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NONLINEAR POTENTIAL THEORY AND SOBOLEV SPACES

Lars Inge Hedberg
Linkdping, Sweden

1. Introduction

We shall consider the Sobolev spaces wm'p(n”), where m is a positive integer,
and 1 ¢ p < ». The elements of wm'pORN) are LP-functions f whose weak partial
derivatives, denoted D°f, also belong to LP for |a| < m. The norm |f]

is
WP
defined by
a
Ie1Py = I L 0% P ax.
Wt Osjaj=m o
It is well known that there is a close connection between the space Wl'z and the

classical potential theory of Gauss, Frostman, H. Cartan etc. Two properties of
w1'2 play an important role here. One is its Hilbert space structure, and the
other is its property of being closed under contractions, i.e. essentially that

if u e W? then u” = max(u,0) € W, and Ju'l , , s Jul ,
W W’

During the last two decades a theory of potentials and capacities has been
developed, which is connected to WP in much the same way as the classical
theory is connected to Wl'z. It is remarkable that a very large part of the
classical theory has been carried over to this more general situation, in spite
of the fact that W''P neither is a Hilbert space (for p » 2), nor is closed
under contractions (for m = 1).

This theory has increased our understanding of the Wm’p-spaces, and in view of
the importance of these spaces in the theory of partial differential operators,
there should be many applications.

The purpose of these lectures is to give an introduction, and a survey of

parts of the theory. Then the interested reader should be able to find his way
through the theory by means of the bibliography. Especially we want to draw
attention to the recent treatise by V.G. Maz'ja (1985). The bibliography does
not claim to be complete, but it is not limited to papers mentioned in the text.



2. Some basic results

For mp > N the elements in wm'pCRN} can be represented as continuous functions
by S.L. Sobolev's theorem. It is a rather natural idea to try to measure the
lack of continuity when mp < N by means of a set function, (m,p) - capacity,
C , which is associated to the norm of the space. (C. Loewner (1959), V.G.

m,p
Maz'ja (1963).

Definition 1: Let K CIRN be compact. Then

- P, ©
cm,p(x) = inf ‘"¢"wm,p' ¢ €Cy o(x) 21 on K.

We extend this definition to all sets in the following way.
Definition 2: Let G CZRN be open. Then
Cm,p(G) = sup (Cm,p(K); K ¢ G, K compact}.
Let E C.RN be arbitrary. Then
Cm'p(E) = inf (Cm,p(G); G D> E, G open}.

A capacity extended in this way to all sets is called an outer capacity.
A property that holds true for all x except those belonging to a set of zero
(m,p)-capacity is said to be true (m,p)-quasieverywhere.

For m = 1 and p = 2 the extremal problem in Definition 1 immediately leads to a
second order linear partial differential equation and to classical potential
theory. For p = 2, however, the corresponding equations are non-linear, and very
difficult to handle. :

Because of this the theory of (m,p)-capacities was not developed very far. It
was a breakthrough when around 1970 it was realized by several people (B.Fuglede
(1968), N.G. Meyers (1970), V.G. Maz'ja and V.P. Havin (1970), (1972), Ju.G.
Resetnjak (1969)) that one can get much further by redefining (m,p)-capacity
slightly.

The key to this observation is A.P. Calderdn's theorem (1961) about

representation of whP as spaces of Bessel potentials.

The Bessel kernel, Gm' is most easily defined through its Fourier transform,



G (6) = (1 + 161272,

Then G has the following properties for 0 < m < N:

(a) Gm >0, Gm is radial, decreasing, and continuous for x = O.
(b) G (x) = —B— s o(—2—) asx+0for0<m<N
m N-m N-m :

Ix] 1x]
(c) G,(x) = A log L o(l), as x -+ 0
N 1x| ’ '

-c|x|),

(@ o e L', and G (x) = O(e as x =+ .

(See also E.M. Stein's (1970) book).

Let S denote the Schwartz class of C~ functions that tend rapidly to zero at
infinity. Let f € S. Then for any real number m, there is a uniquely defined
function g € § such that f = Gm # g. (Here # denotes convolution). In fact,

g = G_m + f. We introduce a norm,
Iel, , = lel,.
and we denote by L™'P(R") the closure of § in the norm (R .
.

Equivalently, Lm’pCRN) can be defined (for m > 0) as the space of LP-functions
f such that f = Gm # g, with g € Lp.

Now according to Calderdn's theorem (which is a consequence of the Calderdn-

Zygmund theory of singular integrals),
s N , N
PR = W P®)

for 1 < p { = and all positive integers m, and there are constants A, and A

such that

1 2

Mty p = 12l g o = Alel o

We now redefine (m,p)-capacity in the following way. Let K be compact, and set

QK ={(feS; f=1onK)},

so that QK is a convex subset of S.



Definition 3: For a compact K C.'RN

' J— ) S
Cp,p(K) = inf (Hfum,p, fea) .
The definition of C& p is extended to arbitrary sets as in Definition 2.

and A, such that

Clearly there are constants A1 >

' 1
A1 Cm,p(E) < Cm'p(E) < A2 Cm,p(E)
for all sets. This constant is not going to be important for us, so we shall
from now on drop the distinguishing notation C& o’ and assume that Cm p is
defined by Definition 3.

The following properties are obvious or easy to prove.

Proposition 1: El c E2 > C (El) < C

m,p (EZ)'

m,p

0 @
Proposition 2: Cm'p(iglEi) siglcm‘p(Ei).
This apparently slight change in the definition of capacity has very

important consequences for the extremal functions. In fact we can now easily

prove the following theorem. (5K denotes the closure of nK in Lm'p.)

Theorem 1: Let K c4RN be compact, m > O, and 1 < p < =, Then there is a

unique element fy = G * g in O such that ngﬂg = C_ _(K). Moreover,

m K m,p
(a) There is a positive Radon measure Hg such that
- g-1 1 1 _
fp =G » (Guwpm)™ " o a= v

and thus
- U3x = .
Cm,p(K) = f(cm * ) dx = S £ dugs
(b) supp py C K;
(c) fK(x) < 1 everywhere on supp kg3

(d) fK(X) >1 (m,p)- q.e. on K;



(&) (k) = ¢ (K);

= K p, .
() ©, (K) = sup ((’ﬂ‘—é;?,—ﬂl; )P; u 20, supp p CK);

(8) G, ,(K) = sup (u(K); 420, supps C K, G;I(G;u)q'l(x)sl for all x € supp p).

For any Radon measure s = 0 the function Gm’(cm » p)q°1 = V: P is
’

called a nonlinear potential of u. We observe that for p = q = 2,

v:.Z = Gm’(Gm *B) =Gy v b,
so then we have a classical potential. Then Theorem 1 is a well-known result in
classical potential theory, although it is more often formulated for the Newton
kernel |x|2_N or the M. Riesz kernel Rm(x) = lxlm-N. 0 <m < N, than for G-.

See e.g. the book by N.S. Landkof (1966).

Proof of Theorem 1: By the uniform convexity of LP for 1 < p ¢ «» there is a
uniquely determined extremal fK = Gm * By in the closure nK of OK

Let ¢ = Glll # ¥ be a non-negative function in S. Then fK + tp € EK
for all t = 0, so that

Jigg + w1Pax = f1gg|Pax = ¢, (K), t =2 0.
Taking the derivative for t = 0 it follows that
-2
Slggl® ™ ggvax=o0

L
for all y € - S such that Gm ¥y = 0.
Set |gK|p-2 g =h. Then h e L9, and

h? = g1

There is a distribution T = G._m # h, belonging to L-m'q(RN). such that
h = Gm # T. It follows that

J(G, » T)y ax = 0.

But by the properties of convolutions of distributions this is the same as
saying that

2



<T, Gm * ¥ 20,
i.e. <T, ¢> =2 0,

<, > denoting the action of a distribution on a test function.
This being true for all positive test functions ¢, T is a positive
= - q-1 - q-1
measure, which we denote Bg- Thus h = Gm * s and g = h = (Gm * ”K) .
which proves part (a) of the theorem. (The final equality follows from a change

of order of integration.)

If the same reasoning is repeated with ¢ € S such that supp ¢ C Kc. so

that f + to € EK for all t € R, we find that

T, o> = <pK. o> =0
for all such ¢, and thus
supp py C K,

which is (b).
We observe that fK = Gm * g is a lower semicontinuous function, so that
the set (x; fK(x) > 1) is open. It follows that for all test functions ¢ with

supp ¢ C {x; fK(x) > 1), we have fK + tp € EK for all t with |t| sufficiently
small., Again we find that <pK, ¢> = 0 for all such ¢, so that

supp gy C (x5 fp(x) = 1),
which is (c).

In order to prove (d) we consider a sequence (fn):=1 in nK such that

P s P _ . P © .
anum'p - ;ZgK ﬂrum'p = C, o(K). By the uniform convexity of L%, (f ), is a

Cauchy sequence in LmP, By the definition of capacity

Ca,p(1x5 18, (0 = £, ()] 2 ) s <P It -

o o
L',

By choosing a sufficiently sparse subsequence (fn ):=1 one proves in a

standard way, using Proposition 2, that lim fn (x) = fK(x) (m,p)-q.e., (and
i i
uniformly outside an open set of arbitrarily small capacity). Thus fK(x) >1

(m,p)-q.e. on K.

10



Now let p be a positive Radon measure with support in K, and let
f = Gm * g€ OK. Then

u(K) = £ du = [(G, » g) du = [(G, » mg dx =6, «ul, el

It follows from H8lder's inequality that the same holds true for f € EK. In

particular, f = fK gives

K 1/p
=c_ _(K)™'%,
Gm&u q m,p
and thus
K) \p
sup (( ) w20, supp p cK) sC__(K).
ey m,p

On the other hand, choosing p = By (c) gives that
ne(K) = J £ duyg

and also that
J £y dug = J(Gy » &) due = J(G * m)g dx

= J(6, » mYax = [ gf ax = ¢, (K) = [, » el cm’p(x)l/p.

i.e. we have equality in H8lder's inequality. It follows that

ne(K) = C (K),

d ("ﬂm)p-c (K)
an G *ay a " m,p'?

which proves (e) and (f).
Finally, in order to prove (g), we consider a positive measure p with

supp p € K such that V; p(x) < 1 on supp p.
f

Then [ v;'p dp = u(K).

» - q-1 - a
But [ Vo,p 3 = J G#(G, * p) ap = f(a, » )" ax,

1/a,

A

so "Gm » u"q z(K)

On the other hand, by (f)

11



w(K) = llg, » ul C, p(x)”’.

whence u(K) = ;4(1()1/q Co p(K)I/p,
and p(K) = Cm'p(K).
By (c) and (e) the measure By gives equality, and this proves (g).

Remark: This approach to Theorem 1 is due to Maz'ja and Havin (1970), (1972)
and to ReSetnjak (1969). Another very elegant approach, due to B. Fuglede
(1968), is to apply the Minimax Theorem to the bilinear functional

®(s.8) = [(G, # w)g dx = [(G, « g) du.

See N.G. Meyers (1970). The advantage is that this works equally well for more
general kernels k(x,y) instead of Gm(x - y). Here k does not have to be
symmetric, and x and y do not even have to belong to the same space. The theory
has been applied in weighted Lp-spaces. and in Besov and other spaces by D.R.
Adams (1985) and (1986).

3. Comparison theorems.

In order to give a more concrete idea of the properties of (m,p)-capacities we
give some comparison theorems. The results should be compared to those for
classical potentials given by L. Carleson (1967).

We first recall the definition of Hausdorff measure. Let h(r) be
increasing and continuous for r = 0, with h(0) = 0, and let K C.FN be compact.
Then, for any p, 0 € p S +o, we set

@ ©
"t(;p)“‘) = inf (1§1 h(r;); K c 121 B(x;, ;). r; < p) ,

i.e. the infimum is taken over all coverings of K by balls B(x . Ty ) with radius

< p. Clearly Ah (K) < Ah (K) if py S Pys SO lig A(p)(K) = Ah(K) < +o exists.
This is the Hausdorff measure of K with respect to h. If h(r) = r* we write

A (K). The set function Ah (K) is sometimes called Hausdorff content. One
can prove that Ah ) . 0 if and only if Ah(K) = 0. See e.g. Carleson (1967).

The following proposition is easy to prove. See Meyers (1970).

12



Propostition 3: Let Br denote a ball tn:RN with radius r, 0 < r < 1.
Then there are constants A1 and A2 such that

N-mp
(a) A1r m p(Br) < A , mp < N

2,1-p 2,1-p
(b) Al(log r) =< cm.p(Br) =< Az(log r) , mp =N,

The first statement in the following theorem is an immediate consequence of
proposition 3. The theorem is proved in Meyers (1979) and in Maz'ja and Havin
(1972).

Theorem 2: Let K c:l;{N be compact, and suppose that K belongs to the unit

bail. Let h(r) = o™ 7 mp < N, h(r) = (log 1P 4 wp=N. Then

(a) there {8 a constant A such that

(=) (xy.
Cm’p(l() <A Ah (K);
(b) Cm’p(l() =0 1f Ah(K) € o,
In the converse direction we have the following deeper result.

Theorem 3: Let K c'.RN be compact, and let h(r) be an tncreasing
continuous function with h(0) = 0. Suppose that

N-mp r

(e

Then there is a constant A such that
(=)
Ay (K) S ACy(K),
and thus Ah(K) =01if Cm'p(K) =
Theorems 2 and 3 have the féllowing corollary.

Corollary: Let M 4 be a smooth d- dimensional manifold in RN. Then
C“l p(Md) =0 {f and only tf mp <N - d.

Theorem 3 was proved by Maz'ja and Havin (1972) by means of quite
difficult estimates of nonlinear potentials (found independently by D.R. Adams

13



in his Minnesota thesis). A somewhat easier proof can now be given by means of
an important inequality of T. Wolff (L.I. Hedberg and T. Wolff (1983)).

1 a-1
Set Wt (x) = p{B{x,r)) QE, if p is a positive Radon measure, and
m,p rN-mp r

0
0 < mp <N.

Theorem 4: Let p be a positive Radon measure. There are constants A, and A

such that

1 2

" "
Ay T dus[Ve dushy S W:,pdp.

What is remarkable here, and due to Wolff, is the right inequality. The left

inequality follows from an easy pointwise estimate: V: p(x) > Al w: p(x) (see

e.g. Hedberg (1972a)). The converse to this is false, if p < 2 - %. To see
this it is enough to let p be a point mass. The original proof of Wolff was
quite complicated. Different simplifications were given, until D.R. Adams (1985)
finally deduced the inequality from a known inequality of B. Muckenhoupt and R.
Wheeden (1974). We sketch this proof.

If p = 0 we define a maximal function

sup Ei§1§;£ll' O=<m<N, p>0.

M p(x) =
mip 0<r=<p N

Then by the theorem of Muckenhoupt and Wheeden
la, * p"q = Ap"Mm;pp"q, for 1 < q < «.

(This is actually a modification, due to D.R. Adams, of their result).

1/2 a 1/q
Set Jm'qp(x) = I [ Ei§§¥$£ll ] g! , 1 <q < o
0

Tp, o) = My o).

Then, for any 6§, 0 < § < &

26 1/q
q
I op(x) = I Eigﬁ%*gll gE > Elgiﬁfﬁll(logz)l/q ,
m,q s r (26)

14



so that
Mm;l/ﬂ"(x) <A Jm,q“(x)'

We recall that [ V: pd” = ﬂGm * p"g, so all we have to show is that for some

constant A

q
195, gelg = A J Wy du.

1/
But JN(Jm,q”)q dx = IN[ iz[ﬂi§§§;£ll]q %E] dx =
R R
1/2
- l [prm(x,r))q ax] r—(,ﬁm .
R

and  f p(B(x,0)% ax = [ pBxeNTH [ duly)) ax
BN RN |y-x|<r

=L 0T s ax) duly) <A D [ uBy.2e) YT auly).
BN |x-y|<r ZRN

The result follows.

Theorem 3 now follows from Theorem 4 by means of the well-known lemma of

0. Frostman, which gives the existence of a measure pu supported on K such that
“(Br) < h(r) for every ball Br' and Aém)(K) < Ap(K). See Carleson (1967) and
Maz'ja - Havin (1972).

4. Thinness of sets.
One of the fundamental ideas in classical potential theory is the concept of a

thin set, which is the generalization to arbitrary sets of the idea of an
irregular set for the Dirichlet problem; In other words, if Q C.RN is a domain,
then a boundary point x is irregular if and only if a° is thin at x. The
irregular boundary points were characterized in‘terms of capacities by Wiener
(1924) (the Wiener Criterion). Brelot (1940) defined thin sets in general, and
extended the Wiener Criterion. Much of this theory has been generalized to the
present nonlinear setting. The theory generalizes in a non-trivial and sometimes
. unexpected way, and there are still some open problems.
We briefly recall the classical situation, expressed in our notation. See

e.g. the books Helms (1969) and Landkof (1966).

Definition 4: Let E C<RN be an arbitrary set. Then E is thin at a point xO if

15



there exists a positive Radon measure p such that

V¥ _(x,) < lim inf v (x).
1,2%0 x-oxo.xeB\(xo) 1,2

This is interpreted as meaning that E is thin at X if X ¢ E. Note

that V¥ _ is lower semicontinuous, so that always V¥ _(x.) < lim inf v o(x).
1,2 1,2'%0 1,2
x-»xo,er\(xo)
The set of points where E is thin is denoted e(E).
The main result characterizing thin sets is the following:

Theorem 5: Let E c:RN. N 22, and let X € E. The Jollowing statements are

equivalent .

(a) E ts (1,2)- thin at Xge
(b) Let G be a neighbourhod of X and let p be the (1,2) - capacitary
measure for E n G.
If G is small enough, then V'l‘ 2(xo) < 1.
’

1

¢, ,(E n B(x,,r))
(e) J—-—-—-—-—“ o,

N-2
r

0

In the special case when E = ac and O is a domain in ‘RN’ Nz 2, we
have Wiener's theorenm.

Theorem 6: A point X, € 80 s regular for the Dirichlet problem for the
Laplace equation in Q@ if and only if

r
N-2 r (=

1

J

¢, 2(0 n B(xo,r)) ar
r

0

An important consequence of Theorem 5 is the so called Kellogg
property.

Theorem 7: C1 2(E ne(E)) =0 for all E.

The earliest nonlinear generalization seems to be due to V.G Maz'ja
(1970).

16



Theorem 8: A point X, € 30 is regular for the Dirichlet problem for the
equation div(grad u |grad ulp"2 ) =0, 1<p=<N, inQ (for solutions in wl'p)
if

1
(J q-1
C1 @n B(xo.r)) ar
N-p r ¢
r
0

It was proved by R. Gariepy and W.P. Ziemer (1977) that the same result is true
for much more general quasilinear elliptic equations of the type

div A(x,u,grad u) = B(x,u,grad u). On the other hand, until quite recently it
was a completely open problem whether the converse is true. The following
theorem is contained in results proved by P. Lindqvist and 0. Martio (1985).
See also V.I. Skrypnik (1984) for necessary conditions.

Theorem 9: The condition tn Theorem 8 is both necessary and suffictient for
regularity tf N -1 < p <N,

The natural generalization of Definition 4 would be by means of the following

statement about E CRN and X ERN:

(A) There exists a positive Radon measure p such that

V¥ (x.) < 1lim inf v (x).
m,p "0 x-»xo.er\(xo) m.p

Another possibility is the following:
(B) There exists a positive Radon measure p such that V: P is bounded and

v* (x.) < lim inf V¢ (x).
m,p "0 x-‘xo,er\(xo) m.p

The natural generalization of the Wiener integral condition is the following:

1

-1
C_ (E n B(x,,r)) )¢
m,p 0 dr
(C) J [ rN-mp = ¢ o, mp < N.
(o]

Unfortunately (A), (B) and (C) are not equivalent in general. What is known is
the following result (Adams-Meyers (1972), Hedberg (1972a)).

Theorem 10: (a) (A) & (B) & (C) for 2 - NP (s 2);

2 Krbec, Analysis 17



(b) (B) = (C) for 1<ps=<2- %;

(c) (C) # (B) for 1 <p<«K2- %.

Because of this we have to choose, which property to take as definition
of a thin set. It turns out that (C) is the best choice.

Definition 5: A set E CR is (m,p)-thin at x. € R" if mp < N and

0

1
lE(E n B(xo.r)) dr
rN-mp )
(0]
The set of points where E is (m,p)-thin is denoted en p(E).

A good reason for saying that this is the right choice of a definition is
that the Kellogg property generalizes. (Hedberg-Wolff (1983)).

Theorem 11: Cm’p(E n em.p(E)) = 0 for all E.

Corollary: The set of irregular boundary points in Theorem 8 has zero
(1,p)- capacity.

If E is a Borel set, Theorem 11 follows quite easily from Wolff's
inequality (Theorem 4), which was in fact proved for this purpose. One needs the
following lemma of Wolff.

Lemma: If there is a Borel set E without the Kellogg property, then for any
e > 0 there is a compdct F c E such that Cn p(F) > 0, and

L 1

(FrB(x,r))] ¥,

_LBW—_ r<a:_forallxeF
r

(o]

Now assume that the Kellogg property fails, and choose F by the lemma.

Let pF be its capacitary measure. Then V (x) 1 everywhere on supp b by
Theorem 1(c), so by (g) in the same theorem, uF(B(x r))) = uF(FnB(x r)) =<
p(FnB(x,r)). Thus

18



t B a-1 t C_ _(FrB a-1
JFQ)=j[pﬂ<mﬂq i _ J[, ( (&mq i

m,p rN-mp r rN-mp r
0 0

for all x ¢ F. By Theorems 1 and 4

B b
F F
Jv dstAfwm'pdp

n,p < Ae yF(F) = Ac Cm (F).

F P
But by Theorem 1(a) [ V:denF = CIn p(F). which is a contradiction if Ae < 1.
This finishes the proof. ' '

The truth of the Kellogg property is a strong indication that
Definition 5 is a good definition of (m,p)-thinness. Much more is true, however.
Theorem 4 leads one to a third equivalent definition of (m,p)-capacity, using
wﬁ,p instead of Vﬁ,p. In fact, by Theorem 1

P

: K

C_ _(K) = sup ( —u(K) ] ; =0, supp p C KJ.
m,p (fvg.pd#)l/q

Thus, by Theorem 4, if we define

Ch p(K) = sup { ;s » 20, supp p C K},

(Feas]
(s an /e

then there are constants A1 and A2 such that

A1 cm.p(K) < C;‘p(K) < A2 Cm,p(K)'
It is then natural to pursue this idea further, and prove an analogue of Theorem
1, with w:.p now playing the role of a nonlinear potential. This was carried out
in Hedberg and Wolff (1983). Later it was observed by Adams (1985) that this can
be made to fit into the general theory of Meyers (1970), so that the existence
of extremals, dual definition of capacity, etc. follow automatically.

Among other things, it turns out that the potentials w:,p provide the
problem to which the definition of an (m,p)-thin set gives the answer. In fact,
Theorem 5 has the following extension (Hedberg-Wolff (1983)).

Theorem 12 : A set E C,RN is (m,p)- thin , m > O, mp < N, at a point X
1f and only if there exists a positive Radon measure p such that

W (x.) < lim inf W (x).
m,p 0 x»xo,er\(xo) m.p

This is more than a curiosity, because w: P appears in a natural way as a
f
nonlinear potential if one makes a capacity theory for Besov spaces analogous to

the theory for Bessel potential spaces given here. In particular, Theorem 4

19



shows that the (m,p)-capacity associated to the Besov space Bﬁ'P is equivalent
to Cm,p. See Adams (1985) and (1986).

A further consequence of the theory is the following generalization of
the well-known Choquet property (Choquet (1959)) in classical potential theory.
See Hedberg and Wolff (1983).

Theorem 13: For any E CZRN and any ¢ > 0 there i{s an open G such that

em'p(E) c G and Cm'p(EnG) < e.
The Kellogg property, Theorem 11, is an immediate consequence.

5. Traces.
By the definition of Wm‘pGRN) its elements are (or can be identified

with) elements in Lp(RN), i.e. the elements are equivalence classes of functions
defined and equal outside Lebesgue nullsets. However, in applications it is
important to be able to give values to these elements on many sets of zero
measure, for example on manifolds of dimension k < N - 1.

For mp > N there is the Sobolev imbedding theorem, which tells us that
every element in Wm'pORN) contains exactly one continuous representative, so
that elements in wm'p(RN) can be identified with continuous functions in a
natural way. If mp < N this is no longer possible, however, but according to the
well-known imbedding theorems of S.L. Sobolev and others, the elements of
Wm'pORN) have traces on k-manifolds, if k is large enough, the traces being

integrable functions with respect to k-dimensional measure. See e.g. the books
by S.L. Sobolev (1950) and R.A. Adams (1975).

In the case of W1'2, traces can be defined on arbitrary sets of positive
(1,2)-capacity by means of the "precisely defined functions" of J.-L. Lions and
J. Deny (1953). We shall now see how this theory generalizes to the more general
wm'p- and Lm'p-spaces.

Let f € Lm’pCRN) (or wm'pGRN) if m is an integer), and let (xn)T be an
approximate identity, i.e. xn(x) = nN x(ﬁ), where x € CS(B(O,l)). x =2 0, and
Jxdx=1. Set £ =fwx Then £ +fin L™P, £ (x) + £(x) a.e., end by the
definition of capacity

. _ P - P
Ca,pl0x3 18, (1) = £, ()] = €)) = Ac Ilfnl £, In,p-

As in Theorem 1(d) one easily proves that a sufficiently sparse subsequence
converges to a function F(x) outside a set of zero (m,p)-capacity, and uniformly
outside an open set of arbitrarily small (m,p)-capacity. (D.R. Adams 11972) even

proved that lim fn(x) = F(x) (m,p)-q.e., without choosing any subsequence.) It
n—+o

follows that

20



(a) F(x) is defined (m,p)-q.e.

(b) F(x) = £(x) a.e. (or more precisely, the function f is a representative
m,p)

of the element f of L

(c) for every ¢ > O there is an open set G with Cm p(G) < & such that
fe C(Gc), i.e. ?ch is continuous on G© (in the induced topology on Gc).

Functions with the properties (a) and (c) are called
(m,p)-quasicontinuous. What gives the notion interest is the following

uniqueness theorem.

Theorem 14: Let fl and fz be two (m,p)- quasicontinuous functions, such that
fl(x) = fz(x) a.e. Then f,(x) = f,(x) (m,p) - q.e.

Corollary: Every element in Lm'pCRN) has an (m,p)- quasicontinuous
representative, which is uniquely determined up to sets of zero
(m,p) ~ capacity.

Theorem 14 was first proved in the classical case by H. Wallin (1963).
See also Deny-Lions (1953) and Deny (1964). The extension to the nonlinear case
is due to Maz'ja and Havin (1972). See also T. Sjédin (1975).

It is now clear how to define the trace on an arbitrary set E of an
element f of L™P or w™'P,

Definition 6: The trace fIE of f e L™P (or wm'P) is the restriction to E of
any (m,p)-quasicontinuous representative of f. Thus, f|E is defined (m,p)-q.e.
on E.

We shall now use the preceding definition of trace in order to study the
continuity of Sobolev functions from another point of view. Suppose that
fe Wm’p, and that the traces of f and a certain number of its derivatives
(understood in the sense of distributions) vanish on some set K. What can be
said about f on a neighbourhood of K?

Clearly, what we can say depends on the capacity of K. For example, if
Cm,p(K) = 0, then fIK = 0 is a vacuous statement. More generally, D%f belongs to

wm-[a].p' S0 D“f|K is defined (m-|a|,p)-quasieverywhere. Thus, D°f K= 0, is a
statement that does not give any information about the function, if

C K) = 0.

m-lal,p( )

In order to formulate the precise result it is convenient to define a

"condenser capacity".
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Definition 7: Let K be a compact subset of an open set G, let k be a positive
integer, and p = 1. Then

¢, (K;G) = inf { 0% Pdx; ¢ € C(G), ¢ = 1 on K).
0

(
k.p Jel=k

We also define a "relative capacity".
‘Definition 8: Let K be a compact subset of an open ball B& with radius é§. Then
By = gkPN .
ck,p(K'BS) =§ Ck'p(K,Ba).

It is easily seen that c is homogeneous of degree O, i.e., if

k,p
§K = {x; x = 6y, y € K}, B5 = B(0,6), and 6K C B&' then

ck'p(SK; BS) = ck,p(K; Bl)'

Moreover, it is easily seen that if kp < N and § < 1, then there is A > 0 such

that for any compact K

Ck (KnBG)

-1
A ck,p(KnBG'st) =< SN-kp

<A ck.p(KnBs; st),

and if kp > N, then

Ck,p(KnBS; BZS) =2A>0

unless KnBs = g, (B26 is concentric to B&')
The result is the following inequality of Poincaré type. (We denote by

k a
V'f the vector (D f)|a|=k‘)

Theorem 15: Let f € wm’pCRN) for some integer m and 1 < p < =, and let
K be a compact set contained in some ball B6 with radius 6. Suppose that
f K= 0 and DaflK =0 for all a, O < |a|] < m-k, for some k, 1 <k <m.
Then

J 1£|Pax =
B

mp
As m
o iy § 1WA, if k= 1,
s 1,p""728 By

and
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[ 1£1Pax < As(“'""l)pg 17K Pax

A
c, _(K;B
B6 5 k,p B

p
y {191 Pax,
26 5

if 2<k=n.
Proof: By homogeneity we can assume that § = 1, and we let BS be the unit ball,
which we denote by B. By a well-known theorem of Hestenes (1941) we can redefine
£ outside B so that [ |vif|Pax =< A J |vif|Pax.

2B B

Thus, it is enough to prove that

g |£1Pax < (K 5 4 f V"¢ | Pax (1)

S 1£1Pax < A [ (v K e Pax +
B

) I 19"t Pax. (2)
B

A
ck,p(K,ZB 5B

First let f € Cw, without any assumption about its zeroes. For any x and y we

write the Taylor expansion of f about y as

£x) = 3 Lox - %y « RO De(x), 3)
Ja<m-1 % y
where
1x-y|
(m-1) __1 m-1 m _ o X
R E(x) = oy £ " (o) e (x - to)dt, o = ﬁ

It is well-known, and not hard to show, that

lR)(,m-l)f’(x)ldy <A f Ml dy
y-x|=<1 ly-x|=1 Ix-yl

(see e.g. Hedberg (1981), p. 246).
Now let x € B, and integrate (3) with respect to y over B. It follows

that ,
1 1
12 - [ g [t - ey <
|o|<m-1 B
<a g TR g (4)
2B |x-y|
The sum on the left is a polynomial P (x) of degree < m-1, whose constant term
is fp = | fB f(y) dy. It follows from (4) that if x € B
v
[£(x) - £l < A 2 [Ive(v) 18y + 4 f 1EGAL gy, (5)
2B |x-y|"



Let p be a probability measure on K, and integrate f(x) - fB with respect to u.
We find if mp < N (we omit the other cases), using the estimate for the Bessel
kernel given earlier,

m-1
Ie(x)du(x) - £51 <& T J 19'8(v)1ay + A J 198 (v)) [I —""—‘1%,,] s
i=1 B 2B K |x-y| :

<A iX J1vte(y)1dy + A J 1) 1Pan P o, « ull - (6)

By Theorem 1 we can choose u so that

2 A
l_ » g = < .
m q 1/p 1/p
cm,p(K) cm’p(K,ZB)

Now let f € wm’pORN) and assume that f'K = 0. Let (f ): be a regularizing
sequence of c® funct1ons We can assume that (f (x)} converges uniformly outside
a set G Wlth C (G) < — C (K). so that fn(x) -+ 0 uniformly on K\G, and
(K\G) E 2 m p(K).
If p is chosen so that supp p c K\G it follows that
I fn(x)du(x) + 0, as n » o,
Applying (6) to fn it follows after a passage to the limit that

w1 i Py, 1/p -1/p
1f50 s A T JoIVe(y)ldy + A (f (V'r(y) 1Py /P e (k;2B)TP. (7)
B L Jp m,p
i=1 2B
Substituting this into (5) we find, again after a passage to the limit, that

ml oo 1/ -1/
Ifx)| s Al T [V Iy + (f I9() 1Py Py (k;2B) TP 4
i=1 B 2B P

+ f l!E—ixll dy] (m,p)-q.e. in B. (8)
2B IX'YI

Integrating over B, and using the fact that cy p(K;ZB) is bounded above, we find
P4\ 1/p ml i Py 1/p
Jglf®) 1Pax)™® = A § (J |V £(y)[Tax)™'" +
i=1 B
o A IT"() 1Pa) P o (ki2m) 7Y/
2B m.Pp

By the well-known inequality
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(Qﬁfwn%w”psAQWNyn%w”P*Agw%ww%wﬂ”

we obtain

(J1£(x)1Pax) P < A(f1ve(x) |Pax) /P +

B B

+ AU 198 (x) 1Pax) /P o (k;28) /P, )
2B m.p

If it is further assumed that VPIK = 0, we can apply (9) to the first

derivatives of f in wm-l,p. and find

(198(x) 1Pax) /P s A(WPe(x) 1Pax) /P a1 (x) Pax) Pe | (k;2m)7H/P
B B 2B m-1,p

if DafIK = 0 for all a with 0 < |a] < m - k, we continue like this step by step.

Substituting into (9) we obtain

1800 1Pa) P < a(f19 % e () Pax) /P o
B B

Py, 1/P .og)~1/p .op) "1/
+ A(gBIme(X)I ax)Ple, (K:2B) /P v isc, (Ki2B)TP) <

< A(flvm-k+1
B

£(x) 1Pax) /P + A(f |VPe(x) 1Pax) /P ¢, (K;28)L/P,
2B P
since ck'p(K;ZB) =< cm,p(K;ZB) if k < m.
If k = 1 we have obtained (1), otherwise (2).

Remark 1: It is easily seen that the theorem can be improved. For example, if
mp < N, then by applying Sobolev's lemma to (8) we can replace the LP-norm on

*
the left hand side by the LP -norm, l’ = % - %. (See Hedberg (1972) for a quick
P

proof of the Sobolev lemma.)

Remark 2: Theorem 15 was proved in Hedberg (1981), Corollary 4.3, in a
straightforward but more complicated way. Closely related inequalities had been
proved much earlier by Maz'ja. The proof given above is close to the proof given
in the book Maz'ja (1985), §10.1.3, but Maz'ja avoids duality, and so obtains a
result that holds for p = 1. N.G. Meyers (1978) has given an abstract approach
to this kind of inequalities.

We finish this exposition by briefly mentioning a related, but more
difficult result.
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Theorem 16: Let m be a positive integer, let 1 < p { », and let
fe wm'p(RN) . Let Q CRN be an arbitrary open set. Then the following

statements are equivalent:

(1) Dafinc =0 forall a, 0< |a|] <m - 1;

(2) £ ewy P@;

(3) for any ¢ > 0 and any compact K c Q there is a function n € c;(n)
such that n =1 onK, 0<n =<1, and |f - nf" mp <&

Here the implications (3) = (2) and (2) = (1) are obvious or easy, so
the hard part is the implication (1) = (3). This was proved in increasing
generality in Hedberg (1978), (1981), and Hedberg-Wolff (1983). We shall not
discuss the proof here, suffice it to mention that it consists in an explicit
construction of the multiplier 5, and that the Kellogg property in Theorem 7,
and the Poincaré inequality in Theorem 15 play a decisive role. In a special
case, a simple proof was given in the author's (1980) expository paper (p. 96).
This case is sufficient for many applications, and the proof indicates the role
of the Poincaré inequality and of thinness.
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