations and the Hilbert-Schmidt theory.

Next we consider the linear integral equation

$$
\begin{equation*}
\int_{G} a(x, y) u(y) d y=\lambda u(x), \quad u \in L_{2}(G), \quad \lambda \in \mathbb{R}, \tag{4}
\end{equation*}
$$

where G is an open bounded nonempty set in $\mathbb{R}^{N}, N \geqq 1$.
The equation (4) is equivalent to the operator equation
(4') $\quad \mathrm{Au}=\lambda \mathrm{u}, \quad \mathrm{u} \in \mathrm{X} \equiv \mathrm{L}_{2}(\mathrm{G}), \quad \lambda \in \mathbb{R}$.
X is a real separable Hilbert space. Suppose that the real measurable function $a: G \times G \rightarrow \mathbb{R}$ is symmetric, i.e.

$$
\begin{equation*}
a(x, y)=a(y, x) \quad \text { for } a 11 \quad x, y \in G, \tag{5}
\end{equation*}
$$

and
(6)

$$
0<\int_{G \times G} a^{2}(x, y) d x d y<\infty
$$

Then the operator $A: X \rightarrow X$ is symmetric and completely continuous, $A \neq 0$.

The following main theorem of the Hilbert-Schmidt theory describes the solutions of the equations (4), (4').

Proposition 2. (cf. e.g. RIESZ-NAGY (1952), Chapter VI.)
Suppose :
X is a real separable Hilbert space with a scalar product

$$
(.1 .),
$$

$\mathrm{A}: \mathrm{X} \rightarrow \mathrm{X}$ is a linear symmetric completely continuous operator, $A \neq 0, \operatorname{dim} x=\infty$.

Then :

1) The equation
(7)

$$
\mathrm{Au}=\lambda \mathrm{u}, \quad \mathrm{u} \in \mathrm{X}, \quad \lambda \in \mathbb{R}
$$

has at least one eigenvalue $\lambda \neq 0$.
2) Every eigenvalue $\lambda \neq 0$ of A has a finite multiplicity.
3) There exists an infinite sequence of eigensolutions (u_{i}, λ_{i}) with $\left(u_{i} \mid u_{j}\right)=\delta_{i j}$ for $i, j=1,2, \ldots$ and

$$
\begin{equation*}
u=\sum_{i=1}^{\infty}\left(u \mid u_{i}\right) u_{i} \quad \text { for alz } \quad u \in X \tag{8}
\end{equation*}
$$

If $(\mathrm{u}, \lambda), \mathrm{u} \neq 0, \lambda \in \mathbb{R}$ is an arbitrary eigensolution of (7), then there exists a number λ_{i} with $\lambda_{i}=\lambda$, and in (8) it holds $\left(u \mid u_{j}\right)=0$ for $a l l$ j with $\lambda_{j} \neq \lambda$.
2.3. Nonlinear integral equations. As another example let us consider the Hammerstein integral equation

$$
\int_{G} a(x, y) f(u(y)) d y=\lambda u(x), \quad u \in L_{2}(G), \lambda \in \mathbb{R}, f \text { odd }
$$ and the corresponding linear equation

$$
\begin{equation*}
\int_{G} a(x, y) u(y) d y=\lambda u(x), \quad u \in L_{2}(G), \quad \lambda \in \mathbb{R} \tag{10}
\end{equation*}
$$

In Section 12 we shall prove, roughly speaking, the following result : Suppose (5) and (6) are satisfied. Suppose that the linear integral equation (10) has only positive eigenvalues.

Then, under certain assumptions on f, the nonlinear integral equation (9) has an infinite number of distinct eigenvalues.
2.4. Nonlinear elliptic partial differential equations. For the sake of simplicity let us study the boundary value problem

$$
\begin{align*}
-\lambda \sum_{i=1}^{N} D_{i}\left(D_{i} u\left|D_{i} u\right|^{p-2}\right) & =u|u|^{p-2} \phi(x) \quad \text { on } \quad G, \tag{11}\\
u & =0 \text { on } \partial G
\end{align*}
$$

where $x=\left(\xi_{1}, \ldots, \xi_{N}\right), D_{i}=\partial / \partial \xi_{i}, P \geqq 2$. Let G be an open bounded nonempty set in $\mathbb{R}^{N}, N \geqq 1$.

Suppose $\phi: \bar{G} \rightarrow \mathbb{R}$ is a continuous function with

$$
\begin{equation*}
\min _{x \in \bar{G}} \phi(x)>0 . \tag{12}
\end{equation*}
$$

Definition 1. A function u belonging to the Sobolev space $\mathrm{X} \equiv \stackrel{\mathrm{W}}{\mathrm{p}}_{1}^{(G)}$ is said to be a generalized solution of (11) iff (11')

$$
\lambda \tilde{\mathrm{b}}(u, v)=\tilde{a}(u, v) \quad \text { for all } v \in X \text {, }
$$

where

$$
\begin{aligned}
& \tilde{b}(u, v)=\int_{G} \sum_{i=1}^{N} D_{i} u\left|D_{i} u\right|^{p-2} D_{i} v d x \\
& \tilde{a}(u, v)=\int_{G} \phi(x) u|u|^{p-2} v d x
\end{aligned}
$$

By integration by parts it is easily seen that every regular solution u of (11') is a solution of (11) as well. This justifies the term of generalized solution (see e. g. ZEIDLER (1977), p. 94).

Furthermore, it is not difficult to prove that there exist operators $A, B: X \rightarrow X^{*}$ with

$$
\tilde{b}(u, v)=\langle B u, v\rangle, \tilde{a}(u, v)=\langle A u, v\rangle \quad \text { for all } u, v \in X .
$$

Therefore, the equation (11') is equivalent to
(11' $) \quad \lambda B u=A u, \quad u \in \mathbb{X}, \quad \lambda \in \mathbb{R}$.
A, B are odd potential operators with potentials

$$
b(u)=p^{-1} \int_{G} \sum_{i=1}^{N}\left|D_{i} u\right|^{p} d x, \quad a(u)=p^{-1} \int_{G} \phi(x)|u|^{p} d x
$$

and all the hypotheses of the following Proposition 3 are satisfied with $B=B_{1}, B_{2}=0$ (see ZEIDLER (1978), p. 120).

Proposition 3.

Suppose :

(13) X is a real reflexive separable Banach space, $\operatorname{dim} X=\infty$.
(14) $A, B: X \rightarrow X^{*}$ are odd potential operators with potentials $a, b ;$ $a(0)=b(0)=0$.
(15) $B=B_{1}+B_{2}, B_{i}: X \rightarrow X^{*}$.
(16) B_{1} is bounded, continuous and uniformly monotone, $\mathrm{B}_{1}(0)=0$.
(17) A, B_{2} are strongly continuous.
(18) $\left\langle A u, u \gg 0,\left\langle B_{2} u, u>\geq 0\right.\right.$ for alZ $u \neq 0$.

Let $\alpha>0$ be an arbitrary fixed real number.
Then :
For each $m=1,2$, ... there exists an eigensolution
$\left(u_{m}, \lambda_{m}\right)$ of
(19) $\quad \lambda B u=A u, \quad b(u)=\alpha \quad(u \in X, \lambda \in \mathbb{R})$
with $\mathrm{u}_{\mathrm{m}} \neq 0, \lambda_{\mathrm{m}}>0$ and $\mathrm{u}_{\mathrm{m}} \rightarrow 0, \lambda_{\mathrm{m}} \rightarrow+0$ as $\mathrm{m} \rightarrow \infty$.

Proposition 3 is a special case of Theorem 2 in Section 5 (see also Proposition 8 and Corollary 2 in Section 8).

If we suppose that the function ϕ has zeros on G, then the definiteness condition $\langle\mathrm{A} u, \mathrm{u}\rangle>0$ if $\mathrm{u} \neq 0$ is not satisfied. Nonetheless, it holds

$$
\langle A u, u\rangle=0 \Leftrightarrow a(u)=0
$$

This condition or the weaker condition
(18' $)$

$$
A u=0 \Rightarrow a(u)=0
$$

will play a crucial role in our main theorems (see Theorem 1 , Theorem 2 in Section 5, and Section 9 for applications to partial differential equations).

3. Courant's Maximum-Minimum Principle

The Lyusternik-Schnirelman theory generalizes Courant's maximum-minimum principle. Therefore, let us formulate this principle in such a way that later the generalization will be obvious.

As in Proposition 2 (Hilbert-Schmidt theory) we shall make the following assumptions :
(i) X is a real separable infinite-dimensional Hilbert space with a scalar product (. . . .
(ii) $A: X \rightarrow X$ is a linear symmetric completely continuous operator, $A \neq 0$.

Set

$$
a(u)=2^{-1}(A u \mid u), \quad b(u)=2^{-1}(u \mid u) .
$$

Definition 2. Denote by s the boundary of the unit ball, i.e. $S=\{u \in X:||u||=1\}$.

Denote by S_{k} the boundary of an arbitrary k -dimensional unit bazz in X , i.e.

$$
\mathrm{S}_{\mathrm{k}}=\mathrm{s} \cap \mathrm{X}_{\mathrm{k}}, \quad \mathrm{X}_{\mathrm{k}}=\mathrm{k} \text {-dimensional linear subspace of } \mathrm{x} \text {. }
$$

Let \mathscr{L}_{m} be the set of all S_{k} with $\mathrm{k} \geqq \mathrm{m}, \mathrm{m}=1,2, \ldots$. Define

$$
\begin{equation*}
\mathscr{L}_{\mathrm{m}}^{ \pm}=\left\{\mathrm{L} \in \mathscr{L}_{\mathrm{m}}: \pm \mathrm{a}(\mathrm{u})>0 \quad \text { for } a 乙 \tau \quad u \in \mathrm{~L}\right\} \tag{20}
\end{equation*}
$$

Set

$$
\pm \lambda_{\mathrm{m}}^{ \pm}=\left\{\begin{array}{l}
\sup \tag{21}\\
\mathrm{L} \in \mathscr{L}_{\mathrm{m}}^{ \pm} \mathrm{min}(\pm 2 \mathrm{a}(\mathrm{u})) \\
0 \quad i f \mathscr{Q}_{\mathrm{m}}^{ \pm}=0
\end{array}\right.
$$

Obvious1y, $\pm \lambda_{1}^{ \pm} \geqq \pm \lambda^{ \pm} \geqq \cdots \geqq 0$.

Proposition 4 (the maximum-minimum principle of COURANT (1920); see also FISCHER (1905), WEYL (1911)).

Suppose $\pm \lambda_{\mathrm{m}}^{ \pm}>0(+$ or -$)$. Then:

1) $\lambda=\lambda_{\mathrm{m}}^{ \pm}$is an eigenvalue of the operator A. All eigenvalues $\lambda \neq 0$ of A are obtained in this way.
2) The multiplicity of λ is equal to the number of indices j with $\lambda_{\mathbf{j}}^{ \pm}=\lambda$.
3) There exist eigenvectors u_{1}, \ldots, u_{m} of $A \quad$ with $\left(u_{i} \mid u_{j}\right)=\delta_{i j}$ such that

$$
\pm \lambda_{\mathrm{m}}^{ \pm}=\min _{\mathrm{u} \in \mathrm{~L}_{\mathrm{s}}} 2 \mathrm{a}(\mathrm{u})
$$

where $L=S$ ค $\operatorname{lin}\left\{u_{1}, \ldots, u_{m}\right\} \in \mathscr{L}_{m}^{ \pm}$.

REMARK 1. Our main theorems in Section 5 will generalize the maximum-minimum principle (21) to nonlinear operators A.

The basic idea due to LYUSTERNIK (1930) is to replace \mathscr{L}_{m} by a larger class $\mathbb{R}_{\mathrm{m}} \supseteq \mathscr{L}_{\mathrm{m}}$. The sets $K \in R_{\mathrm{m}}$ are characterized by a topological invariant generalizing the dimension of spheres. LYUSTERNIK (1930) used the notion of category. Here we shall use the notion of genus (see Section 4).
$\dot{P} \mathbf{r} o \mathrm{of}$ of Proposition 4 . We choose eigensolutions (u_{i}, λ_{i}) of the operator A as in Proposition 2 , i.e. $A u_{i}=\lambda_{i} u_{i}$ and

$$
u=\sum_{i=1}^{\infty}\left(u \mid u_{i}\right) u_{i} \quad \text { for } a 11 \quad u \in X
$$

Hence

$$
2 a(u)=(A u \mid u)=\sum_{i=1}^{\infty} \lambda_{i}\left(u \mid u_{i}\right)^{2}, \quad| | u| |^{2}=\sum_{i=1}^{\infty}\left(u \mid u_{i}\right)^{2} .
$$

(I) Suppose that A has at least r positive eigenvalues counted according to their multiplicity. Without any loss of genera-

1ity we can assume that

$$
\begin{aligned}
& \lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{r}>0, \lambda_{r} \geqq \lambda_{j} \quad \text { if } r>j \text {. } \\
& \text { If } L \in \mathscr{L}_{s}^{+}, \text {i.e. } L=S \cap X_{k}, \operatorname{dim} X_{k} \geqq s, \text { and } s \leqq r \text {, then }
\end{aligned}
$$ we can choose $u \in L$ such that

$$
(u \mid u)=1, \quad\left(u \mid u_{i}\right)=0, \quad i=1, \ldots, s-1
$$

Hence

$$
\begin{aligned}
& 2 a(u) \leqq \lambda_{s} \sum_{i=s}^{\infty}\left(u \mid u_{i}\right)^{2}=\lambda_{s}| | u \|^{2}=\lambda_{s}, \quad \text { i.e. } \quad \lambda_{s}^{+} \leq \lambda_{s} . \\
& \text { Set } L_{s}=S \cap \operatorname{lin}\left\{u_{1}, \ldots, u_{s}\right\} \in \mathscr{L}_{s}^{+} \text {and observe that } \quad\left(u \mid u_{i}\right)=0
\end{aligned}
$$ if $u \in L_{s}$ and $i>s$, i.e.

$$
1=| | u \|^{2}=\sum_{i=1}^{s}\left(u \mid u_{i}\right)^{2} \quad \text { for a11 } \quad u \in L_{s}
$$

Hence

$$
2 a(u) \geqq \lambda_{s} \sum_{i=1}^{s}\left(u \mid u_{i}\right)^{2}=\lambda_{s} \quad \text { for all } u \in L_{s}
$$

Since $2 \mathrm{a}\left(\mathrm{u}_{\mathrm{s}}\right)=\lambda_{\mathrm{s}}$, we obtain

$$
\lambda_{s}^{+} \geqq \min _{u \in L_{s}} \quad 2 a(u)=\lambda_{s}
$$

i.e. $\lambda_{s}^{+}=\lambda_{s}$ if $s=1, \ldots, r$.
(II) Let $\lambda_{m}^{+}>0$, i.e. $\mathscr{L}_{m}^{+} \neq 0$. Our proof will be complete if we can show that there exist at least m positive eigenvalues counted according to their multiplicity.

Suppose there exist only r positive eigenvalues of A with $r<m$. Without any loss of generality we can assume that
$\lambda_{1} \geqq \cdots \geqq \lambda_{r}>0$ and $\lambda_{j} \leqq \lambda_{r+1} \leqq 0 \quad$ if $\quad j>r$.
Let $L \in \mathscr{L}_{m}^{+} \in \mathscr{L}_{\mathrm{r}+1}^{+}$. As in part (I) of our proof we can choose $u \in L$ with $2 a(u) \leqq \lambda_{r+1} \leqq 0$, i.e. mina(u) $\leqq 0$. This is a contradiction to $\min _{u \in L} a(u)>0$ for $a l 1^{u \in L} L \in \mathscr{L}_{m}^{+}$, q.e.d.

4. The Genus of Symmetric Closed Sets Not Containing the Origin

Definition 3. Let. X be a real Banach space. A subset $\mathrm{M} \subseteq \mathrm{X}$ is called symmetric iff $u \in M \Rightarrow-u \in M$.

A symmetric closed set $M \subseteq X-\{0\}$ is said to have genus n, notation $\gamma(M)=n$, iff there exists
(22) an odd continuous map $\mathbf{f}: \mathbf{M} \rightarrow \mathbb{R}^{\mathbf{n}}-\{0\}$
and n is the smallest natural number with this property.
If there is no such natural number n, we set $\gamma(M)=+\infty$. For the empty set \emptyset we define $\gamma(\emptyset)=0$.

The following Proposition describes a crucial property of the genus.

Proposition 5.

Let $S=\{u \in \mathbf{X}:||u||=1\}$ be the unit sphere in a real Banach space X.

Then $\quad \gamma(S)=\operatorname{dim} X$.

The proof is given, for example, in ZEIDLER(1978), p. 102. This proof is an easy consequence of Borsuk's antipodal theorem (see e.g. ZEIDLER (1976)).

REMARK 2. The definition of genus given here is that used by COFFMAN (1969). It is equivalent to an earlier definition given by KRASNOSEL'SKII (1952), (1956). This equivalence has been proved by RABINOWITZ (1973). The genus appears also in CONNER, FLOYD (1960), where it is called the coindex.

In Lyusternik's category approach to nonlinear eigenvalue problems (see LYUSTERNIK (1930), (1934), (1947)) an important role is played by the fact that real k-dimensional projective spaces P^{k}, obtained by identifying the antipodal points of a k-dimensional unit sphere, have the category $k+1$ with respect to P^{n}. The proof of this deep topological result is due to SCHNIRELMAN (1930) (see also SCHWARTZ (1969), BROWDER (1970 a)).

It was Krasnosel'skil's idea to simplify proofs of the main results of the Lyusternik-Schnirelman theory by using the notion of
genus. For example, the proof of Proposition 5 is extremely simpler than the proof of Schnirelman's theorem concerning the category of projective spaces. Furthermore, there is no need to pass to projective spaces when using the genus.

Now let us summarize some further properties of the genus.
proposition 6. Let X be a real Banach space. Suppose $\mathrm{M}_{\mathrm{M}} \mathrm{M}_{1}$ are symmetric closed subsets of $\mathrm{X}-\{0\}$.

Then :

1) $M_{1} \subseteq M_{2} \Rightarrow \gamma\left(M_{1}\right) \leqq \gamma\left(M_{2}\right)$.
2) If $\mathrm{F}: \mathrm{M}_{1} \rightarrow \mathrm{M}_{2}$ is a continuous odd map, then $\gamma\left(M_{1}\right) \leq \gamma\left(M_{2}\right)$. Furthermore, if F is an odd homeamorphism from M_{1} onto M_{2}, then $\gamma\left(M_{1}\right)=\gamma\left(M_{2}\right)$.
3) $\gamma\left(M_{1} \cup M_{2} \cup \ldots \cup M_{k}\right) \leqq \gamma\left(M_{1}\right)+\ldots+\gamma\left(M_{k}\right), 1 \leqq k<\infty$.
4) $\gamma\left(M_{1}\right)<\infty \Rightarrow \gamma\left(\overline{M_{2}-M_{1}}\right) \geqslant \gamma\left(M_{2}\right)-\gamma\left(M_{1}\right)$.
5) M is a compact set $\Rightarrow \gamma(\mathrm{M})<\infty$.
6) If M_{1} is a compact set, then there exists an open symmetric set U such that $M_{1} \subseteq U$ and $\gamma\left(M_{1}\right)=\gamma(\bar{U})$.
7) $\gamma(M) \leqq \operatorname{dim} X$.
8) If M is a finite nonempty set, then $\gamma(M)=1$.
9) Let $\mathrm{X}_{1} \subseteq \mathrm{X}$ be an m -dimensional subspace with $1 \leqq m<\infty$. Suppose $\mathrm{P}: \mathrm{X} \rightarrow \mathrm{X}_{1}$ is a Iinear continuous projector onto X_{1}.

Then : $\gamma(M)>m \Rightarrow M \cap(I-P)(X) \neq \emptyset$.
10) If $M_{1} \cap M_{2}=\emptyset$, then $\gamma\left(M_{1} \cup M_{2}\right)=\max \left(\gamma\left(M_{1}\right), \gamma\left(M_{2}\right)\right)$.

Proof. The proofs of 1) ... 9) are given, for example, in ZEIDLER (1978), p. 102 .

Let us prove 10). Since $\gamma(\emptyset)=0$, the case $M_{1}=\emptyset$ or $M_{2}=\emptyset$ is trivial. Suppose $M_{1}, M_{2} \neq \emptyset$. Then 1) implies

$$
\max \left(\gamma\left(M_{1}\right), \gamma\left(M_{2}\right)\right) \leqq \gamma\left(M_{1} \cup M_{2}\right) .
$$

If $\quad \gamma\left(M_{1}\right)=\infty$ or $\gamma\left(M_{2}\right)=\infty$, then 10) is proved.
Now, suppose $\gamma\left(M_{i}\right)=n_{i}$. Then there exist continuous odd maps

$$
f: M_{i} \rightarrow \mathbb{R}^{\mathbf{n}_{\mathbf{i}}}-\{0\}, i=1,2
$$

Define

$$
f(u)=f_{i}(u) \quad \text { if } \quad u \in M
$$

Hence
i.e. $\quad \gamma\left(M_{1} \cup M_{2}\right) \leqq \max \left\{\gamma\left(M_{1}\right)_{y} \gamma\left(M_{2}\right)\right\}, \quad$ q.e.d.

The following Proposition 7 seems to be new.

Proposition ? (Krasnosel'skii).
Let X be a real Banach space with $\operatorname{dim} \mathrm{X}=\infty$. Set $\mathbf{S}=\{\mathbf{u} \in \mathrm{X}:| | \mathrm{u} \|=1\}$. Suppose $\mathrm{M} \subseteq \mathrm{S}$ is a compact set.

Then, for every $\mathrm{m} \in \mathbb{N}$, there exists a compact symmetric subset $K_{m} \subseteq S-M$ with $\gamma\left(K_{m}\right) \geqq m$.

Proof. If X is a Hilbert space, Proposition 7 follows easily from orthogonal decomposition arguments (see ZEIDLER (1978), p. 113). If X is an arbitrary Banach space, then the proof is more sophisticated. The following proof based on a selection theorem of MICHAEL (1956) is due to KRASNOSEL'SKII (oral communication during his stay in Leipzig; December 1977). Figure 2 describes the main ided of the proof.

Step 1. A selection theorem of MICHAEL (1956).
Suppose :
i) T is a metric space, X is a real Banach space.
ii) There exists a lower semi-continuous map $\phi: T \rightarrow 2^{X}$, i.e. if $\tau \in T, u \in \phi(\tau)$, and $U(u) \subseteq X$ is a neighbourhood of u, then there exists a neighbourhood $V(\tau) \subseteq T$ of τ such that

$$
\phi\left(\tau^{\prime}\right) \cap U(u) \neq \emptyset \quad \text { for a11 } \quad \tau^{\prime} \in V(\tau) \text {. }
$$

iii) For all $\tau \in T$, $\phi(\tau)$ is a nonempty closed convex subset of X .

Then there exists a continuous function $f: T \rightarrow X$ with $f(\tau) \in \phi(\tau)$ for all $\boldsymbol{\tau} \in T$.

Step 2. Since M is compact, there exists a linear finite-dimensional subspace X_{0} of X such that dist $\left(u, X_{0}\right)<\frac{1 / 2}{}$ for all $u \in M$.

Step 3. Set $T=X / X_{0}$. The elements τ of the factor space X / X_{0} are the sets $\tau=u_{0}+X_{0}$.

Fig. 2 T is a Banach space under the norm

$$
\| \tau| |_{T}=\inf \{| | u| |: u \in \tau\}
$$

Hence

$$
\begin{aligned}
\inf \left\{\left|\left|u_{1}-u_{2}\right| \|_{X}: u_{i} \in \tau_{i}\right\}\right. & =\inf \left\{| | v| |: v \in \tau_{1}-\tau_{2}\right\} \\
& =\|\left.\left|\tau_{1}-\tau_{2}\right|\right|_{T} .
\end{aligned}
$$

Step 4. Define $\phi: T \rightarrow 2^{X}$ by

$$
\phi(\tau)=\left\{u \in \tau:\|u\|_{x} \leq(473)| | \tau \|\right\}
$$

For all $\tau \in T, \phi(\tau)$ is a nonempty closed and convex set.
We assert that ϕ is lower semi-continuous. Suppose this is not true. Then there exist elements $\tau \in T, u \in \phi(\tau)$, a neighbourhood $U(u)$ of u and a sequence $\left(\tau_{n}\right)$ such that

$$
\tau_{n} \rightarrow \tau \text { in } T \text { as } n \rightarrow \infty \text { and } \phi\left(\tau_{n}\right) \cap U(u)=\emptyset \text { for all } n \in \mathbb{N}
$$

Choose a small number $\eta>0$ and an element $v \in \tau$ with $v \in U(u)$ and $||v|| \leqq((4 / 3)-\eta)| | \tau| |$. Furthermore, there exists a sequince of elements $u_{n} \in \tau_{n}$ such that

$$
\left\|v-u_{n}\right\| \leqq(4 / 3)| | \tau-\tau_{n} \|_{T} \text { for all } n \in N
$$

Now, from $u_{n} \rightarrow v,\left\|\tau_{n}\right\| \rightarrow\|\tau\|(n \rightarrow \infty)$ we obtain

$$
\begin{aligned}
& \left\|u_{n}\right\| \leqq(4 / 3)| | \tau_{n} \| \text { if } n \geqq n_{0} \text {, i.e. } u_{n} \in \phi\left(\tau_{n}\right) n U(u) \text { if } n \geqq n_{1} \\
& \text { This contradicts } \phi\left(\tau_{n}\right) \cap U(u)=\emptyset \text { for all } n \in N \text {. }
\end{aligned}
$$

Step 5. The Michael selection theorem in Step 1 implies that there exists a continuous map $f_{0}: T \equiv X / X_{0} \rightarrow X$ such that $\mathrm{f}_{0}(\tau) \in \phi(\tau) \leq \tau$ for all $\tau \in T$.

Define $f(\tau)=\left(f_{0}(\tau)-f_{0}(-\tau)\right) / 2$. Then $f: T \rightarrow X$ is a continuous odd map with $f(\tau) \in \tau$ for all $\tau \in T$.
f is also a homeomorphism. This follows from

$$
\left|\left|\tau_{1}-\tau_{2}\right|\right|_{T} \leqq\left|\left\|_{f\left(\tau_{1}\right)}-f\left(\tau_{2}\right) \mid\right\|_{X}\right.
$$

Furthermore, the construction of $f(\tau)$ yields

$$
||\tau|| \leqq||f(\tau)|| \leqq(4 / 3)| | \tau| |
$$

Step 6. Define $g(\tau)=f(\tau) /\|f(\tau)\|$.
Set $S^{\prime}=\left\{\tau \in T \equiv X / X_{0}:||\tau||=1\right\}$. Then $g: S^{\prime} \rightarrow S$ is a continuous odd map.

Since $\operatorname{dim} X=\infty$, $\operatorname{dim} X_{0}<\infty$, we have $\operatorname{dim} X / X_{0}=\infty$. For every $m \in \mathbb{N}$, there exists an (m-1)-dimensional unit sphere $S_{m} \subseteq S^{\prime}$, i.e. $\quad \gamma\left(S_{m}\right)=m$. Hence $\quad \gamma\left(g\left(S_{m}\right)\right) \geqq m \quad$ (see Proposition 5 and Proposition 6,2)).

We claim $g\left(S_{m}\right) \cap M \neq \emptyset$. Indeed,

$$
\inf \left\{||v-u||_{x}: v \in \tau, u \in X_{0}\right\}=||\tau||
$$

and $g(\tau) \in \tau /\|f(\tau)\|$. Hence

$$
\operatorname{dist}\left(g(\tau), X_{0}\right)=\||\tau||/|f(\tau)|| \geqq 3 / 4
$$

for all $\tau:||\tau||=1$. Now, $g\left(S_{m}\right) \cap M=\emptyset$ follows from dist $\left(u, X_{0}\right)<\frac{1}{2}$ for all $u \in M$.

Thus we have constructed symmetric compact sets $K_{m} \equiv g\left(S_{m}\right) \subseteq S$ with $\quad K_{m} \cap M=\emptyset$ and $\gamma\left(K_{m}\right) \geqslant m$, q.e.d.
5. The Main Theorems in Infinite-Dimensional Banach Spaces

We turn now to the nonlinear eigenvalue problem

$$
\begin{equation*}
A u=\lambda B u, \quad b(u)=\alpha \quad(u \in X, \lambda \in \mathbb{R}) \tag{23}
\end{equation*}
$$

where $\alpha>0$ is a fixed real number. The condition $b(u)=\alpha$ normalizes the eigenvector u.

If (u, λ) is an eigensolution of (23) with $<B u, u>\neq 0$, then $\lambda=\langle\mathrm{Au}, \mathrm{u}\rangle\rangle\langle\mathrm{Bu}, \mathrm{u}\rangle$.

Problem (23) generalizes the linear eigenvalue problem

$$
\mathrm{Au}=\lambda \mathrm{u}, \quad \mathrm{~b}(\mathrm{u})=\alpha \quad(\mathrm{u} \in \mathrm{X}, \lambda \in \mathbb{R})
$$

studied in Section 2.2 and Section 3 , where X is a real separable infinite-dimensional Hilbert space, $A: X \rightarrow X * \equiv X$ is a linear symmetric completely continuous operator $A \neq 0, B=I$ (identity) and

$$
a(u)=2^{-1}\langle A u, u\rangle \equiv 2^{-1}(A u \mid u), \quad b(u)=2^{-1}(u \mid u)
$$

((.|.) is the scalar product in X. We identify $X * \equiv X$, i.e. $(u \mid v)=\langle u, v\rangle$.$) In this special linear case all the hypotheses of$ the following two theorems are satisfied.

Theorem 1 (Eigensolutions of the equation (23)). Suppose that the following conditions hold:
(24) X is a real reflexive separable Banach space, $\operatorname{dim} X=\infty \cdot$
(25) $A, B: X \rightarrow X *$ are continuous odd potential operators with potentials $\mathrm{a}, \mathrm{b} ; \mathrm{a}(0)=\mathrm{b}(0)=0$.
(26) A is strongly continuous.
(27) $A u=0 \Rightarrow a(u)=0$.
(28) B is uniformly continuous on bounded sets of X .
(29) B satisfies the condition
$(S)_{1}: u_{n} \rightarrow u, B u_{n} \rightarrow v \Rightarrow u_{n} \rightarrow u(n \rightarrow \infty)$.
(30) $u \neq 0 \Rightarrow\langle\mathrm{Bu}, \mathrm{u}\rangle\rangle 0$.
(31) The level set $N_{\alpha}=\{u \in X: b(u)=\alpha\}$ is bounded $(e . g . \mathrm{b}(\mathrm{u}) \rightarrow+\infty \quad$ as $||\mathrm{u}|| \rightarrow \infty)$.
(32) $\left.\inf _{u \in N_{\alpha}}<B u, u\right\rangle>0$.

For each $u \neq 0$ there exists a real number $r(u)>0$ such that $\mathrm{b}(\mathrm{r}(\mathrm{u}) \mathrm{u})=\alpha$ (i.e. each ray through the origin inter-
sects N_{α}; see Fig. 3).
a $\not \equiv 0$ on N_{α}.
Then, under all these assumptions, the following statements are true:

1) The level set N_{α} is homeomorphic to the unit sphere. There exist real numbers c, d such that $0<\mathrm{c} \leqq||\mathrm{u}|| \leqq \mathrm{d}$ on N_{α}.
2) The critical levels $\beta_{\mathrm{m}}, \beta_{\mathrm{m}}^{ \pm}$.

Fig. 3 Define, for all $m \in N$

$$
\begin{align*}
& \beta_{m}^{ \pm}=\sup _{K \in R_{m}} \min _{u \in K}|2 a(u)| \text {, } \tag{35}\\
& \pm \beta_{m}^{ \pm}=\left\{\begin{array}{l}
\sup _{\mathrm{u}_{\mathrm{m}}} \min (\pm 2 \mathrm{a}(\mathrm{u})), \\
\mathrm{K} \mathrm{\in} \mathrm{~K}_{\mathrm{m}} \mathrm{u} \mathrm{\in K} \\
0 \text { if } R_{\mathrm{m}}^{ \pm}=\emptyset,
\end{array}\right.
\end{align*}
$$

where

$$
\begin{aligned}
& R_{\mathrm{m}}=\left\{\mathrm{K} \subseteq \mathrm{~N}_{\alpha}: \mathrm{K} \text { compact, symmetric, } \gamma(\mathrm{K}) \geq \mathrm{m}\right\} \\
& R_{\mathrm{m}}^{ \pm}=\left\{\mathrm{K} \in R_{\mathrm{m}}: \pm \mathrm{a}(\mathrm{u})>0 \text { on } \mathrm{K}\right\} .
\end{aligned}
$$

Then

$$
R_{\mathrm{m}} \neq \emptyset \text { for all } \mathrm{m} \in \mathbb{N} \text { and }
$$

$$
\begin{gathered}
\beta_{1} \geqq \beta_{2} \geqq \cdots \geqq 0, \quad \beta_{1}>0 \\
\pm \beta_{1}^{ \pm} \geqq \pm \beta_{2}^{ \pm} \geqq \cdots \geqq 0, \quad \pm \beta_{i} \leqq \beta_{i} .
\end{gathered}
$$

Furthermore, $\beta_{\mathrm{m}}, \beta_{\mathrm{m}}^{ \pm} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$.
3) Lyusternik's maximum-minimum principle generalizing Courant's maximum-minimum principle.
a) If $\beta_{m}>0$, then the equation (23) has an eigensolution

$$
\begin{equation*}
u_{\mathrm{m}} \neq 0, \quad \lambda_{\mathrm{m}} \neq 0, \quad\left|2 \mathrm{a}\left(\mathrm{u}_{\mathrm{m}}\right)\right|=\beta_{\mathrm{m}} \tag{36}
\end{equation*}
$$

b) If $\pm \beta_{m}^{ \pm}>0$ (+ or -), then the equation (23) has an eigensolution $\left(36_{ \pm}\right) \quad u_{m}^{ \pm} \neq 0, \lambda_{m}^{ \pm} \neq 0, \quad 2 a\left(u_{m}^{ \pm}\right)=\beta_{m}^{ \pm}$.

If A is homogeneous, i.e. Atu $=t^{\rho} \mathrm{Au}$ for all $\mathrm{t}>0$, $u \in \mathrm{X}$ and a fixed $\rho \geqq 0$, then

$$
\begin{aligned}
& a(u) \equiv \int_{0}^{1}\langle A t u, u\rangle d t=(1+\rho)^{-1}\langle A u, u\rangle \quad, \quad i . e \\
& \left. \pm \lambda_{m}^{ \pm}= \pm(1+\rho) \beta_{m}^{ \pm} / 2<B u_{m}, u_{m}\right\rangle>0 .
\end{aligned}
$$

4) The global multiplicities $x\left(a, N_{\alpha}\right), X_{ \pm}\left(a, N_{\alpha}\right)$. Observe that $\beta_{\mathrm{m}}>0 \Leftrightarrow$ there exists $\mathrm{K} \in R_{\mathrm{m}}$ with $\mathrm{a}(\mathrm{u}) \neq 0$ on K , $\pm \beta_{\mathrm{m}}^{ \pm}>0 \Leftrightarrow$ there exists $\mathrm{K} \in R_{\mathrm{m}}$ with $\pm \mathrm{a}(\mathrm{u})>0$ on K . Define

$$
\begin{aligned}
& x=\sup \left\{m: \beta_{m}>0\right\}, \\
& X_{ \pm}=\left\{\begin{array}{l}
\sup \left\{m: \pm \beta_{m}^{ \pm}>0\right\} \\
0 \\
\text { if } \quad \beta_{1}^{ \pm}=0
\end{array}\right.
\end{aligned}
$$

Then :
a) $x=\max \left\{x_{+}, x_{-}\right\} \geqq 1$.
b) If the set $\left\{u \in N_{\alpha}: a(u)=0\right\}$ is compact, then $x=x_{+}=\infty \quad$ or $\quad x=x_{-}=\infty$.
c) If $\mathrm{a}(\mathrm{u}) \neq 0$ on N_{α} (e.g. $\mathrm{a}(\mathrm{u})=0 \Leftrightarrow \mathrm{u}=0$), then $x=x_{+}=\infty, x_{-}=0$ or $x=x_{-}=\infty, x_{+}=0$.
a) If X_{0} is a linear subspace of X and $\mathrm{a}(\mathrm{u}) \neq 0$ on $\mathrm{N}_{\alpha} \cap \mathrm{X}_{0}$, then $\mathrm{x} \geqq \operatorname{dim} \mathrm{X}_{0}$.

If $\pm \mathbf{a}(\mathrm{u})>0$ on $\mathrm{N}_{\alpha} \cap \mathrm{X}_{0}\left(+\right.$ or -), then $\mathrm{X}_{ \pm} \geqq \operatorname{dim} \mathrm{X}_{0}$.
5) Existence of an infinite number of distinct eigenvectors
on $\quad N_{\alpha}$.
a) If $x=\infty$ then, for all $m \in \mathbb{N}$, the equation (23) has an eigensolution $\left(u_{m}, \lambda_{m}\right): u_{m} \in N_{\alpha}, \lambda_{m} \neq 0,\left|2 a\left(u_{m}\right)\right|=\beta_{m}$.
b) If $x_{ \pm}=\infty(+$ or -$)$ then, for $a 乙 Z ~ m \in \mathbb{N}$, the equation (23) has an eigensolution $\left(u_{\mathrm{m}}^{ \pm}, \lambda_{\mathrm{m}}^{ \pm}\right): \mathrm{u}_{\mathrm{m}}^{ \pm} \in \mathrm{N}_{\alpha}, \lambda_{\mathrm{m}}^{ \pm} \neq 0$, $2 a\left(u_{m}^{ \pm}\right)=\beta_{m}^{ \pm}$.

Since $\beta_{m}, \beta_{m}^{ \pm} \rightarrow 0$ as $m \rightarrow \infty$, all the sequences $\left(u_{m}\right),\left(u_{m}^{ \pm}\right)$ contain an infinite number of distinct eigenvectors on N_{α}.
6) Existence of an infinite number of distinct eigenvalues.

Suppose $\mathrm{a}(\mathrm{u})=0 \Rightarrow\langle\mathrm{Au}, \mathrm{u}\rangle=0$.

Let ($\tilde{u}_{\mathrm{m}}, \tilde{\lambda}_{\mathrm{m}}$) be an arbitrary sequence of eigensolutions of the equation (23) with $a\left(\tilde{u}_{\mathrm{m}}\right) \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$. Then $\tilde{\lambda}_{\mathrm{m}} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$.

This together with the fact that $\beta_{\mathrm{m}}, \beta_{\mathrm{m}}^{ \pm} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$ implies $\lambda_{m}, \lambda_{m}^{ \pm} \rightarrow 0$ as $m \rightarrow \infty$ for the sequences $\left(u_{m}, \lambda_{m}\right),\left(u_{m}^{ \pm}, \lambda_{m}^{ \pm}\right)$ in 5a), 5b). This means that if $x \equiv \max \left(x_{+}, x_{-}\right)=\infty$, then the equation (23) has an infinite number of distinct eigenvalues.
7) Weak convergence of the eigenvectors.

Suppose $\quad a(u)=0 \Longleftrightarrow u=0$.
Then $x=\infty$. Furthermore, let $\left(\tilde{u}_{m}\right)$ be an arbitrary sequence on N_{α} with $\mathrm{a}\left(\tilde{\mathrm{u}}_{\mathrm{m}}\right) \rightarrow 0$; then $\tilde{\mathrm{u}}_{\mathrm{m}} \rightarrow 0,\left\langle\mathrm{~A} \tilde{\mathrm{u}}_{\mathrm{m}}, \tilde{\mathrm{u}}_{\mathrm{m}}>\rightarrow 0\right.$ as $\mathrm{m} \rightarrow \infty$.

This together with the fact that $\beta_{m}, \beta_{m}^{ \pm} \rightarrow 0$ as $m \rightarrow \infty$ implies $u_{m}, u_{m}^{ \pm} \rightarrow 0, \lambda_{m}, \lambda_{m}^{ \pm} \rightarrow 0$ as $m \rightarrow \infty$ for the sequences $\left(u_{m}, \lambda_{m}\right)$, $\left(u_{\mathrm{m}}^{ \pm}, \lambda_{\mathrm{m}}^{ \pm}\right) \quad$ in $\left.\left.5 a\right), 5 b\right)$.
8) Existence of at least one eigenvalue if A, B are not

necessarily odd.

If there exists an element $u_{0}^{ \pm} \in \mathrm{N}_{\alpha}$ (+or -) with $\pm \mathrm{a}\left(\mathrm{u}_{0}^{ \pm}\right)>0$, then the equation (23) has an eigensolution

$$
\begin{aligned}
& \mathrm{u}^{ \pm} \neq 0, \lambda^{ \pm} \neq 0, \pm \mathrm{a}\left(\mathrm{u}^{ \pm}\right)=\max \pm \mathrm{a}(\mathrm{u}) . \\
& \text { suppose that } \mathrm{A}, \mathrm{~B} \text { are odd., } \mathrm{u} \mathrm{\in N} \mathrm{~N}_{\alpha}
\end{aligned}
$$

(Here we do not suppose that A, B are odd., $\mathrm{u} \in \mathrm{N}_{\alpha}$

Corollary 1 (multiplicity of the critical levels $\beta_{\mathrm{m}}, \beta_{\mathrm{m}}^{ \pm}$).
Under the assumptions made in Theorem 1 it holds:
a_{1}) If $\beta_{\mathrm{m}}=\beta_{\mathrm{m}+1}=\ldots \ldots \ldots . \beta_{\mathrm{m}+\mathrm{p}-1}>0, \mathrm{p} \geqq 1$, then
$\gamma\left(\left\{u \in N_{\alpha}: u\right.\right.$ eigenvector in (23), $\left.\left.|2 a(u)|=\beta_{m}\right\}\right) \geqq p$. a_{2}) The equation $\mathrm{Au}=\lambda \mathrm{Bu}, \mathrm{b}(\mathrm{u})=\alpha(\alpha>0$ fixed) has at least $x=\max \left(x_{+}, x_{-}\right)$distinct pairs of eigenvectors (u, -u) with nonzero eigenvalues obtained by the maximum-minimum principle (35).
b_{1}, If $\pm \beta_{\mathrm{m}}^{ \pm}= \pm \beta_{\mathrm{m}+1}^{ \pm}=\ldots= \pm \beta_{\mathrm{m}+\mathrm{p}-1}^{ \pm}>0, \mathrm{p} \geqq 1$, (+ or -), then \because
$\gamma\left(\left\{u^{ \pm} \epsilon N_{\alpha}: u^{ \pm}\right.\right.$eigenvector in (23), $\left.\left.2 a\left(u^{ \pm}\right)=\beta_{m}^{ \pm}\right\}\right) \geqq p$.
b_{2}) The equation $A u=\lambda B u, b(u)=a(\alpha>0$ fixed) has at least $x_{+}+x_{-}$distinct pairs of eigenvectors ($u,-u$) with nonzero eigen τ_{-}.
values obtained by the maximum-minimum principle (35士).

The purpose of the next theorem is to weaken the continuity assumptions upon B.

Theorem 2.

Let all the assumptions made in Theorem 1 hold except of the following changes :
(28') Replace (28) (B is uniformly continuous or bounded sets) by the weaker assumption : B is bounded.
(29') Replace (29) (B satisfies the condition (S) ${ }_{1}$) by the stronger assumption:

$$
(S)_{0}: u_{n} \rightarrow u, B u_{n} \rightarrow v,\left\langle B u_{n}, u_{n}\right\rangle \rightarrow\langle v, u\rangle \Rightarrow u_{n} \rightarrow u(n \rightarrow \infty)
$$

(27') Replace (27) $(\mathrm{Au}=0 \Rightarrow \mathrm{a}(\mathrm{u})=0)$ by the stronger assumption: $a(u)=0 \Leftrightarrow\langle A u, u\rangle=0$.

Then all the statements of Theorem 1 are true.

An important special case of Theorems 1 , 2 will be considered in Section 8.

REMARK 3. Theorem 1, points 1), 3a), 5a) and Corollary 1, a ${ }_{1}$) with respect to the critical levels

$$
\beta_{\mathrm{m}}=\sup _{K \in \mathbb{R}_{\mathrm{m}}} \min _{u \in K}|2 a(u)|
$$

have been proved by AMANN (1972). On Amann's paper X is supposed to be a uniformly convex Banach space.

Since $x=\max \left(X_{+}, X_{-}\right)$by Theorem 1, 4a), Corollary 1, b_{2}) gives in general more eigenvectors than Corollary $1, a_{2}$). This is the reason why we have introduced the critical levels $\beta_{m}^{ \pm}$.

In Corollary l^{\prime} of Section 7 we shall show that the multiplicity result in Corollary $1, b_{2}$) is a straightforward generalization of the corresponding results for linear operators.

REMARK 4. Under the additional definiteness assumption

$$
\begin{equation*}
A u=0 \Longleftrightarrow u=0, \quad a(u)>0 \quad \text { if } \quad u \neq 0, \tag{37}
\end{equation*}
$$

Theorem 1, points 1), 2), 3), 5), 7) have been proved by FUĆfK, NECAS (1972a), for Banach spaces equipped with the so-called usual structure.

In the case (37) it holds $\beta_{m}=\beta_{m}^{+}, \beta_{m}^{-}=0, X+=\infty$. DANCER (1976) has shown that every real reflexive separable Banach space has the usual structure.

Furthermore, under the assumption (37.), Corollary 1, a_{1}) has been proved also by FUČf, NECXAS (1972a), the notion of genus $\gamma($. being replaced by ord(.) (order of a set). However, ord(.) gives not so good multiplicity results as $\gamma($.$) . Suppose, for example, that$ there exist only two nonzero critical levels $\beta_{1}=\beta_{2}$, i.e. $X=2$. Then the paper of FUČ́K, NEXAS implies

$$
\operatorname{ord}\left(\left\{u \in N_{\alpha}: A u=\lambda B u\right\}\right) \geqq 2 .
$$

On the other hand, ord $\left\{u_{1},-u_{1}\right\}=2$. Therefore we cannot conclude that there exist at least the distinct pairs of eigenvectors. In contrast to this, $\gamma(M) \geqslant 2$ implies that M contains an infinite number of distinct pairs ($u,-u$) .

REMARK 5. Theorem 2 is closely related to general theorems due to BROWDER (1968), (1970a), (1970b). However, in these papers it is assumed that

$$
\begin{equation*}
\langle A u, u\rangle=0 \Longleftrightarrow u=0 \tag{38}
\end{equation*}
$$

Since X - \{0\} is connected, it follows immediately from (38)
that $\langle A u, u$ > has the same sign for all $u \neq 0$. Hence

$$
a(u) \equiv \int_{0}^{1}\langle A t u, u\rangle d t=0 \Longleftrightarrow u=0
$$

Theorem 2 removes the condition (38). In case of a linear operator A the condition (38) means $A u=0 \longleftrightarrow u=0$ (see Theorem 1', 7^{\prime})) .

6. Sketched Proofs of the Main Theorems

6.1. Proof of Theorem 1, 1), 4), 5), 6), 7).

Proof of 1) Set $\phi(u)=r(u) u$. It is easily seen that ϕ is an odd homeomorphism from the unit sphere S onto the level set N_{α} (see e.g. ZEIDLER (1978), p. 108).

Proof of 4a) Obviously, $X_{+}, X_{-} \leq X$. Now, suppose $\beta_{m}>0$. This is equivalent to the existence of a symmetric compact set $K \in R_{m}$ with $a(11) \neq 0$ on K. Define

$$
\mathrm{K}^{ \pm}=\{\mathrm{u} \in \mathrm{~K}: \pm \mathrm{a}(\mathrm{u})>0\}
$$

$\mathrm{K}^{ \pm}$is symmetric, compact, $\mathbb{K}^{+} \cap \mathrm{K}^{-}=\emptyset$, and by Proposition 6,10)

$$
\gamma(K)=\max \left(\gamma\left(K^{+}\right), \quad \gamma\left(K^{-}\right)\right), \quad \gamma(K) \geqq m .
$$

Hence $\mathrm{K}^{+} \in \mathbb{R}_{\mathrm{m}}^{+}$or $\mathrm{K}^{-} \in \mathbb{R}_{\mathrm{m}}^{-}$, i.e. $\beta_{\mathrm{m}}^{+}>0$ or $-\beta_{\mathrm{m}}^{-}>0$.
Thus $\max \left(x_{+}, x_{-}\right) \geqslant \chi$.
Proof of 4 b) Set $N=\left\{u \in N_{\alpha}: a(u)=0\right\}$. Suppose Φ is an odd homeomorphism from the unit sphere S in X onto N_{α}.

By the hypothesis N is compact, i.e. $\phi^{-1}(N)$ is compact in S . Proposition 7 yields that for each $m \in N$ there exists a compaci symmetric subset $K_{m} \subseteq S-\phi^{-1}(\mathbb{N})$ with $\gamma\left(K_{m}\right) \geqq m$, i.e. $\phi\left(K_{m}\right)$ is a compact symmetric subset of N_{α} with $\phi\left(K_{m}\right) \cap N=\emptyset$ and $\gamma\left(\phi\left(K_{m}\right)\right) \geqq m$. Hence $\quad \min _{\mathrm{u} \in \phi\left(\mathrm{K}_{\mathrm{m}}\right)}|2 \mathrm{a}(\mathrm{u})|>0$, i.e. $\beta_{\mathrm{m}}>0$. Thus $\chi=\infty$.

Proof of 4 c) N_{α} is connected. Hence $a\left(N_{\alpha}\right)$ is connected, too. Thus $a(u) \neq 0$ on N_{α} implies that $a(u)$ has the same sign for all $u \in N_{\alpha}$. Suppose $a(u)>0$ on N_{α}. Then $k_{1}=\emptyset$, i.e. $\chi_{-}=0$.

It follows from 4a), 4b) that $x=X_{+}=\infty$.
Proof of 4 d) Suppose $a(u) \neq 0$ on $K=N_{\alpha} \cap X_{0}$. Let $\operatorname{dim} X_{0}<\infty \quad . K$ is compact symmetric set. $\phi^{-1}(K)$ is a sphere in X_{0}. By Proposition 5, $\quad \gamma\left(\phi^{-1}(K)\right)=\operatorname{dim} X_{0}$. Hence $\gamma(K)=\operatorname{dim} X_{0}$ by Proposition 6,2). Thus $\min _{u \in K}|2 a(u)|>0$, i.e. $\beta_{m}>0$, $m=\operatorname{dim} X_{0}$.

Therefore $\chi \geqq m$. Similarly we obtain the other assertions in 4d).

Proof of 5) Compare Theorem 1,3) and the definition on $x, X_{ \pm}$ in Theorem 1,4).

Proof of 6) Suppose $A \tilde{u}_{m}=\tilde{\lambda}_{m} B \tilde{u}_{m}, \tilde{u}_{m} \in N_{\alpha}$ for all $m \in \mathbb{N}$ and $a\left(\tilde{u}_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$. Let $\left(\tilde{\lambda}_{m}\right.$, be an arbitrary subsequence of $\left(\tilde{\lambda}_{m}\right)$. Since $\left(\tilde{u}_{m},\right)$ is bounded, we can choose a subsequence $\left(\tilde{u}_{m}\right.$, , with $\tilde{u}_{m u} \rightarrow u$ as $m^{\prime \prime} \rightarrow \infty$, i.e. $a(u)=0$. Hence $\langle A u, u\rangle=0$, i.e. $\left\langle A \tilde{u}_{m},{ }^{\prime}, \tilde{u}_{m}, 1\right\rangle \rightarrow\langle A u, u\rangle=0$. Therefore

$$
\tilde{\lambda}_{m, l}=\left\langle A \tilde{u}_{m, l}, \tilde{u}_{m}, 1\right\rangle /\left\langle B \tilde{u}_{m}, 1, \tilde{u}_{m, 1}\right\rangle \rightarrow 0 \text { as } m \rightarrow \infty
$$

Thus we have shown that the sequence ($\tilde{\lambda}_{m}$) has only one accumulation point, i.e. $\tilde{\lambda}_{\mathrm{m}} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$.

Proof of 7) Proceed similarly as in the proof of 6).
6.2. Sketched proofs of Theorem 1, 2), 3), 8) and Corollary 1.

All the assertions of Theorem 1, 2), 3), 8) and Corollary 1 have been proved in ZEIDLER (1978), p. 112 with respect to the critical levels β_{m}. The corresponding proofs for $\beta_{m}^{ \pm}$work similarly.

The proofs in ZEIDLER (1978) combine various ideas taken from the papers of AMANN (1972), FUCfK, NEČAS (1972a), FUČí, NECXAS, SOUCEK, SOUČEK (1973) and DANCER (1976).

A sketched proof of Theorem 1, 2). The proof for $\beta_{m} \rightarrow 0$ as $m \rightarrow \infty$ in ZEIDLER (1978) is based on the following

Lemma 1 (DANCER). Let X be a reflexive separable infinitedimensional Banach space.

Then, for each $n \in \mathbb{N}$, there exist continuous odd operators $\mathrm{P}_{\mathrm{n}}: \mathrm{X} \rightarrow \mathrm{X}$ with finite dimensional ranges such that

$$
u_{n} \rightarrow u \Rightarrow P_{n} u_{n} \rightarrow u \quad(n \rightarrow \infty)
$$

This lemma shows that every reflexive separable Banach space
has the usual structure in the sense of FUČíK, NEČAS (1972a). Hence we obtain by a similar argument as in FUČík, NEČAS (1972a) that

$$
\begin{equation*}
\beta_{\mathrm{m}} \rightarrow 0 \text { as } \mathrm{m} \rightarrow \infty . \tag{39}
\end{equation*}
$$

Now, the convergence $\quad \beta_{m}^{ \pm} \rightarrow 0$ as $m \rightarrow \infty$ follows from $\pm \beta_{m}^{ \pm} \leqq \beta_{m}$.
A sketched proof of Theorem 1,3). The proof of this crucial assertion given in ZEIDLER (1978), p. 112 is based on the following Lemmas.

Lemma 2 (TROYANSKI (1971); an equivalent norm on X). In every reflexive Banach space X we can introduce an equivalent norm $\|\cdot\|_{1}$ such that X, X^{*} are locally uniformly convex.

This implies that the duality map $J: X * \rightarrow X * * \equiv X$ is continuous with respect to $\|\cdot\|_{1}$ (see e.g. ZEIDLER (1978), p. 146).

Lemma 3 (curves on the level set N_{α}). Set
$D u=A u-(\langle A u, u\rangle<B u, u\rangle) B u$,
$E u=J D u-(\langle B u, J D u\rangle\langle B u, u\rangle) u$.
Define curves on N_{α} by $g(t, u)=r(u+t E u)(u+t E u)$.
Then the maps $\mathrm{g}, \mathrm{g}_{\mathrm{t}}:\left[-\mathrm{t}, \mathrm{t}_{\mathrm{o}}\right] \times \mathrm{N}_{\alpha} \rightarrow \mathrm{N}_{\alpha}$ are bounded, continuous, and $t \mapsto g(t, u), t \mapsto g_{t}(t, u)$ are equicontinuous on $\left[-t_{0}, t_{0}\right]$ with respect to all $u \in N_{\alpha}$. Furthermore, $g(0, u)=u,\left\langle A u, g_{t}(0, u)\right\rangle=\|D u\|^{2}$.

REMARK 6. This lemma has been proved by AMANN (1972). Since we do not suppose that X is uniformly convex, we cannot prove, as in Amann's paper, that g, g_{t} are uniformly continuous on $\left[-t_{o}, t_{o}\right] \times N_{\alpha}$ (see Remark 7).

Lemma 4 (the critical sets $\mathrm{L}_{\sigma}, \mathrm{L}_{\sigma}^{ \pm}$).
Set $L_{\sigma}=\left\{u \in N_{\alpha}:\left||2 a(u)|-\beta_{m}\right| \leqq \sigma,\left||D u|^{2} \leqq \sigma\right\}\right.$.
Suppose $\beta_{m}>0$.
Then for each $\sigma>0$ there exists $\mu(\sigma)>0$ such that

$$
\begin{aligned}
& \min _{\substack{\operatorname{meK}}}|2 a(\mathrm{u})|>\beta_{\mathrm{m}}-\mu(\sigma) \Rightarrow \mathrm{L}_{\sigma} \cap \mathrm{K} \neq \emptyset \\
& \text { for } a \geq z \quad \mathrm{~K} \in R_{\mathrm{m}} \text {. } \\
& \text { 2) Set } L_{\sigma}^{ \pm}=\left\{u \in N_{\alpha}:\left|2 a(u)-\beta_{m}^{ \pm}\right| \leqq \sigma,\left||D u|^{2} \leqq \sigma\right\} .\right. \\
& \text { Suppose } \pm \beta_{m}^{ \pm}>0(+ \text { or }-) \text {. } \\
& \text { Then for each } \sigma>0 \text { there exists } \mu^{ \pm}(\sigma)>0 \text { such that } \\
& \min _{u \in K}(\pm 2 a(u))> \pm \beta_{m}^{ \pm}-\mu^{ \pm}(\sigma) \Rightarrow L_{\sigma}^{ \pm} \cap K \neq \emptyset \\
& \text { for azz } K \in R_{m}^{ \pm} \text {. }
\end{aligned}
$$

REMARK 7. This crucial lemma is related to the Main Lemma in the paper of FUCík, NEČAS (1972a).

The proof of Lemma 4, 1) is based on the careful deformation argument along the curves $t \rightarrow g(t, u)$, due to AMANN (1972). The situation described in Remark 6 complicates the proof.

Lemma 1, 2) follows by a similar argument.

Lemma 5 (Zocal Palais-Smale condition; AMANN(1972)). Let (u_{n}) be a sequence on N_{α}. Suppose $D u_{n} \rightarrow 0, a\left(u_{n}\right) \rightarrow \beta, \beta \neq 0(n \rightarrow \infty)$.

Then there exists a convergent subsequence (u_{n},) with $u_{n}, \rightarrow u$ as $n \rightarrow \infty$ and $D u=0$, i.e. u is an eigenvector of (23).

Now, Theorem 1, 3) is an easy consequence of Lemma 4 and
Lemma 5.

Sketched proof of Theorem 1,8). This assertion follows by a slight modification of Lemma 4 and by Lemma 5 (see ZEIDLER (1978), p. 114).

Sketched proof of Corollary 1 . The assertion a_{1}), b_{1}) follow from Lemma 4, Lemma 5 and Proposition 6, 6) by an argument due to LYUSTERNIK (1930) (see ZEIDLER (1978), p. 114).

Now a_{2}) and b_{2}) in Corollary 1 are easy consequences of a_{1}), b_{1}). Observe that $\gamma(M) \geqq 2$ implies that M is an infinite set.

6.3. A sketched proof of Theorem 2.

The proof is based on a Galerkin procedure due to BROWDER (1968), (1970a), (1970b). In ZEIDLER (1978), p. 116 it is shown that this procedure converges also if we replace the definiteness condition (38) (<Au, $u\rangle=0 \Leftrightarrow u=0$) by weaker condition $\langle A u, u\rangle=0 \Leftrightarrow a(u)=0$.

It is important that we can prove $\beta_{m}, \beta_{m}^{ \pm} \rightarrow 0$ as $m \rightarrow \infty$ without using the uniform continuity of B on bounded sets.

7. Restriction to the Linear Case

To check the quality of the statements for nonlinear operators made in Theorem 1 and Corollary 1 let us consider the special case of linear operators. The following Theorem 1, and Corollary 1^{\prime}, show that our results in Section 5 are maximal in a certain sense (Theorem 1, X) corresponds to Theorem 1', $x^{\prime \prime)}$).

For fixed $\alpha>0$, consider the equation

$$
\begin{equation*}
A u=\lambda u, \quad b(u)=\alpha \quad(u \in X, \lambda \in \mathbb{R}) \tag{40}
\end{equation*}
$$

Define $N(A)=\{u \in X: A u=0\}$.

Theorem $1^{\text {, }}$

Suppose :
i) X is a real separable infinite-dimensional Hilbert space with a scalar product ($\cdot \mid \cdot$).
ii) $\mathrm{A}: \mathrm{X} \rightarrow \mathrm{X}$ is a linear completely continuous symmetric operator, $A \neq 0$.
iii) Set $B=I \quad($ identity $), a(u)=2^{-1}(A u \mid u)$, $b(u)=2^{-1}(u \mid u)$.

Then:
0) All the hypotheses made in Theorem 1 and Theorem 2 are satisfied.

2,), 3'). Let $\lambda_{\mathrm{m}}^{ \pm}$be defined as in (21) by Courant's maxi-
mum-minimum principle. Then $\beta_{\mathrm{m}}^{ \pm}=2 \alpha \lambda_{\mathrm{m}}^{ \pm}$.
The set of all $\lambda_{\mathrm{m}}^{ \pm} \neq 0$ is equal to the set of all nonzero eigenvalues of A counted according to their multiplicity (see Proposition 4).
4.) x_{+}and x_{-}are equal respectively to the number of all positive and negative eigenvalues of A counted according to their muてtiplicity.
$\left.a^{\prime}\right) \quad x \equiv \max \left(x_{+}, x_{-}\right) \geqslant 1$.
b') $N \equiv\left\{u \in N_{\alpha}: a(u)=0\right\}$ is compact
$\Leftrightarrow\left\{\begin{array}{l}\operatorname{dim} N(A)<\infty, x_{+}=\infty, x_{-}=0 \\ \text { or } \operatorname{dim} N(A)<\infty, x_{-}=\infty, x_{+}=0 .\end{array}\right.$
If N is compact, then $\mathrm{N}=\mathrm{N}_{\alpha} \cap \mathrm{N}(\mathrm{A})$.
c') See 7•).
6,$)<\mathrm{Au}, \mathrm{u}\rangle=0 \Longleftrightarrow \mathrm{a}(\mathrm{u})=0 ; \lambda_{\mathrm{m}}^{ \pm} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$.
7') The following conditions are equivalent:
a) $a(u) \neq 0$ on N_{α},
b) $\mathrm{a}(\mathrm{u})=0 \Leftrightarrow \mathrm{u}=0$,
c) $N(A)=\{0\}, X_{+}=\infty, X_{-}=0$ or $N(A)=\{0\}, X_{-}=\infty, X_{+}=0$,
d) $x=\infty$, and if $\left(\tilde{u}_{m}\right)$ is an arbitrary sequence on N_{α} with $\mathrm{a}\left(\tilde{\mathrm{u}}_{\mathrm{m}}\right) \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$, then $\tilde{\mathrm{u}}_{\mathrm{m}} \rightarrow 0$ and $\left\langle\mathrm{Au} \mathrm{m}_{\mathrm{m}}, \mathrm{u}_{\mathrm{m}}>\rightarrow 0\right.$ as $\mathrm{m} \rightarrow \infty$.

Corolzary $1^{\prime} \cdot b_{1}^{\prime}$) Let $p \geq 1$ be the multiplicity of $\pm \lambda_{m}^{ \pm}>0$ $\left(+\right.$ or -). Then $\pm \beta_{\mathrm{m}}^{ \pm}= \pm \beta_{\mathrm{m}+1}^{ \pm}=\ldots= \pm \beta_{\mathrm{m}+\mathrm{p}-1}^{ \pm}>0$ and $\gamma\left(\left\{u \in \mathrm{~N}_{\alpha}: u^{ \pm}\right.\right.$ eigenvector in $\left.\left.(40), 2 a\left(u^{ \pm}\right)=\beta_{m}^{ \pm}\right\}\right)=p$.
b_{2}^{\prime}) The equation (40) has at least $x_{+}+x_{-}$distinct pairs of eigenvectors ($u,-u$) belonging to nonzero eigenvalues.

There exist operators A such that the equation (40) has exactly $x_{+}+x_{-}$distinct pairs of eigenvectors ($\left.u,-u\right)$ belonging to nonzero eigenvalues.

Proof of 0). This is easy to check.
Proof of 2^{\prime}), 3^{\prime}). Without any loss of generality we can assume $\alpha=\frac{1}{2}$, i.e. $N_{\alpha}=\{u \in X:||u||=1\}$.
(I) First we shall show : If $\pm \beta_{\mathrm{m}}^{ \pm}>0(+$ or -$)$, then $\beta_{\mathrm{m}}^{ \pm}$is an eigenvalue of A.

Indeed, Theorem 1,3) says that there exists an eigensolution $A u_{m}^{ \pm}=\lambda_{\mathrm{m}} \mathrm{u}_{\mathrm{m}}^{ \pm}, \mathrm{b}\left(\mathrm{u}_{\mathrm{m}}^{ \pm}\right)=\frac{1}{2}$ with $2 \mathrm{a}\left(\mathrm{u}_{\mathrm{m}}^{ \pm}\right)=\beta_{\mathrm{m}}^{ \pm}$, i.e.

$$
2 a\left(u_{m}^{ \pm}\right)=\left(A u_{m}^{ \pm} \mid u_{m}^{ \pm}\right)=\lambda_{m} \text {. Hence } \beta_{m}^{ \pm}=\lambda_{m} \text {. }
$$

(II) Consider $\mathscr{L}_{\mathrm{m}}^{ \pm}$introduced in (20). By Proposition 5, $\mathscr{L}_{\mathrm{m}}^{ \pm} \subseteq \mathcal{R}_{\mathrm{m}}^{ \pm}$, i.e. $\pm \lambda_{\mathrm{m}}^{ \pm} \leqq \pm \beta_{\mathrm{m}}^{ \pm}$for all $\mathrm{m} \in \mathbb{N}$.
(III) Let $\beta_{1}^{+}>0$. Then $\lambda_{1}^{\dot{+}} \geqq \beta_{1}^{+}$by (I) and Proposition 4, 1). Thus $\lambda_{1}^{+}=\beta_{1}^{+}$by (II).
(IV) Now, let us prove $\lambda_{2}^{+}=\beta_{2}^{+}$. Indeed, $\lambda_{2}^{+} \leqq \beta_{2}^{+} \leqq \beta_{1}^{+}=\lambda_{1}^{+}$ by (II), (III). If $\lambda_{2}^{\dot{+}}=\lambda_{1}^{\dot{+}}$, then $\beta_{2}^{\dot{+}}=\lambda_{2}^{\dot{+}}$.

Next suppose $\lambda_{2}^{\dot{+}}<\lambda_{1}^{+}$. Proposition 4, 1) and (I) yield either $\beta_{2}^{+}=\lambda_{1}^{+}$or $\beta_{2}^{+}=\lambda_{2}^{+}$.

Let $\beta_{2}^{+}=\lambda_{1}^{+}$. Then $\beta_{1}^{+}=\beta_{2}^{+}>0$. Corollary 1 implies

$$
\gamma\left(\left\{u: A u=\lambda_{1}^{\dot{+}} u,||u||=1\right\} \geqq 2 .\right.
$$

Proposition 5 shows that the multiplicity of λ_{1}^{+}is at least $p=2$. However, from $\lambda_{1}^{+}<\lambda_{2}^{+}$and Proposition 4,2) we conclude that the multiplicity of λ_{1}^{+}is equal to $p=1$. This is a contradiction.
(v) By induction we obtain 2'), 3') .

Proof of 4^{\prime}). See 2').
Proof of $\left.4^{\prime} b^{\prime}\right) . \Rightarrow$ Let N be compact. Then $\operatorname{dim} N(A)<\infty$,
since $N(A) \cap N_{\alpha} \subseteq N$. Hence $X_{+}=\infty$ or $X_{-}=\infty$ by 4^{\prime}).
Let $x_{+}=\infty$. Prove $x_{-}=0$.
Suppose $X_{+}=\infty, X_{-}>0$. Choose on orthonormal sequence of eigenvectors $u_{1}^{-}, u_{1}^{+}, u_{2}^{+}, \ldots$ belonging to the eigenvalues $\lambda_{1}^{-}<0$, $\lambda_{1}^{+} \geqq \lambda_{2}^{+} \geqq \ldots>0$, respectively. Set

Observe that $\quad\left(u_{1}^{-} \mid u_{m}^{+}\right)=0,\left\|u_{m}\right\|^{2}=2 \alpha, a\left(u_{m}\right)=0$, i.e. $\quad u_{m} \in N$ for all $m \in \mathbb{N}$. N is compact by hypothesis. Thus (u_{m}) contains a convergent subsequence $u_{m}, \rightarrow u$ as $m^{\prime} \rightarrow \infty$. Since $\lambda_{m}^{+} \rightarrow 0$ it follows that $\mathrm{u}_{\mathrm{m}}^{+}, \rightarrow \mathrm{u} / \sqrt{2 \alpha}$ as $\mathrm{m}^{\prime} \rightarrow \infty$. This contradicts
$\left|\left|u_{m}^{+}-u_{n}^{+}\right|\right|^{2}=2$ if $m \neq n$.
\Leftarrow : Let $\operatorname{dim} N(A)<\infty, X_{+}=\infty ; X_{-}=0$. Then $\lambda_{1}^{-}=0$, i.e.
$a(u) \geqq 0$ for all $u \in X$. Hence $N=\left\{u \in N_{\alpha}: A u=0\right\}$, i.e. $N=N_{\alpha} \cap N(A)$. Thus N is compact.

Proof of 7^{\prime}). \quad a) \Longleftrightarrow b) \Longleftrightarrow c). See $4^{\prime} b^{\prime}$).
a) \Longrightarrow d) . See Theorem 1, 7).
d) \Longrightarrow a). Let $\chi=\infty$, i.e. $\chi_{\dot{r}}=\infty$ or $\chi_{-}=\infty$.

Suppose $X_{+}=\infty$. According to c) we have to prove $N(A)=\{0\}$ and $\quad X_{-}=0$.
(VI) First assume $N(A) \neq\{0\}$. i.e. there exists an element \tilde{u} with $A \tilde{u}=0,\|\tilde{u}\|=1$. Choose an orthonormal system of eigenvectors $u_{1}^{+}, u_{2}^{+}, \ldots$ belonging to the eigenvalues $\lambda_{1}^{+}, \lambda_{2}^{+}, \ldots$, res pectively. Bessel's inequality yields

$$
\sum_{i=1}^{\infty}\left(u \mid u_{m}^{+}\right)^{2} \leqq| | u \|^{2} \text {, i.e. } u_{m}^{+} \rightarrow 0 \text { as } m \rightarrow \infty
$$

Set $\tilde{u}_{m}=\sqrt{\alpha}\left(\tilde{u}+u_{m}^{+}\right)$if $m \geqq 2$. Observe that $\left(\tilde{u} \mid u_{m}^{+}\right)=0$ for all $\mathrm{m} \geqq 2$, i.e. $\tilde{u}_{\mathrm{m}} \in \mathrm{N}_{\alpha}$ and $2 \mathrm{a}\left(\tilde{\mathrm{u}}_{\mathrm{m}}\right)=2 \alpha \mathrm{a}\left(\mathrm{u}_{\mathrm{m}}^{+}\right)=\alpha \lambda_{\mathrm{m}}^{+} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$. By the hypothesis d) we obtain $\tilde{u}_{m} \rightarrow 0$. This contradicts $\tilde{u}_{m} \rightarrow \sqrt{\alpha} \tilde{u}$ as $\mathrm{m} \rightarrow \infty$.
(VII) Secondly, assume $X_{-}>0$, i.e. $\lambda_{\overline{1}}<0$. Set

$$
\tilde{u}=\left(\frac{\mathrm{u}_{1}^{+}}{\sqrt{\lambda_{1}^{+}}}+\frac{\mathrm{u}_{1}^{-}}{\sqrt{\left|\lambda_{1}^{-}\right|}}\right)\left(\frac{1}{\lambda_{1}^{+}}+\frac{1}{\left|\lambda_{1}^{-}\right|}\right)^{-\frac{1}{2}}
$$

and proceed as in (VI).

Proof of Corollary $1^{\prime} b^{\prime}$). The set of all eigenvectors on N_{α} with $\alpha=\frac{1}{2}$ belonging to the eigenvalue $\pm \lambda_{m}^{ \pm}>0$ is equal to the unit sphere S_{p} in the p-dimensional eigenspace. Now, b_{1}) follows from Proposition 5 .

Proof of Corollary $1^{\prime} \mathbf{b}^{\prime}$). Compare Theorem $1^{\prime}, 2^{\prime}$).
If A has only simple nonzero eigenvalues and $A u=0 \Leftrightarrow u=0$, then A has exactly $X_{+}+X_{-}$pairs of eigenvectors ($u,-u$, q.e.d.

8. An Important Special Case of the Main Theorems

In this Section we shall restrict our main theorems to a special situation. This will be useful for applications to partial equadifferential equations in the next Section.

Proposition 8.

Suppose:
(41) X is a real reflexive separable infinite-dimensional Banach space.
(42) A, B : $\mathrm{X} \rightarrow \mathrm{X}$ * are potential operators with potentials a, b and $a(0)=b(0)=0$.
(43) A is strongly continuous.
(44) $\langle A u, u\rangle=0 \Longleftrightarrow a(u)=0$.
(45) a $\neq 0$ on $N_{\alpha}=\{u \in X: b(u)=\alpha\}(\alpha>0$ fixed).
$(46) B=B_{1}+B_{2}, B_{i}: X \rightarrow X *$.
(47) B_{1} is bounded, continuous, uniformly monotone and $\mathrm{B}_{1}(0)=0$.
(48) B_{2} is strongly continuous and $\left.<\mathrm{B}_{2} \mathrm{u}, \mathrm{u}\right\rangle \geqslant 0$ for alZ $\mathrm{u} \in \mathrm{X}$.

Then:

1) The equation

$$
\begin{equation*}
\mathrm{Au}=\lambda \mathrm{Bu}, \quad \mathrm{~b}(\mathrm{u})=\alpha \tag{49}
\end{equation*}
$$

has an eigensolution $u \neq 0, \lambda \neq 0$.
2) Suppose that A, B are odd. In this case it holds:
a) If $x=\infty$, then for every $m \in \mathbb{N}$ there exists an eigensolution $\left(u_{m}, \lambda_{m}\right)$ of (49) with $u_{m} \neq 0, \lambda_{m} \neq 0$ and $\lambda_{m} \rightarrow 0$ as $m \rightarrow \infty$, i.e. there exists an infinite number of distinct eigenvectors and eigenvalues.
(If the set $\left\{u \in N_{\alpha}: a(u)=0\right\}$ is compact, or if there exists a linear infinite-dimensional subspace $\mathrm{X}_{0} \subseteq \mathrm{X}$ and $\mathrm{a}(\mathrm{u}) \neq 0$ on $\mathrm{X}_{0} \cap \mathrm{~N}_{\alpha}$, then $\mathrm{x}=\infty$.,
b) If $\mathrm{a}(\mathrm{u})=0 \Longleftrightarrow \mathrm{u}=0$ (e.g. $\langle\mathrm{Au}, \mathrm{u}\rangle>0$ if $\mathrm{u} \neq 0$), then $x=\infty$ and $u_{m} \rightarrow 0$ as $m \rightarrow \infty$ in a).
c) If B_{1} is uniformly continuous on bounded sets, then the equation (49) has at least $x_{+}+x_{-}$distinct pairs of eigenvectors (u, -u) belonging to nonzero eigenvalues.
(If there exists a Linear subspace $\mathrm{X}_{0} \subseteq \mathrm{X}$ with $\pm \mathrm{a}(\mathrm{u})>0$ on $\mathrm{N}_{\alpha} \cap \mathrm{X}_{0}(+$ or -$)$, then $\mathrm{X}_{ \pm} \geq \operatorname{dim} \mathrm{X}_{0}$.)

Corolzary 2. Let $\mathrm{A}(0)=0$. The condition (44), i.e.
$\langle\mathrm{Au}, \mathrm{u}\rangle=0 \Longleftrightarrow \mathrm{a}(\mathrm{u})=0$, is satisfied if one of the following conditions holds:
(44a) The real function $t \mapsto<A t u, u>$ is monotone on $[0,1]$ for alz $\mathbf{u} \in \mathrm{X}$ (e.g. A is monotone).
(44b) The real function $t \rightarrow a(t u)$ is convex on $[0,1]$ for alて $u \in X \quad$ (e.g. a is convex).
(44c) <Au, u\gg 0 if $u \neq 0$.
(44d) A is homogeneous, i. e. Atu $=t^{\rho} u$ for all $u \in X, t>0$ and fixed $\rho \geqq 0$.

Proof of Corollary 2. Set $\phi(t)=\langle A t u, u\rangle$. Then $\phi(0)=0$.
Now, consider

$$
a(u)=\int_{0}^{1} \phi(t) d t \text { and } \frac{d a(t u)}{d t}=\phi(t)
$$

Proof of Proposition 8. Using

$\left\langle B_{1} u-B_{1} v, u-v\right\rangle \geq c(| | u-v| |)| | u-v| |$ for all $u, v \in X$
and the relations mentioned in Figure 1 we see easily that all the hypotheses of Theorem 2 are satisfied (see ZEIDLER (1978), p. 106).

Now, the proof follows from Theorem 2 and Corollary 1.

9. Application to Nonlinear Elliptic Equations

Proposition 8 will be now applied to nonlinear elliptic equations. For technical convenience we shall consider only a simple example related to Section 2.4 .

Consider the boundary value problem

$$
\begin{align*}
-\lambda\left(\sum_{i=1}^{N} D_{i}\left(D_{i} u\left|D_{i} u\right|^{p-2}\right)+f^{\prime}(u)\right) & =g^{\prime}(u) \phi(x) \quad \text { on } G, \tag{50}\\
u & =0 \text { on } \partial G,
\end{align*}
$$

where G is an open bounded nonempty set in $\mathbb{R}^{N}, N \geqq 1$, and $\mathrm{x}=\left(\xi_{1}, \ldots, \xi_{N}\right), D_{i}=\partial / \partial \xi_{i}, \quad \mathrm{p} \geqq 2$.

Suppose $f, g \in C^{1}(\mathbb{R})$ with the growth conditions

$$
\begin{aligned}
& |f(u)|, \quad|g(u)| \leqq c+d|u|^{p}, \\
& \left|f^{\prime}(u)\right|,\left|g g^{\prime}(u)\right| \leqq c+d|u|^{p-1}
\end{aligned}
$$

for all $u \in \mathbb{R}$ where c, d are fixed positive constants.

Definition 4. A function u belonging to the Sobolev space $\mathrm{X} \equiv \mathrm{o}_{\mathrm{p}}^{1}(\mathrm{G})$ is said to be a generalized solution of (50) iff (50') $\quad \lambda \tilde{b}(u, v)=\tilde{a}(u, v)$ for $a \ell l v \in X \quad$ and $b(u)=\alpha$, where $\tilde{\mathrm{b}}=\tilde{\mathrm{b}}_{1}+\tilde{\dot{b}}_{2}, \quad \mathrm{~b}=\mathrm{b}_{1}+\mathrm{b}_{2} \quad$ and

$$
\begin{aligned}
& \tilde{b}_{1}(u, v)=\int_{G} \sum_{i=1}^{N} D_{i} u\left|D_{i} u\right|^{p-2} D_{i} v d x \\
& \tilde{b}_{2}(u, v)=\int_{G} f,(u) v d x, \quad \tilde{a}(u, v)=\int_{G} \phi(x) g{ }^{\prime}(u) v d x
\end{aligned}
$$

$b_{1}(u)=p^{-1} \int_{G} \sum_{i=1}^{N}\left|D_{i} u\right|^{p} d x, \quad b_{2}(u)=\int_{G} f(u) d x, \quad a(u)=\int_{G} \phi(x) g(u) d x$.

REMARK 8. (50') is obtained from (50) by multiplying (50) by $v \in C_{0}^{\infty}(G)$ and integrating by parts.

Proposition 9. Suppose $\phi \in C(\bar{G})$ and $\phi(x) \geqq 0$ for all

$x \in \bar{G}, \phi \not \equiv 0$ on $\overline{\mathrm{G}}$. Assume

$$
\begin{align*}
& f^{\prime}(u) u \geqq 0 \quad \text { for } a \not Z \quad u \in \mathbb{R} \tag{51}\\
& g^{\prime}(u) u>0 \text { if } u \neq 0, g(0)=0 \tag{52}
\end{align*}
$$

Let $\alpha>0$ be an arbitrary fixed number.
Then:

1) The equation (50') has an eigensolution $u \neq 0, \lambda>0$.
2) Suppose $\mathrm{f}, \dot{\mathrm{g}}$ are even. Then for $a 乙 Z, \mathrm{~m} \in \mathbb{N}$, the equation (50') has an eigensolution $\left(u_{m}, \lambda_{m}\right)$ with $u_{m} \neq 0, \lambda_{m}>0$ and $\lambda_{\mathrm{m}} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$. If $\phi(\mathrm{x})>0$ on G , then $\mathrm{u}_{\mathrm{m}} \rightarrow 0$ in X as $\mathrm{m} \rightarrow \infty$.

Proof. (I) It is not difficult to show that there exist operators $A, B_{1}, B_{2}: X \rightarrow X *$ with $\langle A u, v\rangle=\tilde{a}(u, v)$, $<B_{i} u, v>=\tilde{b}_{i}(u, v)$ for all $u, v \in X$.
A, B_{i} are potential operators with the corresponding potentials a, b_{i}, respectively. A, B_{2} are strongly continuous, B_{1} is continuous, bounded and uniformly monotone (see ZEIDLER (1978), p.120)
(II) From (52) it follows that $g(u)>0$ if $u \neq 0$. Hence

$$
\langle\mathrm{Au}, \mathrm{u}\rangle=0 \Longleftrightarrow \mathrm{a}(\mathrm{u})=0 .
$$

(III) Set $K=\{x \in \bar{G}: \phi(x)=0\}$. Since $\phi \neq 0$ on \bar{G}, we have $G-K \neq \emptyset$. Let X_{0} be the set of all $u \in C_{o}^{\infty}(G)$ with supp $u(x) \subset G-K$. Obviously, X_{0} is an infinite-dimensional linear subspace of X and $a(u)>0$ for all $u \in X_{0}-\{0\}$.

Now Proposition 9 is a consequence of Proposition 8, q.e.d.
14 Fucik, Kufner

REMARK 9. If we combine Theorems l, 2 with the general results proved by BROWDER (1970 b) concerning the properties of operators induced by general classes of quasilinear elliptic differential equations of $2 \mathrm{~m}-\mathrm{th}$ order, then it is possible to generalize Proposition 9 rigorously.

10. The Main Theorem in Finite-Dimensional Banach Spaces

$$
\begin{equation*}
A u=\lambda B u, b(u)=\alpha \quad(u \in X, \lambda \in \mathbb{R}) . \tag{53}
\end{equation*}
$$

Set $\quad N_{\alpha}=\{u \in X: b(u)=\alpha\}$.

Theorem 3.

Suppose :
i) X is a real finite-dimensional Banach space.
ii) $\mathrm{A}, \mathrm{B}: \mathrm{X} \rightarrow \mathrm{X}$ * are continuous potential operators with potentials a, b respectively; $a(0)=b(0)=0$.
iii) <Bu, u>>0 if $u \neq 0$.
iv) For every $u \neq 0$ there exists a real number $r(u)>0$ such that $b(r(u) u)=\alpha$.

Then :

1) The equation (53) has an eigensolution $u \neq 0, \lambda \in \mathbb{R}$.
2) If A, B are odd, then (53) has at least dim X distinct pairs of eigenvectors (u, -u).

Corollary 3. If Av $\neq 0$ for all $\mathrm{v} \in \mathrm{N}_{\alpha}$, then all the eigenvalues of (53) are different from zero.

Corollary 4 (multiplicity). Suppose that all the hypotheses of Theorem 3 are satisfied. Suppose A, B are odd. Define critical levels

$$
\tilde{B}_{m}=\sup _{K \in \mathcal{R}_{\mathrm{m}}} \min _{\mathrm{u} \in \mathrm{~K}} a(u), \quad \mathrm{m}=1, \ldots, \operatorname{dim} \mathrm{X},
$$

where \mathbb{R}_{m} is defined as in Theorem 1.

Then:

$$
\begin{aligned}
& \text { a) } R_{m} \neq \emptyset \text { for all } m=1, \ldots, \operatorname{dim} x . \\
& \text { b) } \quad I f \quad \widetilde{\beta}_{m}=\widetilde{\beta}_{m+1}=\ldots=\widetilde{\beta}_{m+p-1}, p \geqq 1 \text {, then } \\
& \\
& \gamma\left(\left\{u \in N_{\alpha}: u \text { is eigenvector } i n(53), \quad a(u)=\widetilde{\beta}_{m}\right\}\right) \geqq p . \\
& \text { Proof. See e.g. ZEIDLER }(1978), p, 115 .
\end{aligned}
$$

11. Application to Abstract Hammerstein Equations

Now we shall apply Theorem 1, Theorem 3 to the eigenvalue prob1em

$$
\begin{align*}
\mathrm{KF}(\mathrm{u})=\lambda u \quad(u \in \mathrm{X}, \lambda \in \mathbb{R}), \tag{54}\\
<u, \mathrm{w}>{ }_{\mathrm{X}}=\alpha>0 \quad \text { for all } \mathrm{w} \in \mathrm{~K}^{-1}(\mathrm{u})
\end{align*}
$$

Theorem 4.
Suppose :
i) X is a real reflexive separable Banach space.
ii) $\mathrm{K}: \mathrm{X} \rightarrow \mathrm{X}$ * is a linear completely continuous operator with $\langle\mathrm{Kv}, \mathrm{v}\rangle \geqq 0,\langle\mathrm{Kv}, \mathrm{w}\rangle=\langle\mathrm{Kw}, \mathrm{v}\rangle$ for all $\mathrm{v}, \mathrm{w} \in \mathrm{X}$.
iii) $\mathrm{F}: \mathrm{X} * \rightarrow \mathrm{X}$ is a continuous potential operator with a potential ϕ.
iv) $\phi(0)=F(0)=0 ; \phi(u) \neq 0, K F(u) \neq 0$ if $u \neq 0$.

Then :

1) For all $\alpha>0$, the equation (54) has at least one eigensolution $u \neq 0, \lambda \neq 0$.
2) Suppose F is odd.
a) Then for all $\alpha>0$, the equation (54) has at least dim $K(X)$ distinct pairs of eigenvectors ($u,-u)$ belonging to nonzero eigenvalues.
b) If $\operatorname{dim} \mathrm{K}(\mathrm{x})=\infty$ then, for all $\alpha>0$, the equation (54) has an infinite number of distinct eigenvalues λ_{m} with $\lambda_{\mathrm{m}} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$.

REMARK 10. Under stronger assumptions this result is contained in VAINBERG (1956) and COFFMAN (1971).

Theorem 4,2a) is a special case of more general result due to AMANN (1972).

A sketched proof of Theorem 4. A proof of Theorem 4 is given in ZEIDLER (1978), p. 121. The main idea of the proof due to AMANN (1972) is
i) to factorize $K=S * S$ ($\mathrm{S}: \mathrm{X} \rightarrow \mathrm{H}$, H a Hilbert space) by a general factorization theorem due to BROWDER, GUPTA (1969) (see also ZEIDLER (1977), p. 107);
ii) to replace (54) by the equivalent problem
(54')

$$
S F(S * v)=\lambda v
$$

in the Hilbert space $H \quad\left(v=S *^{-1} u\right)$;
iii) to apply the Lyusternik-Schnirelman theory to (54').

If we set $A=S F S *$, then A is a potential operator with a potential $a(u)=\phi(S * u)$ and $a(u)=0 \Longleftrightarrow A u=0 \Longleftrightarrow u=0$.

Theorem 1, point,s 8), 5), 6) lead to Theorem 4, points 1), 2a), 2b), respectively. In the case $\operatorname{dim} K(X)<\infty$ one has to use Theorem 3.

12. Application to Hammerstein Integral Equations

For technical convenience we shall apply Theorem 4 only to a simple example. Consider an integral equation

$$
\begin{equation*}
\lambda u(x)=\int_{G} k(x, y) f(u(y)) d y \quad(u \in x, \lambda \in \mathbb{R}) \tag{55}
\end{equation*}
$$

where G is an open bounded nonempty set in $\mathbb{R}^{N}, N \geq 1$. Set $X=X *=L_{2}(G)$.

The corresponding linear integral equation reads

$$
\begin{equation*}
\lambda u(x)=\int_{G} k(x, y) u(y) d y \quad(u \in x, \quad \lambda \in \mathbb{R}) \tag{56}
\end{equation*}
$$

Proposition 9.

Suppose:
i) $\mathrm{k}(.,$.$) is a real measurable function on G \times G$ with
$\mathrm{k}(\mathrm{x}, \mathrm{y})=\mathrm{k}(\mathrm{y}, \mathrm{x})$ for $a 乙 乙 \mathrm{x}, \mathrm{y} \in \mathrm{G}$ and
$0<\int_{G \times G} k^{2}(x, y) d x d y<\infty$.
ii) f is a real continuous function on R with
$|f(u)| \leqq c+d|u|$ for $a l l \quad u \in \mathbb{R}, c, d$ are positive con .
stants and $\pm \mathrm{f}(\mathrm{u})>0$ if $\pm \mathrm{u}>0$.
iii) The linear integral equation (56) has only positive eigenvalues.

Then :

1) For every $\alpha>0$, the equation (55) has an eigensolution $u \in X, \lambda \neq 0$ with
(60)

$$
\int_{G} u(x) w(x) d x=\alpha \quad \text { for } a \not \subset Z \quad w \in K^{-1} u
$$

2). Suppose f is odd. The for every $\alpha>0$, the equation (55 has an infinite number of eigensolutions (u_{m}, λ_{m}) with (60), $\lambda_{\mathrm{m}} \neq 0$ and $\lambda_{\mathrm{m}} \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$, i.e. there exists an infinite number of distinct eigenvalues.

Proof. We write (56) as $\lambda u=K u$ and (55) as $\lambda u=K F u$, $u \in X$. From iii) we obtain $\langle K v, v\rangle>0$ if $v \neq 0$. F is a potenti.. al operator with a potential

$$
\phi(u)=\int_{G}\left(\int_{0}^{u(x)} f(v) d v\right) d x
$$

Now Proposition 9 is a consequence of Theorem 4 with dim $K(X)=\infty$ (see also ZEIDLER (1978), p. 69), q.e.d.
[1] H. AMANN : Ly usternik-Schnirelman Theory and Non-linear Eigenvalue Problems. Math. Ann. 199 (1972), 55-72.
[2] N. W. BAZLEY : Approximation of Operators with Reproducing Nonlinearities. Manuscripta math. 18 (1976), 353-369.
[3] M. S. BERGER : A bifurcation theory for real solutions of nonlinear elliptic partial differential equations. (In "Bifurcation Theory and Nonlinear Eigenvalues", ed. by J. Keller and S. Antmann, pp. 113-216, Benjamin, Reading, Massachutsetts 1969).
[4] M. S. BERGER : Critical point theory for nonlinear eigenvalue problems with indefinite principal part. Transact. of the Amer. Math. Soc. 186 (1973), 151-169.
[5] M. S. BERGER : Nonlinearity and Functional Analysis. Academic. Press, New York 1977.
[6] F. E. BROWDER : Infinite-dimensional manifolds and nonlinear elliptic eigenvalue problems. Ann. of Math. 82 (1965); 459-477 - (1965a).
[7] F. E. BROWDER : Variational methods for nonlinear elliptic eigenvalue problems. Bull. Amer. Math. Soc. 71 (1965), 176-183 - (1965b).
[8] F. E. BROWDER : Nonlinear eigenvalue problems and Galerkin approximations. Bull. Amer. Math. Soc. 74 (1968), 651-656.
[9] F. E. BROWDER : Nonlinear eigenvalue problems and group invariance. (In:F. E. Browder (ed.), Analysis and Related Fields, Springer-Verlag, Berlin-Heidelberg-New York 1970, pp. 1-58). - (1970a).
[10] F. E. BROWDER : Existence theorems for nonlinear partial differential equations. Global Analysis, Proc. Sympos. Pure Math. 16, 1-62, Amer. Math. Soc., Providence, R.I. 1970. - (1970b).
[11] F. E. BROWDER : Group invariance in nonlinear functional analysis. Bul1. Amer. Math. Soc. (1970), 986-992 - (1970c).
[12] F. E. BROWDER : Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symposia in Pure Mathematics 18,2, Amer. Math. Soc., Providence, R.I. 1976.
[13] F. E. BROWDER and C. P. GUPTA : Monotone operators and nonlinear integral equations of Hammerstein type. Bull. Amer. Math. Soc. 75 (1969), 1347-1353.
[14] E. S. CITLANADZE : Existence theorems for minimax points in Banach spaces. (Russian) Trudy Mosk. Obš̌. 2 (1953), 235-274.
[15] D. C. CLARK : A variant of the Lyusternik-Schnirelman Theory. Ind. Univ. Math. J. 22 (1972), 65-74.
[16] P. CLÉMENT : Eigenvalue problem for a class of cyclically maximal monotone operators. Nonlinear Analysis 1 (1977), 93-103.
[17] C. V. COFFMAN : A minimum-maximum principle for a class of nonlinear integral equations. J. d'Analyse mathém. 22 (1969), 391418.
[18] C. V. COFFMAN : Spectral theory of monotone Hammerstein operators. Pac. J. Math. 36 (1971), 303-322.
[19] C. V. COFFMAN : Ly usternik-Schnirelman Theory and Eigenvalue Problems for Monotone Potential Operators. J. Funct. Anal. 14,3 (1973), 237-252.
[20] E. CONNOR and E. F. FLOYD : Fixed point free involutions and equivariant maps. Bull. Amer. Math. Soc. 66 (1960), 416-441.
[21] R. COURANT : Z̈ber die Eigenwerte bei den Differentialgleichungen der Mathematischen Physik. Math. Z. 7 (1920), 1-57.
[22] E. N. DANCER : A note on a paper of Futik and Netas. Math. Nachr. 73 (1976), 151-153.
[23] J. P. DIAS and J. HERNÁNDEZ : A Sturm-Liouville theorem for some odd multivalued map. Proc. Amer. Math. Soc. 53 (1975). 72-74.
[24] R. FADELL and P. H. RABINOWITZ : Bifurcation for odd potential operators and an alternative topological index. MRC Technical Reports $\neq 1661$, Univ. of Wisconsin, Madison 1976.
[25] A. I. FET : Involutory mappings and covering of spheres. Voronez. Gos. Univ. Trudy Sem. Funkcional. Anal. 1 (1956), 55-71 (Russian) (Math. Rev. 19, p. 53; 16, p. 61).
[26] E. FISCHER : Ưber quadratische Formen mit reellen Koeffizienten. Monatshefte Math. Phys. 16 (1905), 234-249.
[27] S. FUX́f́k and J. NECXAS : Lyusternik-Schnirelman theorem and nonlinear eigenvalue problems. Math. Nachr. 53 (1972), 277-289 (1972a).
[28] S. FUČ́K, J. NEČAS, J. SOUCEK, V. SOUCEK : Upper bound for the number of critical levels for nonlinear operators in Banach spaces of the type of second order nonlinear differential operators. J. Funct. Anal. 11 (1972), 314-333-(1972b).
[29] S. FUČíK, J. NEČAS, J. SOUČEK, V. SOUCEK : Spectral Analysis of Nonlinear Operators. Springer Lecture Notes in Mathematics $N \mathbb{O}$ 346, Springer-Verlag, Berlin-Heidelberg-New York 1973.
[30] V. S. KLIMOV : On functionals with an infinite number of critical values. Mat. Sbornik 100 (1976), 102-116 (Russian).
[31] M. A. KRASNOSEL'SKII : An estimate of the number of critical points of functionals. Uspechi Mat. Nauk 7 (1952), 157-164 (Russian).
[32] M. A, KRASNOSEL'SKII : Topological Methods in the Theory of Nonlinear Integral Equations. Gostekhteoretizdat, Moscow 1956 (Russian) (Engl. Translation, Pergamon Press 1964).
M. A. KRASNOSEL'SKII, P. P. ZABREIKO : Geometrical Methods in Nonlinear Analysis. Nauka, Moscow 1975 (Russian).
[34] A. KRATOCHVÍL and J. NECAS : Gradient methods for the construction of Lyusternik-Schnirelmann critical values. To appear in Boll. U. M. I.
[35] A. KRATOCHVÍL, J. NECAS : Secant modulus method for the construction of a solution of nonlinear eigenvalue problems. To appear in R. A. I. R. 0. - 1'analyse numérique.
[36] L. A.LYUSTERNIK: Topologische Grundlagen der allgemeinen Eigenwertheorie. Monatshefte Math. Physik 37 (1930), 125-130.
[37] L.LYUSTERNIK, L. SCHNIRELMAN : Méthodes topologiques dans les problémes variationnele. Hermann, Paris 1934.
[38] L. A. LYUSTERNIK : On a class of nonlinear operators in Hilbert space. Izv. Akad. Nauk SSSR, ser. Mat. 1939, 257-264 (Russian).
[39] L. A. LYUSTERNIK : The topology of the calculus of variations in the large. Trudi Mat. Inst. im. V. A. Steklova, $N=19$, Izdat. Akad. Nauk SSSR, Moscow 1947 (Russian) Eng1. Translation Amer. Math. Soc. Trans1. of Math. Monographs, Vol. 16, 1966).
[40] L. A. LYUSTERNIK, L. G. SCHNIRELMAN : Topological methods in variational problems. Uspehi Mat. Nauk 2 (1947), 166-217 (Russian).
[41] H. W. MELZER : Uber nichtiineare Resolventen und ihre Anwendung in der Theorie der monotonen Potentialoperatoren. Dissertation unter Leitung von N. W. Bazley, Köln 1977.
[42] E. MICHAEL : Continuous selections I. Ann. of Math. 63 (1956), 361-382.
[43] E. MIERSEMANN : Verzweigungsprobleme für Variationsungleichungen. Math. Nachr. 65 (1975), 187-209.
[44] E. MIERSEMANN : Uber höhereVerzweigungspunkte bei Variationsungleichungen. To appear in Math. Nachr.
[45] J. NAUMANN : Lyusternik-Schnirelman Theorie und Nichtineare Eigenwertprobleme. Math. Nachr. 53 (1972), 303-336.
[46] R. PALAIS: Lyusternik-Schnirelmann category of Banach manifolds. Topology 5 (1966), 115-132.
[47] R. PALAIS : Critical point theory and the minimax - principle. Proc. Symp. Pure Math. 15 (1970), A. M. S. Providence R. I., 185-212.
[48] S. I. POCHOŽAJEV : On the set of critical values of functionals. Mat. Sbornik 75 (1968), 106-111 (Russian).
[49] P. H. RABINOWITZ : Some aspects of nonlinear eigenvalue problems. Rocky Mountain J. of. Math. 3 (1973), 161-202.
[50] P. H. RABINOWITZ : Variational Methods for Non1inear Eigenvalue Problems. C. I. M. E. Edizioni Cremonese, Roma 1974.
[51] P. H. RABINOWITZ : A bifurcation theorem for potential operators. J. Funct. Analysis 25, 4 (1977), 412-424.
[52] M. REEKEN : Stability of Critical Points. Manuscripta Math. 7 (1972), 387-411, 8 (1973), 69-92.
[53] F. RIESZ, B. Sz.- NAGY : Legons d'analyse fonctionnelle. Budapest 1952 .
[54] L. SCHNIRELMAN : Über eine neue kombinatorische Invariante. Monatshefte für Mathem. und Physik 37 (1930), 131-134.
[55] J. T. SCHWARTZ : Generalizing the Lyusternik-Schnirelmann Theory. Comm. Pure App1. Math. 17 (1964), 307-315.
[56] J. T. SCHW L_{2} RTZ : Nonlinear Functional Analysis. Gordon and Breach, New York 1969.
[57] S. G. SUVOROV : Eigenvalues of certain nonlinear operators. Mathematica1 Physics N 11, 148-156, Naukova Dumka, Kiev 1972 (Russian).
[58] S. L. TROYANSKI : On locally uniformly convex and differentiable norms in certain non-separable Banach spaces. Studia Math. 37 (1971), 173-180.
[59] M. M. VAINBERG : Variational methods for the study of nonlinear operators. Moscow 1956 (Russian) (Eng1. Translation Holden-Day, San Francisco 1964).
[60] H. WEYL : Über die asymptotische Verteilung der Eigenwerte. Göttinger Nachrichten 1911, 110-117.
[61] E. ZEIDLER : Existenz, Eindeutigkeit, Eigenschaften und Anwendungen des Abbildungsgrades $\operatorname{im} \mathbb{R}^{n}$. Theory of Nonlinear Operators, Proceedings of a Summer-School, Akademie-Verlag Berlin 1974, Seite 259-311 (§ 12 contains generalized antipode-! and covering theorems for p-periodic involutions).
[62] E. ZEIDLER : Vorlesungen uber nichtiineare Funktionalanalysis I, Fixpunktsätze, Teubner-Texte, Teubner-Verlag Leipzig 1976.
[63] E. ZEIDLER : Vorlesungen über nichtlineare Funktionalanalysis II, Monotone Operatoren. Teubner Texte, Teubner-Verlag Leipzig 1977.
[64] E. ZEIDLER : Vorlesungen uber nichtlineare Funktionalanalysis III, Variationsmethoden und Optimierung. Teubner-Texte, Teubner -Verlag Leipzig 1978.
[65] E. ZEIDLER : Vorlesungen über nichtineare Funktionalanalysis IV, Anwendungen in der Mathem. Physik, Geschichte der nichtlinearen Funktionalanalysis. Teubner-Texte, Teubner-Verlag Leipzig 1980 (in preparation).
[66] E. ZEIDLER : On the Lyusternik-Schnirelman theory for non-odd operators. (To appear).

