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LECTURES ON LYUSTERNIK-SCHNIRELMAN THEORY FOR INDEFINITE

NONLINEAR EIGENVALUE PROBLEMS AND ITS APPLICATIONS

Eberhard Zeidler

Introduction

The purpose of these lectures is to give an introduction to the
Lyusternik-Schnirelman theory and its typical applications based on
the ideas outlined in the papers of LYUSTERNIK (1930), KRASNOSEL’SKIL
(1956), VAINBERG (1956), BROWDER (1968), ¢1970a), (1970b), COFFMAN
(1969), (1971), (1973), AMANN (1972), Futfr, NECAS (1972a), Fudfxk,
NECAS, SoulEK, SOUCEK (1973), RABINOWITZ (1973), (1974), ZEIDLER
(1978).

The Lyusternik-Schnirelman theory is concerned with nonlinear

eigenvalue problems in Banach spaces X of the type
(1) Au = ABu, ue X . A€ R
generalizing linear eigenvalue problems of the type
(2) Au = A\u, ue X, A eR ,

where A 1is a linear symmetric and completely continuous operator in
a Hilbert space X .

AMANN (1972) has considered the problem (1) without definiteness
restrictions upon A for the first time, and thus my lectures have
been strongly influenced by his paper. In the indefinite case it is
possible that there exists only a finite number of eigenvalues in
(D, (2).

It is our goal to study the indefinite case extensively and to
emphasize the connection between the results obtained for nonlinear
and linear operators.

In Section 5 we shall formulate two general theorems strengthe-

ning the results of all the papers mentioned above (see Remarks 3, 4,
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5 in Section 5). In Section 7 we shall restrict our main theorems to
the case of linear operators. In this way we shall see that our re-
sults obtained for nonlinear operators are maximal in acertain sense.
These lectures are organized as follows:
1. Notation
2. Some typical eigenvalue problems
2.1. Nonlinear equations in RN
2.2. Linear integral equations and the Hilbert-Schmidt theory
2.3. Nonlinmear integral equations
2.4. Nonlinear elliptic partial differential equations
3. Courant’s maximum-minimum principle
4. The genus of symmetric closed sets not containing the origin
5. The main theorems in infinite~dimensional Banach spaces
6. Sketched proofs of the main theorems
7. Restriction to the case of linear operators
8. An important special case of the main theorems concerning non-
linear operators
9. Application; to nonlinear elliptic partial differential equations
10. The main theorems in finite-~dimensional Banach spaces
11. Applications to abstract Hammerstein equations
12. Applications to Hammerstein integral equations

References

The contents of these lectures is closely related to Chapter 42
of the third volume of my "Lectures on Nonlinear Functional Analysis"
(see ZEIDLER (1978)). Here we shall prove only the statements which
are not contained in my book.

Furthermore, for the sake of technical simplicity we shall con-
sider only simple but typical applications.

Remarks on the historical development of the Lyusternik-Schnirel-
man theory can be found in the papers of KRASNOSEL’SKII (1956),

VAINBERG (1956), BROGWDER (1970a), RABINOWITZ (1974).
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1. Notation

Let X be a Banach space. The space dual is denoted by X*.
We set <x*,x> = x*(x) for all xe X, x* e X*. The symbols u_ —u
and un-* u denote the weak and the strong convergence in X , res-
pectively.

The set of all real or natural numbers is denoted by R or N,
respectively.

Let A be an operator from the Banach space X into the Banach

*
space X . A 1is said to be completely continuous iff it is conti-

nuous and maps bounded sets into relatively compact sets. A 1is said

to be strongly continuous 1iff u, ~u implies Aun-* Au (n —» =) .,

A 1is said to be monotone iff <Au - Av, u - v> £ 0 for all
u, ve& X.

A 1is said to be uniformly monotone iff

<Au - Av, u - v> 2 ¢(||u = v|]) ||u - v|| for all uw, ve X

where c¢ : [0, +x) - [0, +») 1is a real strictly monotone continuous
function with ¢(0) = 0 and c(t) > +» as t = += .
A 1is said to be bounded iff A maps bounded sets into bounded

sets. A 1is said to be a potential operator 1iff there exists a

Gateaux-differentiable real functional a on X such that a'(u)=Au

for all ue& X . The operator a is called the potential of A .
Figure 1 gives a survey on the connection between important ope-

rator properties. All the definitions and proofs can be found in

Chapter 27 of ZEIDLER (1977).
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2. Some Typical Eigenvalue Problems

Let us consider four simple examples concerning
i) nonlinear equations in RN R
ii) linear integral equations,

iii) nonlinear integral equations,

iv) nonlinear elliptic partial differential equations.

2.1. Nonlinear equations in RN. We start with the real eigen-

value problem iﬁ) RN

g (x)
3) 2gix) _ AE, i =1,...,N
g, i

where x = (gl,...,gN) € RN, A &€ R .

s

Proposition 1. (LYUSTERNIK (1930)).

Suppose g : RY - R has continuous first partial derivatives
and is even.

Then for each r > 0 , the eigenvalue problem (3) has at least

N distinct poirs of eigenvectors (x, -x) with |[|x|| =r .

This basic result of the Lyusternik-Schnirelman theory is a spe-

cial case of Theorem 3 in Section 10.

Let A = (aij) be a symmetric N x N - matrix. Set g(x)
N
= 27! I a,.£.t. . Then the equation (3) is equivalent to Ax = 1x,
i,j=1 7403
i.e. Proposition 1 generalizes the well-known fact that A has N

linearly independent eigenvectors.

2.2. Linear integral equations and the Hilbert-Schmidt theory.

Next we consider the linear integral equation

(4) I a(x,y) u(y) dy = ru(x), uel,(@6), reR,
G

where G 1is an open bounded nonempty set in RN, N>1.

The equation (4) is equivalent to the operator equation

[AD) Au = Au , u€ X =1,(6), Ar€R.
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X 1is a real separable Hilbert space. Suppose that the real measurable

function a : G x G >R 1is symmetric, i.e.

(5) a(x,y) = a(y,x) for all x,y € G ,
and
(6) 0 < j az(x,y) dxdy < o .

GxG

Then the operator A : X -+ X 1is symmetric and completely continuous,
A+ 0.
The following main theorem of the Hilbert-Schmidt theory descri-

bes the solutions of the equations (4), (4').

Proposition 2. (cf. e.g. RIESZ-NAGY (1952), Chapter VI.)
Suppose :
X s a real separable Hilbert space with a scalar product
Lo -
A : X >X 78 a linear symmetric completely continuous opera-
tor, A # 0, dim X = o .
Then
1) The equation
(7) Au = Au , u€ X, A e R
has at least one eigenvalue A # 0.
2) Every eigenvalue A # 0 of A has a finite multiplicity.
3) There exists an infinite sequence of eigensolutions (ui,Ai)
with (ui‘uj) = 61j for i,i = 1,2,... and

o

(8) 1 uluy) uy for all ue X .
i=1

[+
[}

If (u,A), u# 0, xeR <s an arbitrary eigensolution of (7),
then there exists a number Ay with Ay = and in (8) 1t holds

(u]uj) =0 for all j with A A .

2.3. Nonlinear integral equations. As another example let us

consider the Hammerstein integral equation

181



(9) .[a(x,y) £(u(y)) dy = du(x), ue1,(6),) €R, £ odd
.

and the corresponding linear equation

(10) ia(x,y) u(y) dy = ru(x) , u € L2(G), P € R .

In Section 12 we shall prove, roughly speaking, the following
result : Suppose (5) and (6) are satisfied. Suppose that the linear
integral equation (10) has only positive eigenvalues.

Then, under certain assumptions on f , the nonlinear integral

equation (9) has an infinite number of distinct eigenvalues.

2.4. Nonlinear elliptic partial differential equations. For the

sake of simplicity let us study the boundary value problem
N -2 -2
(11) -2 ) Di(Diu|D.iu[p ) = u[u[p ¢ (x) on G ,
i=1
u=20 on 3@

where x = (51, ...,EN), D, = 373€v P

v

2 . Let G be an open
bounded nonempty set in RN s, N> 1 .

Suppose ¢ : G 2R 1is a continuous function with

(12) min ¢(x) > 0 .
xeG

Definition 1. A function u belonging to the Sobolev space

X = %;(G) is satd to be a generalized solution of (l1) iff
(11v) Ab(u,v) = a(u,v) for all v e X,
where

N
b(u,v) Y DiulDiulp-2 D,v dx ,

i=1 i

G
d(u,v) = J¢(x) ululp_zv dx .
G

By integration by parts it is easily seen that every regular solution
u of (11') is a solution of (l1) as well. This justifies the term of

generalized solution (see e. g. ZEIDLER (1977), p. 94).
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Furthermore, it is not ditficult to prove that there exist opé—

*
rators A,B : X » X with

b(u,v) = <Bu,v> , i(g,v) = <Au,v> for all u,ve X .

Therefore, the equation (11') is equivalent to

(11'") ABu = Au , ue X , A e R .

A, B are odd potential operators with potentials

N
b(u) = p~! j I Ip,ul? dax, a(w =p7! Jux)lulp dx
g =1 G
and all the hyﬁotheses of the following Proposition 3 are satisfied

with B = B;, B, = 0 (see ZEIDLER (1978), p. 120).

Proposition 3.
Suppose :

(13) X <8 a real reflexive separable Banach space, dim X = .
*
(14) A, B : X =+ X are odd potential operators with potentials a, b;
a(0) = b(0) = 0 .
*
(15) B = B1 + Bz » Bi XX .

(16) By is bounded, continuous and uniformly monotone, Bl(o) =0 .

(17) A, B, are strongly continuous.
(18) <Au,u> > 0, <B,u,u> 2 0 for all wu # 0 .
Let o > 0 be an arbitrary fixed real number.
Then : .
For each m = 1,2, ... there exists an eigensolution
(g Ag) of
(19) ABu = Au, b(u) =a (ue X, e R)
with um#o s A_ >0 and u_ — 0, xm - +0 a8 m > o® ,

m m

Proposition 3 is a special case of Theorem 2 in Section 5 (see

also Proposition 8 and Corollary 2 in Section 8).
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If we suppose that the function ¢ has zeros on G , then the
definiteness condition <Au,u> > 0 if u # 0 is not satisfied. No~-
netheless, it holds
(18" <Au,u> = 0 &» a(u) = 0 .
This condition or the weaker condition
(18'") Au = 0 =» a(u) = 0

will play a crucial role in our main theorems (see Theorem 1, Theo-

rem 2 in Section 5, and Section 9 for applications to partial diffe-

rential equations). ®

3. Courant’s Maximum-Minimum Principle

The Lyusternik-~Schnirelman theory generalizes Courant’s maximum-mini-

mum principle. Therefore, let us formulate this principle in such a
way that later the generalization will be obvious.
As in Proposition 2 (Hilbert-Schmidt theory) we shall make the
following assumptions :
(i) X 1dis a real separable infinite-dimensional Hilbert space
with a scalar product (.|.) .
(ii) A : X » X is a linear symmetric completely continuous
operator, A # 0 .

Set

a(u) = 27 auluw) , b(w = 27 ] .

Definition 2. Denote by S the boundary of the untt ball, Z.e.
s ={uex:||u] =1}.
Denote by Sk the boundary of an arbitrary k-dimensional unit

ball in X , Z.e.

S, =8N X X, = k-dimensional linear subspace of X.
Let £m be the set of all s, with kzm ,m=1,2, ....
Define
(20) €. - (e £, : rta(w) >0  for all uwe L} .
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Set
sup, min (*2a(u))

(21) ili _ L€£m uel
. * _
0 zf 21n =0 .
. 4 +
Obviously, A > tA} > ... > 0.

Proposition 4 (the maximum—minimumbérineiple of COURANT (1920);
see also FISCHER (1905), WEYL (1911)).

Suppose >0 (+or - ) . Then:
1) A= 2 18 an eigenvalue of the operator A . All eigen-—
values ) # 0 of A are obtained in this way.

2) The multiplicity of A 18 equal to the number of indices
j with T A .

3) There exist eigenvectors Upseeesup of A with(ui|uj)= Gij
such that

+A~ = min 2a(u)

+

m
u€l

s

where L = S A lin {ul,...,um}e £; .

REMARK 1. Our main theorems in Section 5 will generalize the
maximum-minimum principle (21) to nonlinear operators A .

The basic idea due to LYUSTERNIK (1930) is to replace Qm by
a larger class 1% 2 2m . The sets K €1bm are characterized by a
topological invariant generalizing the dimension of spheres.
LYUSTERNIK (1930) used the notion of category. Here we shall use the

notion of genus (see Section 4).

Proof of Proposition 4. We choose eigensolutions (ui,Ai)

of the operator A as in Proposition i, i.e. Aui = Aguy and
u = I (u]ui)ui for all ue€ X .
Hence
% 2 2 3 2
2a(u) = (Au|u) = z Ai(ului) . |]u|| = Z (ului) .
i=1 i=1

(I) Suppose that A has at least r positive eigenvalues

counted according to their multiplicity. Without any loss of genera-
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lity we can assume that

Apz Ay zotre A >0, A 20 dfT o> 4.
1If Le &’:,i.e. L=SnZX ,dimX >s,and s <t , then
we can choose u e L such that
(u[u) =1, (u[ui) =0, 1i=1,...,8-1 .
Hence
.y N2 2 +
2a(u) < Ag Z (u|ui) = As|'u|| =g, dl.e. A <A .
i=s
Set L =5 A lin {u},...,u}le £: and observe that (“l“i) =0
if u e Ls and 1 > s , i.e.
2 ¥ 2
1= |lul]®= } (ului) for all ue L_ .
s
i=1
Hence
3 2
2a(u) 2 As iZ:l(ului) = As for all u e Ls .
Since Za(us) = As , we obtain
2t > min  2a(u) = 2 B
s s
u€el
+ s
i.e. As = As if s = 1,...,r .
+ +
(II) Let A >0, i.e. zm # 0 . Our proof will be complete
!

if we can show that there exist at lea

st m positive eigenvalues

counted according to their multiplicity.

Suppose there exist only r posi

r <m . Without any loss of generality

A A

1 Ay 2

r 0

Ay

+
< zt+1 . As in part (

eee and

2 2 =

Let Le z;

<

u€L with 0, i.e.

2a(u) = Ar+l

min a(u) > 0 for

contradiction to
’ uel

4. The Genus of Symmetric Closed Sets

tive eigenvalues of A with
we can assume that
r+1 = 0 if j>r .

I) of our proof we can choose
min a(u) < 0 . This is a

uel +
all Le $m , q.e.d.

Not Containing the Origin

Definition 3. Let. X be a real
18 called symmetric <Z1ff u & M => -u
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A symmetric closed set M % X - {0} <& said to have genus n ,

notation y(M) = n , Lff there exists
(22) an odd continuous map £ :M-&8" - {0}
and n 18 the smallest natural number with this property.

If there i8 no such natural number n , ve set Y(M) = + = .
For the empty set @ we define y(§) =0 .
The following Proposition describes a crucial property of the

genus,

Proposition §5.
Let S = {ue X : ||u|]| = 1} be the unit sphere in a real Banach
space X .

Then y(S) = dim X .

The proof is giﬁen, for example, in ZEIDLER(1978), p. 102. This proof
is an easy consequence of Borsuk’s antipodal theorem (see e.g.

ZEIDLER (1976)).

REMARK 2. The definition of genus given here is that used by
COFFMAN (1969). It is equivalent to an eériier definition given by
KRASNOSEL’SKII (1952), (1956). This equivalence has been proved by
RABINOWITZ (1973). The genus appears also in CONNER, FLOYD (1960),
where it is called the coindex.

In Lyusternik’s category approach to nonlinear eigenvalue pro-
blems (see LYUSTERNIK (1930), (1934), (1947)) an important role is
played by the fact that real k-dimensional projective spaces ‘Pk N
obtained by identifying the antipodal points of a k-dimensional unit
sphere, have the category k + 1 with respect to P® . The proof
of this deep topological result is due to SCHNIRELMAN (1930) (see
also SCHWARTZ (1969), BROWDER (1970 a)).

It was Krasnosel'skii’s idea to simplify proofs of the main re-

sults of the Lyusternik-Schnirelman theory by using thé notion of
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genus. For example, the proof of Proposition 5 is extremely simpler
than the proof of Schnirelman’s theorem concerning the category of
projective spaces. Furthermore, there is no need to pass to projecti-
ve spaces when using the genus.

Now let us summarize some further properties of the genus.

Proposition 6. Let X be a real Banach space. Suppose M, My
are symmetric closed subsets of X - {0} .

Then :

1) M1 1S M2 =5 y(Ml) < Y(Mz) .

2) If F: M M, 78 a continuous odd map, then

y (M) < y(M,) . Furthermore, if F is an odd homeomorphism from M,

onto M, then y(My) = y(M,) .

3) YU M, U U M) oy (M) e Ay (), 1< k<o

2
4) yM) < o =y O, - M) STy (M) -y () .
5) M Zs a compact set =y (M) < « .
6) If Ml i8 a compact set, then there exists an open symmetric
set U such that M; € U and y(M;) = y (@) .
7) y®) < dim X .
8) If M <s a finite nonempty set, then y(M) =1 .

9) Let X, X be an m-dimensional subspace with 1 < m <

1 = :

Suppose P : X - X 18 a linear continuous projector onto X, .

1
Then : (M) > m= M0 (I -P)RX) # ¢.

10) If M, 0 M, = 9, then QM U M,) = max (y (M), y(M,)).

Proof . The proofs of 1) ... 9) are given, for example, in
ZEIDLER (1978), p. 102 .
Let us prove 10). Since y(#) = 0 , the case M; =@ or M, = ¢
is trivial. Suppose M, M, # @ . Then 1) implies
max (y (M;),y(My)) < y (M v MZ).
If Y(Ml) = o or Y(MZ) = o , them 10) is proved.

Now, suppose Y(Mi) =n; . Then there exist continuous odd maps
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ny
f:M, »R - - {0}, i=1,2.

i
Define
f(u) = fi(u) if ueM.
Hence
f:Mu M, R™ - {0} , m = max (ny5n,),
i.e. Y(M1 v Mz) < max{y(MILy(Mz) }, q.e.d.

R
The following Proposition 7 seems to be new.

Proposition 7 (Krasnosel’skii).

Let X be a real Banach space with dim X = « . Set
S ={ue X : ||u|l|l= 1} . Suppose M S is a compact set.

Then, for every m € W , there exists a compact symmetric sub-

mn =

set K _€ S - M with y(Km) >m .

Proof . If X is a Hilbert space, Proposition 7 follows
easily from orthogonal decomposition arguments (see ZEIDLER (1978),
p. 113). If X 1is an arbitrary Banach space, then the proof is more
sophisticate&. The following proof based on a selection theorem of
MICHAEL (1956) is due to KRASNOSEL’SKII (oral communication during
his stay in Leipzig, December 1977). Figure 2 describes the main idea

of the proof.

Séeg 1. A selection theorem of MICHAEL (1956).
Suppose :

i) T 4is a metric space, X 1is a real Banach space.

ii) There exists a lower semi-continuous map ¢ : T = ZX N

i.e. if T7€ T, ue ¢(t), and U(u) € X 1is a neighbourhood of u

>

then there exists a neighbourhood V(1)< T of 1 such that
$(t')n U(u) # § for all t'e V(t) .

iii) For all 7 e€ T , ¢ (1) is a nonempty closed convex subset

of X .
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Then there exists a continuous function f : T - X with

f(t) € ¢(t) for all T € T . ATX/XO
Step 2. Since M is compact, £
(1)
there exists a linear finite-dimen- e IS
— >
sional subspace Xo of X such // SA
that dist(u,xo) <% for all / \ X
l ] } o 0
ue M, \ I M
Step 3. Set T = X/X; . The \\ //
N
/
elements <t of the factor space ~ \{ -
X/xo are the sets .t = ug + Xo. Fig. 2

T 1is a Banach space under the norm
I|T||T = dnf{||ull : v e}
Hence
inf{|[u; - u2[|x Py e )= inf{||v|] : ve T, - 12}
= M - gl .
Step 4. Define ¢ : T —»2%X by

¢ = {fwet: [lully <@l . .

For all T€ T, ¢(t) 1is a nonempty closed and convex set.
We assert that ¢ is lower semi-continuous. Suppose this is not
true. Then there exist elements T € T , u 6 (1) , a neighbourhood

U(u) of u and a sequence (rn) such that

T, *7 in T as n =+ ©and ¢ (1,)0U(u) = ¢ for all ne O .

Choose a small number n >0 and an element veT with v € U(u)
and Il v|| < ((4/3) - n)lltll . Furthermore, there exists a sequen~
ce of elements u, € T such that

[lv - unll < 4/ - TnIlT for all ne N .

Now, from u, v, ||Tn|| - IITII (n » ®) we obtain

v
v

||un” < (4/3)]|Tn|1 if n f.e. u € ¢(r ) n U(uw) 4f n

no,

This contradicts ¢(Tn) A U(u) =@ for all ne N .
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Step 5. The Michael selection theorem in Step 1 implies that
there exists a continusus map fo 2 T = X/Xov» X such that
fo(T) € ¢(t) €1 for all T e T .

Define £(1) = (f,(1) - £3(-1))/2 .. Then £ : T >X 1is a conti~
nuous odd map with £f(1)e <t for all 11 e T .

f is also a homeomorphism. This follows .from

My = 1 llp 2 HeCry) = £ lly -
Furthermore, the construction of £(t) yields
Hell = Heeolb = @3 el] -

Step 6. Define g(1) = £(O)/|lfCn)il .

Set 8' = {1e T = X/XO : ||t]] = 1} . Then g : S' > S is a conti-
nuous odd map.

Since dim X = «» , dim Xo < ®» , we have dim X/Xo = » . For
every mé& N , there exists an (m-1)-dimensional unit sphere %ns s’
i.e. y(ﬁm) = m . Hence y(g(sm)) >m (see Proposition 5 and Propo-
sition 6,2)).

We claim g(Sm)lW M # @ . Indeed,
f{||v - ullg *ver, ve X} = [|]]
and g(c) € t/[[£(x)|| . Hence
dist(g(1),Xg) = [|x||/[I£C)]] 2 3/4

for all 1 : ||T||= 1 . Now, g(Sm) N M=@ follows from
dist(u,xo) <% for all ue M .

Thus we have constructed symmetric compact sets l(.m = g(Sm) € s

with Kmtw M=0¢ and Y(Rm) 2m, q.e.d.

5. The Main Theorems in Infinite-Dimensional Banach Spaces

We turn now to the nonlinear eigenvalue problem

(23) Au = ABu , b(u) =& (ue X, € R)
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where o > 0 1is a fixed real number. The condition b(u) = a nor-
malizes the eigenvector u .

If (u,A) 1is an eigensolution of (23) with <Bu,u> # 0, then
A = <Au,u>/<Bu,u> .

Problem (23) generalizes the linear eigenvalue problem
(23") Au = Au, b(u) =a (u€ X, A€ R)

studied in Section 2.2 and Section 3, where X 1is a real separable
infinite-dimensional Hilbert space, A : X = X*¥ = X 1is a linear sym-

metric completely continuous operator A # 0 , B

I (identity) and

a(u) = 2—1<Au,u> = 2_1(Au|u), b (u) 2_l(u[u) .

C

.) is the scalar product in X . We identify X* = X , i.e.
(ulv) = <u,v>.) In this special linear case all the hypotheses of

the following two theorems are satisfied.

Theorem 1 (Eigensolutions of the equation (23)).

Suppose that the following conditions hold

(24) X s a real reflexive separable Banach space, dim X = o -
(25) A,B :.X = X* are continuous odd potential operators with
potentials a, b3;a(0) = b(0) = 0 .
(26) A <s strongly continuous.
(27) Au =0 =a(u) =0 .
(28) B <Zs uniformly continuous on bounded sets of X
(29) B satisfies the condition
(S)l: un—*u, Bun—bv#un—»u (n —» =)
(30) u # 0 =»<Bu,u> > 0.
(31) The level set N, ={ueX: b= al
is bounded (e.g. b(u) » += as ||u]]| » =) .

(32)  inf <Bu,u> > 0
uENa

(33) For each u # 0 there exists a real number r(u) > 0 such

that b(r(u)u) = a (Z.e. each ray through the origin inter-
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sects N, ; see Fig. 3).

(34) a# 0 on N, -

Then, under all these assumptions,

the following statements are true

1) The level set N is homeo-
morphic to the unit sphere. There

exist real numbers c,d such that

0<cz<||ul] a4 on N .

a
. Fig. 3
2) The critical levels B ,Bt . &
m’"m
Define, for all m e N
+
(35 g~ = sup min | 2a(u)
) n kam uEKl , ’
+ sup, min (*2a(u)) ,
(35,) B = 1 Kek® uek
m
o if v = ¢ ,
m
where
Rm = {K N, ¢ K compact, symmetric, y(K) > m}
%o = {Ke R : ta(u) >0 on K} .

Then Rh #@® for all me N and

By 2By 2 ovv 2 0, B, >0,
+t +i > + <
B 2 B, 2 ... 20, B, < B, .
+
Furthermore, Bm’ Bm -0 as m—>®

3) Lyusternik’s mazximum-minimum principle generalizing Courant’s

maximum-minimum principle.

a) If B > 0 then the equation (23) has an eigensolution

(36) up # 0, Ap 40, [2a(u)| =8, .

b) If tei > 0 (+ or -), then the equation (23) has an eigen-

solution

(36,) ul # 0, A #0, 2a(u;) = gr .

If A s homogeneous, i.e. Atu = tPAu for all t > 0, ue X

and a fixed o > 0 , then
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1
a(u) = [<Atu,u> dt = (1+p)'1<Au,u> , Z.e.

0
ot = t(l+p)8;/2<Bum,um> >0.

+
m

4) The global multiplicities X(a,Na), x+(a,Na) . Observe that

B. > 0 & there exists Ke nm with a(u) # 0 on K

n s
iBi > 0 4> tnere exists K & ‘Qﬁ with *a(u) > 0 on K .
Define
x=sup{m:3m>0] N
sup {m: isi > 0}
Xy =
0 if B} =0 .
Then :

a) x = max{x,,x_} 21 .

b) If the set {ue Na : a(u) = 0} <s compact, then
X = X, =® or x ='x_=.

e) If a(u) # 0 on N, (e.g. a(u) = 0 u =20 ), then
x=x-;='“_°$,x_=001" X = X_ ==, x, =0,

d) If X is a linear subspace of X and a(u) # 0 on
NN Xy then )(_>__d;i.mx0

If +a(u) > 0 on Nan X (+ or =), then X, 2 dim X, .

0 = 0

5) Existence of an infinite number of distinct eigenvectors

on_ N

(*]

a) If x = o then, for all me N , the equation (23) has an
eigensolution (ups Ap) & up € Nos g # 0, |2a(um)| = Bn -

b) If x, = (+ or -) then, for all me N , the equation (23)
R . £ Eky L * +
has an eigensolution (um, Am) tup e Nu s Ao #0 ,
£y _ L *
2a(um) = Bn

Since Bm? si -2 0 as m >, agll the sequences (um), (ui)

contain an infinite number of distinct eigenvectors on L

6) Existence of an tnfinite number of distinct eigenvalues.

Suppose a(u) = 0 => <Au,u> = 0 .
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Let (ﬁm, Xm) be an arbitrary sequence of eigensolutions of the

equation (23) with a(ﬁm) =0 as m—e. Then X —0 asm=>=.

This together with the fact that Bom® 62 -0 as m—>w impli=-

+ + +
es  Aps Ap ~* 0 as m —» o for the sequences (um, Xm), (um, Am)
in 5a), 5b). This means that if x = max (X4» x_) = = , then the equa-

tion (23) has an infinite number of distinct etgenvalues.

7) Weak convergence of the eigenvectors.

Suppose a(u) = 0&>u =0 .
Then x = o . Furthermore, let (ﬁm) be an arbitrary sequence
on N with a(ﬁm) -~ 0 ; then ﬁm~> 0, <Aﬁm, ﬁm>~a 0as m —>w.

This together with the fact that B Bi -0 as m > implies

+ +

U u; -~ 0 ’Km’A;'* 0 as m >« for the sequences (um, km),
+ + .

(u;, xm) in Sa), 5b).

8) Existence of at least one eigenvalue if A,B are not

necessarily odd.
If there exists an element ug € Na (+ or =) with ia(ug) > 0,

then the equation (23) has an eigensolution

Wt A0, AT £ 0, ta(u®) = max  a(u).
N
(Here we do not suppose that A ,B are odd.) vy

Corollary 1 (multiplicity of the critical levels sm,Bi)

Under the assumptions made in Theorem 1 it holds

a;) If By SBoaq T tTeeceees = Bm+b'1 >0, p>1, then
y({u e N : u eigenvector in (23), |2a(u)]| = Bpt) 2P -
a2) The equation Au = XBu, b(u) = o (a > 0 fixed) has at least

x = max(x,, x_) distinct pairs of etgenvectors (u, -u) with non-

zero eigenvalues obtained by the maximum-minimum principle (35).

+ _ + _ _ .t .
by) If & B = #B .1 = -«- =tBoyper > 0 P21, (+ or =) , then
y({uie Nu . etgenvector in (23), 2a(ui) = Bi}) >p .

b2) The equation Au = ABu, b(u) = a(a > 0 fixed) has at least

X *oxe distinct pairs of eigenvectors (u, -u) with nonzero eigen=.
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.values obtained by the maximum-minimum principle (354)

The purpose of the next theorem is to weaken the continuity

assumptions upon B .

Theorem 2.
Let all the assumptions made im Theorem 1 hold except of the
following changes
(28') Replace (28) ( B is uniformly continuous on bounded sets) by
the weaker assumption : B <s bounded.
(29') Replace (29) ( B satisfies the condition (s, ) by the stron-
ger assumption
(S)O: uy —u, Buﬂ - v, <Bun,un> > <v,u> =>un =2 u (n >x)
(27') Replace (27) (Au = 0 => a(u) = 0) by the stronger assumption
a(u) = 0 &> <Au,u> = 0

Then all the statements of Theorem 1 are true.

An important special case of Theorems 1, 2 will be considered

in Section 8.

REMARK 3. Theorem 1, points 1), 3a), 5a) and Corollary l,al)

with respect to the critical levels

[3 supK"‘,"m minueKIZa(u)

n =
have been proved by AMANN (1972). On Amann’s paper X 1is supposed
to be a uniformly convex Banach space.

Since X = max (X+,X~) by Theorem 1, 4a), Corollary 1,b2) gi-

ves in general more eigenvectors than Corollary l,az). This is the
+

reason why we have introduced the critical levels Bm .
In Corollary 1’ of Section 7 we shall show that the multipli-
city result in Corollary l,bz) is a straightforward generalization

of the corresponding results for linear operators.

REMARK 4. Under the additional definiteness assumption

(37) Au = 0 ¢>u =10, a(u) >0 if u# 0,
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Theorem 1, points 1), 2), 3), 5), 7) have been proved by FU&IK,
NECAS (1972a), for Banach spaces equipped with the so-called usual
structure.

In the case (37) it holds sm = Bm, Bm =0 ,¥ y = - DANCER
(1976) has shown that every real reflexive separable Banach space has
the usual structure.

Furthermore, under the assumption (37), Corollary 1,31) has
been proved also by rFubfk, NECAS (1972a), the notion of genus vy(.)
being replaced by ord(.) (order of a set). However, ord(.) gives not
so good multiplicity results as vy(.) . Suppose, for example, that
there exist only two nonzero critical levels 61 = 62 , l.e. x = 2.

Then the paper of Fulfk, NECAS implies

ord ({ue N : Au = ABu}) > 2 .

On the other hand, ord (ul, —ul} = 2 . Therefore we cannot conclude
that there exist at least the distinct pairs of eigenvectors. In
contrast to this, y(M) > 2 implies that M contains an infinite

number of distinct pairs (u, -u) .

REMARK 5. Theorem 2 is closely related to general theorems
due to BROWDER (1968), (1970a), (1970b). However, in these papers it
is assumed that
(38) <Au, u> = 0 &> u =0

Since X - {0} 1is connected, it follows immediately from (38)

that <Au,u> has the same sign for all u # 0 . Hence
1

a(u) = J<Atu,u> dt = 0&>u =0
0

Theorem 2 removes the condition (38). In case of a linear ope-
rator A the condition (38) means Au = 0> u = 0 (see Theorem

1, 7°) ).
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6. Sketched Proofs of the Main Theorems

6.1. Proof of Theorem 1, 1), 4), 5), 6), 7).
Proof of 1) Set ¢(u) = r(u)u . It is easily seen that ¢ is
an odd homeomorphism from the unit sphere S onto the level set

Na (see e.g. ZEIDLER (1978), p. 108).

Proof of 4a) Obviously, Xgs X_ £ X - Now, suppose Bn 0 .

This is equivalent to the existence of a symmetric compact set
K e nm with a(n) # 0 on K . Define

Ki = {ue K : xa(u) > 0} .
Ki is symmetric, compact,K+n K = ¢, and by Proposition 6,10)

y(K) = max (v(K"), y(X7)), y(X) >m .

Hence K'e BT or K e ®R_ , i.e. BT >0 or -8 >0 .
m m m m

Thus max(x+, X_) 2 X.

Proof of 4b) Set N = {ue Na : a(u) = 0} . Suppose ¢ is an

odd homeomorphism from the unit sphere S in X onto Na'
By the hypothesis N is compact, i.e. ¢-1(N) is compact in
S . Proposition 7 yields that for each me& N there exists a compacc

symmetric subset K €S- ¢_1(N) with y(X ) 2 m , i.e. @(Km) is

a compact symmetric subset of Na with ¢(Km)l1 N = ¢ and

Y($(K)) 2 m . Hence 3‘3%(1(“1)]28(“)] >0, i.e. B >0 . Thus

X = © .
Proof of 4c) N, is connected. Hence a(Na) is connected, too.
Thus a(u) # 0 on Na implies that a{u) has the same sign for

all u € Nu . Suppose a(u) > 0 on Na . Then n; =¢ , i.e. x_ = 0.

= o

It follows from 4a), 4b) that x = X4

Proof of 4d) Suppose a(u) # 0 on K

Nan Xo . Let
-1

dim X0‘< © , K is compact symmetric set. ¢ ~(K) 1is a sphere in

XO . By Proposition 5, y(¢_1(K)) = dim Xo . Hence vy(K) = dim X

by Proposition 6,2). Thus min |2a(u)| > 0, i.e. Bn >0
uek .
[V . -

0

m = dim X
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Therefore X > m . Similarly we obtain the other assertions

in 4d).

Proof of 5) Compare Theorem 1,3) and the definition on x,x,

in Theorem 1,4).

Proof of 6) Suppose Au_ =X Bu, u €N for all me W
—_— m m m m o

and a(ﬁm) —0 as m — «. Let (X_. ) be an arbitrary subsequence

m?'

of (Xm) . Since (ﬁm,) is bounded, we can choose a subsequence

(Lm,,) with Gm"—-u as m"—» o , i.e. a(u) = 0 . Hence <Au,uw =0 ,

i.e. <Aﬁm,', ﬁm"> -+ <Au,u> = 0 . Therefore

X = <Al

s s <R .
s LENPL Y / <BE_44sT_ > >0 as m > .

mrve
Thus we have shown that the sequence (im) has only one accumulation

point, i.e. im —+0 as m —>eo ,

Proof of 7) Proceed similarly as in the proof of 6) .

6.2. Sketched proofs of Theorem 1, 2), 3), 8) and Corollary 1.

All the assertions of Theorem 1, 2), 3), 8) and Corollary 1
have been proved in ZEIDLER (1978), p. 112 with respect to the cri-~
tical levels Bm . The corresponding proofs for B; work similarly.

The proofs in ZEIDLER (1978) combine various ideas taken from
the papers of AMANN (1972), FUlfk, NECAS (1972a), Fulfk, NEdAS,
soU¢EK, SOUCEK (1973) and DANCER (1976).

A sketched proof of Theorem 1, 2). The proof for B ~- 0 as

m -+« in ZEIDLER (1978) is based on the following

Lemma 1 (DANCER). Let X be a reflexive separable infinite-
dimensional Banach space.
Then, for each ne N , there exist continuous odd operators

P ot X=X with finite dimensional ranges such that
u —u %Pnun—“u (n +o) .

This lemma shows that every reflexive separable Banach space
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has the usual structure in the sense of FUéfK, NECAS (1972a). Hence we

obtain by a similar argument as in FU&fK, NEéAS (1972a) that

(39) By >0 as m e
5
Now, the convergence 8; -0 as m —+ follows from = 8; < Bm

A sketched proof of Theorem 1,3). The proof of this crucial

assertion given in ZEIDLER (1978), p. 112 is based on the following

Lemmas.

Lemma 2  (TROYANSKI (1971); an equivalent norm on X).In every re-

flexive Banach space X we can introduce an equivalent norm | .)]1

* .
such that X , X are locally uniformly convex.

This implies that the duality map J: X* — X**% = X 1is continu-

ous with respect to ][-l]l (see e.g. ZEIDLER (1978), p. 146).

Lemma 3 (curves on the level set Na)' Set
Du = Au - (<Au, u><Bu,u>) Bu ,
Eu = JDu - (<Bu,JDu><Bu,u>) u .
Define curves on Na by g(t, u) = r(u + tEu) (u + tEu) .
Then the maps g, g, s [-t, tO] x N =N, are bounded, conti-
nuous, and t g(t, u), t h»gt(t, u) are equicontinuous on
[-ty» t,] with respect to all ue N, .

Furthermore, (0, u) = u, <Au, g, (0, w)> = ||Du||2 .

REMARK 6. This lemma has been proved by AMANN (1972). Since we
do not suppose that X is uniformly convex, we cannot prove, as in
Amann’s paper, that g, gt are uniformly continuous on [—to, to] X Na

(see Remark 7).

Lemma 4 (the critical sets Lc, Li
| <o IIpul]? 20} .

Set Ly = {ue N :| [2a(u)] - 8,

A

Suppose Bn > 0o .

Then for each o > 0 there exists wu(o) > 0 such that
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min |2a(w)| > g, = ulo) = L n K + 4
uek

A €
for all K ﬂh .

+

2) Set L=
o

L}

{u e Na : l2a(u) - Bii g, i]Du||2 <o} .
Suppose tsi > 0 (+or - ) .

Then for each o > 0 there exists ut(U) > 0 such that

min (*2a(u)) > *B
uek

for all K e ﬂi .

SR CORE S A I

REMARK 7. This crucial lemma is related to the Main Lemma in
the paper of FUCfK, NECAS (1972a).

The proof of Lemma 4, 1) is based on the careful deformation
argument along the curves t ™ g(t, u), due to AMANN (1972). The si-
tuation described in Remark 6 complicates the proof.

Lemma 1, 2) follows by a similar argument.

Lemma 5 (local Palais-Smale condition; AMANN(1972)).Let (un)
be a sequence on Na . Suppose Dud* 0, a(un) =>B8 , B # 0 (n >x)-
Then there exists a convergent subsequence (un.) with

Uy *uas n e and Du =0, Z.e. u 18 an eigenvector of (23).

Now, Theorem 1, 3) is an easy consequence of Lemma 4 and
Lemma 5.

.

Sketched proof of Theorem 1,8). This assertion follows by a

slight modification of Lemma 4 and by Lemma 5 (see ZEIDLER (1978),

p. 114).

Sketched proof of Corollary 1. The assertion al), bl) follow

from Lemma 4, Lemma 5 and Proposition 6, 6) by an argument due to
LYUSTERNIK (1930) (see ZEIDLER (1978), p. 114).
Now az) and bz) in Corollary 1 are easy consequences of al),

bl)‘ Observe that Y(M) > 2 implies that M is an infinite set.
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6.3. A sketched proof of Theorem 2.

The proof is based on a Galerkin procedure due to BROWDER (1968),
(1970a), (1970b). In ZEIDLER (1978), p. 116 it is shown that this

procedure converges also if we replace the definiteness condition (38)

(<Au, u> = 0« u = 0) by weaker condition <Au, u> = 0<>a(u) =0 .
+
It is important that we can prove B8_ , B; -0 as m >

without using the uniform continuity of B on bounded sets.

7. Restriction to the Linear Case

To check the quality of the statements for nonlinear operators
made in Theorem 1 and Corollary 1 let us consider the special case
of linear operators. The following Theorem 1’ and Corollary 1’ show
that our results in Section 5 are maximal in a certain sense (Theo-
rem 1, X) corresponds to Theorem 1°’, x’)).

For fixed o > 0 , consider the equation
(40) ) Au = Au , b(u) = a (ue X, XeR).

Define N(A) = {ue X : Au = 0}

Theorem 1°
Suppose :
i) X is a real separable infinite-dimensional Hilbert space
with a scalar product (-|-) . .
27) A : X - X 78 a linear completely continuous symmetric
operator, A # 0 .
14i1) Set B = I (identity), a(u) = 2 1(Au|uw),
b(u) = 2_1(u|u).
Then :
0) All the hypotheses made in Theorem 1 and Theorem 2 are sa-
tisfied.

2°), 3°). Let xi be defined as in (21) by Courant’s maxi-
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mum=-minimum pri

+
= 2a)_ .
m

neiple. Then g

+
m

The set of all xi # 0 <s equal to ‘the set of all nonzero ei-

genvalues of

position 4).
s
4°) X4

positive and ne

A counted according to rheir multiplicity (see Pro-

and' X_

gative eigenvalues of A counted according to their

multiplicity.
a’) X = max (X+, x_) 21.
b’) N = {ue Na: a(u) = 0} is compact
< dim N(A) < « , Xg = ® > X_ = 0
or dim N(A) <« , x_ =, x, =0.
If N %8s compacty them N = Nan N(A) .
e’) See 7°) .
6°)< Au,u> = 0 <% a(u) = 03 A;» 0as m » o .,
7°) The following conditions are equivalent
a) a(u) # 0 on N,
b) a(u) = 0 «» u =0,
e) N(A) = {0} , xy ==, x_=0
or N(A) = {0}, x_ ==, x, =0,
d) y =« , and if (ﬁm) s an'arbitrary sequence on
with a(a) >0 as m>o then ﬁm-* 0 and
< as m >« .

Corollary 1°.

(+ or -). Then
eigenvector in
by) The

of etgenvectors

There exist operators

_exactly +

X+

to nonzero eige

X_

Au_, u >->0
m m

b}) Let p > 1 be the multiplicity of ixi >

+ + Lt . .

£B =t By = .. = i8m+p—1>0 and y( {u € N, s
(40), 2a(u*) = 81} ) = p.

equation (40) has at least Xy toXC distinct pairs

(u, -u) belonging to nonzero eigenvalues.

A such that the equation (40) has

distinct pairs of eigenvectors (u, -u)

nvalues.

are equal respectively to the number of all

belonging
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Proof of 0). This is easy to check.

Proof of 2°), 3°). Without any loss of generality we can assu-

lul] = 1} .

me o =% , i.e. Na = {ue X:

is

+
(I) First we shall show : If tsi > 0 (+ or -), then B;

an eigenvalue of A

Indeed, Theorem 1, 3) says that there exists an eigensolution

* + t . +
Aum = Am u s b(um) =% with 2a(um) =B

o i.e.
) P +
Za(um) = (Aum|um) = )‘m' Hence Bm )‘m .

(II) Consider g; introduced in (20). By Proposition 5,

+ + .
n gx,m , i.e. LY for all me N

£ B

B+
iin
3+

v

by (I) and Proposition 4, 1).

(I11) Let g} > 0 . Then A} > 8

Thus A; = BT by (II).

+ _ + + + _ Lt

(IV) Now, let us prove Xz = BZ . Indeed, Az < 82 < B1 Al
by (II), (III). If A; = 2] » then s; =,

Next suppose A; < AT . Proposition 4, 1) and (I) yield either
+ + +
82 = Al or BZ = AZ .

+ + + + . .
Let BZ = Al . Then 81 = BZ > 0 . Corollary 1 implies
y({u : Au = XI u, |ful] =1} 22 .

Proposition 5 shows that the multiplicity of AI is at least p = 2.

H £ P aad
owever, Lrom 1 2 and Proposition 4,2) we conclude that the

multiplicity of AT is equal to p = 1 . This is a contradiction.

(V) By induction we obtain 2°), 3°) .

Proof of 4°). See 2°).

Proof of 4°’b’). = : Let N be compact. Then dim N(A) < =,

since N(A)DN Na € N . Hence Xy =@ or x_ == by 4°).

Let Xy = © - Prove x_ =0 .

Suppose Xy = © X_ > 0 . Choose on orthonormal sequence
of eigenvectors u;, u;, u;, ... belonging to the eigenvalues AI < 0,
AT > l; > ... > 0 , respectively. Set
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ot o +
1
ap =/ 20 2 (Bt e T G T . N L S B S

Ar Tonr o

observe that (u|ut) = 0 , [Ju[|® = 20, atu)=0, i.e. u €N

for all me N . N is compact by hypothesis. Thus (um) contains

+ "
a convergent subsequence u_, *> u as m'> » . Since An -0 it fol-

lows that u;' — u/vY20 as m' - «» . This contradicts

+ +12
llum - unll =2 if m# n .
€ : Let dim N(A) <= , x, = , x_ =0 . Then 2] =0, i.e.

‘a(u) > 0 for all ue X . Hence N = {u € Nu : Au = 0} , i.e.

N = Nu n N(A) . Thus N is compact.

Proof of 7’). a) <> b) <> c). See 4’b’) .
- a) => d) . See Theorem 1, 7). &
d) =3 a). Let X = ° i.e. X+ = o or X_ = ® .

Suppose X4 = © . According to c) we have to prove N(A) = {0}

and x_ =0 .

(VI) First assume N(A)# {0} . i.e. there exists an element u

with Au = 0 , [[u]|| = 1 . Choose an orthonormal system of eigenvec-

+ + +
tors uy, Ugs oeo belonging to the eigenvalues AT, AZ, <.+, Tes-
pectively. Bessel’s inequality yields

©

) (u|u+)2 < ||u||2 , i.e. W20 as mo>w.
i=1 o= n
- . + o+
Set u = Vo (4 + u) if m > 2 . Observe that (ulum) =0 for all
m2>2, i.e. ﬁm € N, and 2a(ﬁm) = Zaa(u;) = ux; -0 as m —>® ,

By the hypothesis d) we obtain Gm — 0. This contradicts ﬁm -~ Yaa

as m —> o .

(VII) Secohdly, assume x_ > 0

and proceed as in (VI).
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Proof of Corollary 1’bil. The set of all eigenvectors on Na

with o =% belonging to the eigenvalue + Ai > 0 is equal to the
unit sphere Sp in the p~dimensional eigenspace. Now, bi) follows

from Proposition 5.

Proof of Corollary 1’ b)). Compare Theorem 1°, 27°).
2._

If A has only simple nonzero eigenvalues and Au = 0<»u =0 ,

then A has exactly X4 + x_ pairs of eigenvectors (u, -u), q.e.d.

8. An Important Special Case of the Main Theorems

In this Section we shall restrict our main theorems to a spe-
cial situation. This will be useful for applications to partial equa-

differential equations in the next Section.

Proposition 8.
Suppose:
(41) X <8 a real reflexive separable infinite-dimensional Banach
space.
(42) A, B : X — X* are potential operators with potentials a, b
and a(0) = b(0) = 0 .
(43) A <s strongly continuous.
(44) <Au, u> = 0> a(u) = 0 .
(45) a % 0 on Na = {ue X : bu) =a} (ao>0 Ffixed).
(46)B=Bl+B2, Bi:X*’X*.
47) B, is bounded, continuous, uniformly monotone and BI(O) = 0.

(48) B, 18 strongly continuous and <Byu, u> 2 0 for all ue X .

Then:

1) The equation
(49) Au = ABu , b(u) = a

has an eigensolution u # 0, X # 0 .
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2) Suppose that A, B are odd. In this case it holds:

a) If x =, then for every me N there exists an eigen-
solution (ug, )‘m) of (49) with uy # 0, Ao #0 and Ap 0
as m —»>» , 1.e. there exists an infinite number of distinct eigen—
vectors and eilgenvalues.
(If the set {u € N a(u) = 0} <s compact, or if there exists
a linear infinite-dimensional subspace Xg€ X and a(u) # 0 on
Xgn N, then x =« .

b) If a(u) = 0&>u =0 (e.g. <Au, u> > 0 2f u # 0) , then

X =eand u —~0as m=>e in a).

e) If B, 18 uniformly continuous on bounded Asets, then the
equation (49) has at least x, + x_ distinet pairs of eigenvectors
(u, -u) belonging to nonzero eigenvalues.

(If there exists a linear subspace X< X with *a(u) > 0

on N a X, (+ or =), then XeZ dim X, )

Corollary 2. Let A(0) = 0 . The condition (44), T.e.
<Au, u> = 0 &> a(u) = 0, 78 satisfied if one of the following con-
ditions holds :

(44a) The real function t v <Atu, u> <is monotone on [g,1]
for all u € X (e.g. A <is monotone).

(44b) The real function t v a(tu) <8 convex on [o, 1] for
all ueX (e.g. a <8 convex).

(4de) <Au, u> > 0 Zf u # 0 .

(44d) A <s homogeneous, <. e. Atu = tPu for all uwe X, t >0

and fized p >0 .

Proof of Corollary 2. Set ¢(t) = <Atu, u> . Then ¢(0) = O.

Now, consider

1
a(u) = J‘¢(t) dt and d2CEW) _ gy
dt
0
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Proof of Proposition 8. Using

<Blu - Byv, u - v> 2 c(l[u -v|D Ilu - v|| for all u, ve X

and the relations mentioned in Figure 1 we see easily that all the
hypotheses of Theorem 2 are satisfied (see ZEIDLER (1978), p. 106).

Now, the proof follows from Theorem 2 and Corollary 1.

9. Application to Nonlinear Elliptic Equations

Proposition 8 will be now applied to nonlinear elliptic equa-
tions. For technical convenience we shall consider only a simple exam-
ple related to Section 2.4.

Consider the boundary value problem

N
(50) -x(izl D, (0 ulD;ulP7?) + £1(w) = g (Wo(x) on G,
u=0 on 3G,

where G 1is an open bounded nonempty set in RN, N>1, and

x = (€1, vy Eg)s Dy = 3/35, P22 .

Suppose f, g ¢ CI(R) with the growth conditions

[£)] , |e(w] <c+ d|ulP,

[E' ()], Jg'(u)]

A

¢ + dju|P7?

i

for all ue R where ¢, d are fixed positive constants.

Definition 4. A function u belonging to the Sobolev space

X = g;(c) is said to be a generalized solution of (50) Zff

(50") Ab(u, v) = d(u, v) for all v eX and  b(u) = a ,
where b = b, + bz, b = b, + b2 and
N
p-2
bl(u, v) = J _z Diu|Diul Div dx
G i=1

£2 (u)v dx, a(u, v) = J ¢(x) g’ (u)v dx ,
G

o
N
~
[
<
~
Q-
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= J

N
by (u) = p‘lf leviulp ax, by(w) = [£() dax, a(u) = [¢(x> g(u) dx .
iz
G

REMARK 8. (50') is obtained from (50) by multiplying (50) by

v € C:(G) and integrating by parts.

Proposition 9. Suppose ¢ € C(G) and ¢(x) > 0 for all

x€ G, ¢ 20 on G . Assume
(51) f'(u)u > 0 for all ueR,
(52) g'(wu >0 <f u+# 0, g(0) =0 .

Let o > 0 be an arbitrary fixed number.

Then :

1) The equation (50') has an eigensolution u # 0, A > 0

2) Suppose f, g are even. Then for all m e W , the equati-
r . . . )
on (50') has an eigensolution (um, xm) with uy + 0, Am > 0 and

Am >0 as m > o ,

If ¢(x) >0 on G , then u =0 Zn X a5 m > e

Proof. (I) It is not difficult to show that there exist
operators A, B;,B, : X ~ X* with <Au, v> = a(u, v),
<Bju, v>'= Si(u, v) for all wu, v € X .
A, Bi are potential operators with the corresponding potenti-

als a, bi , respectively. A, B2 are strongly continuous, B is

1
continuous, bounded and uniformly monotone (see ZEIDLER (1978), p.120)

(II) From (52) it follows that g(u) > 0 if u # 0. Hence

<Au, u> = 0 > a(u) =0

(ITI) Set K= {x€ G : ¢(x) = 0} . Since ¢ 2 0 on G , we ha-

ve G- K# 8§ . Let X, be the set of all wu e C (8) with
supp u(x) ¢ G ~ K . Obviously, Xy, is an infinite-dimensional linear
subspace of X and a(u) > 0 for all ue XO - {0}

Now Proposition 9 is a consequence of Proposition 8, q.e.d.
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REMARK 9. 1If we combine Theoremsl, 2 with the general results pro-
ved by BROWDER (1970b) concerning the properties of operators indu-
ced by general‘classes of quasilinear elliptic differential equations
of 2m~-th order, then it is possible to generalize Proposition 9 ri-

gorously.

10. The Main Theorem in Finite-Dimensional Banach Spaces

For fixed o > 0 consider the nonlinear eigenvalue problem

(53) Au = ABu , b(u) = o (ue X, 2 e R).
Set N“ ={u €X : b(u) =al}l .

Theorem 3.

Suppose :

2) X 18 a real finite-dimensional Banach space.

i2) A, B : X > X* are continuous potential operators with
potentials a, b respectively; a(0) = b(0) =0 .

122) <Bu, u> > 0 If u # 0 .

iv) For every u # 0 there exists a real numbér r(u) >0
such that b(r(u)u) = o .

Then :

1) The equation (53) has an eigensolution u # 0, X € R .

2) If A, B are odd, then (53) has at least dim X dis-

tinet pairs of eigenvectors (u, =-u).

Corollary 3. If Av # 0 for all v & N, , then all the eigen-

values of (53) are different from zero.

Corollary 4 (multiplicity). Suppose that all. the hypotheses
of Theorem 3 are satisfied. Suppose A, B are odd. Define critical
levels

g = sup min a(u), m=1, ..., dim X ,

™ Rek uekK
where %  is defined as in Theorem 1.
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Then :

a) ﬂ& $#0 forall m=1, ..., dim X .
" b) If §m =Bp41 = v = Bm+P-1 ,p 21l , then
Y({u e N, : u s eigenvector in (53), a(u) = Em}) >p .

Proof . See e.g. ZEIDLER (1978), p. 115.

11. Application to Abstract Hammerstein Equations

Now we shall apply Theorem 1, Theorem 3 to the eigenvalue pro-

blem

(54)

KF(u) = Au (ue X, € R) ,

<u, w¥y = a > 0 for'all we K-I(u) .

Theorem 4.

Suppose :
Z) X <8 a real reflexive separable Banach space.
22) K : X » X* s a linear completely continuous operator
with <Kv, v> > 0, <Kv, w> = <Kw, v> for all v, w e X
222) F : X* > X 18 a continuous potential operator with a
potential ¢ -
Zv) ¢(0) = F(0) =0 5 ¢(u) # 0, KF(u) # 0 Zf u # 0 .
Then :
1) For all o > 0 , the equation (54) has at least one etgen-—

solution u # 0, X\ # 0 .

2)

Sup

a)

pose F is odd.
Then for all o > O , the equation (54) has at least
dim K(X) distincet pairs of eigenvectors (u, -u) be-

longing to nonzero eigenvalues.

b) If dim K(X) = « then, for all o > 0 , the equation

(54) has an infinite number of distinct eigenvalues An

with Am +0 as m > ® ,
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REMARK 10. Under stronger assumptions this result is contai-
ned in VAINBERG (1956) and COFFMAN (1971).
Theorem 4,2a) is a special case of a more general result due to

AMANN (1972).

A sketched proof of Theorem 4. A proof of Theorem 4 is given

in ZEIDLER (1978), p. 12i. The main idea of the proof due to AMANN
(1972) is
i) to factorize K = S*S (S : X - H , H a Hilbert space)
by a general factorization theorem due to BROWDER, GUPTA
(1969) (see also ZEIDLER (1977), p. 107);
ii) to replace (54) by the equivalent problem
(54") SF(S*v) = Av
in the Hilbert space H (v = S*_lu);

iii) to apply the Lyusternik-Schnirelman theory to (54').

If we set A = SFS* , then A 1is a potential operator with a poten-
tial a(u) = ¢(S*u) and a(u) = 0 ¢ >Au = 0<>u =0 .

Theorem 1, points 8), 5), 6) lead to Theorem 4, points 1), 2a),
2b), respectively. In the case dim K(X) < «» one has to use Theo-

rem 3.

12. Application to Hammerstein Integral Equations

For technical convenience we shall apply Theorem 4 only to a
simple example. Consider an integral equation
(55) Au(x) = fk(x, y) f(u(y)) dy (ue X, Xxe R)
G
where G 1is an open bounded nonempty set in RN, N >1 . Set
= X% =
X X LZ(G)'
The corresponding linear integral equation reads

(56) ru(x) = Ik(x, y) u(y) dy (u e X, L€ R).
G
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Proposition 9.

Suppose :
Z) k(.,.) <s a real measurable function
k(x, y) = k(y, x) for all x, ye G
0 < J kz(x, y) dxdy < « .,
GXG

1) £ 18 a real continuous function on
|[£Cu)| < ¢ + d|u| for all ueR, c,
stants and +*f(u) > 0 Zf *u > 0 .

217) The linear integral equation (56) has

genvalues.

Then :

1) For every o > 0 , the equation (55) has

ue X, A # 0 with

(60) Ju(x) w(x) dx = «a for all

G

2) Suppose f is odd. The for every o > 0

has an infinite number of eigensolutions (um, Am)

An # 0 and Ap >0 a8 m>e, i.e. there exists

of distinet eigenvalues.

Proof . We write (56) as Au = Ku and

u € X . From iii) we obtain <Kv, v> > 0 if

al operator with a potential

u(x)
¢ (u) = J( r f(v) dv) dx .

G O

Now Proposition 9 is a consequence of Theorem 4 with

(see also ZEIDLER (1978), p. 69), q.e.d.

v # 0. F

on G X G with
and
R with

d are positive con

only positive ei-

an etgensolution

1

we K 'u .

, the equa%iéﬁ (55
with (60) ,

an infinite number
(55) as

Au = KFu,

is a potenti--

dim K(X) = =
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