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NONLINEAR POTENTIAL THEORY AND SOBOLEV SPACES 

Lars Inge Hedberg 

Linkoping, Sweden 

1. Introduction 

We shall consider the Sobolev spaces w ,P(R ), where m is a positive integer, 

and 1 < p < ». The elements of ViT,p(R ) are Lp-functions f whose weak partial 

derivatives, denoted Daf, also belong to Lp for lal ̂  m. The norm ||f| is 

defined by 

l f l% P
 B I s \»af\p <**. 

VT , P 0<|a|<fflBN 

1 2 
It is well known that there is a close connection between the space W * and the 

classical potential theory of Gauss, Frostman, H. Cartan etc. Two properties of 
1 2 

W * play an important role here. One is its Hilbert space structure, and the 

other is its property of being closed under contractions, i.e. essentially that 

if u € W 1 , 2 then u + = max(u.O) e W 1 , 2, and |u*| ., 0 <. ||u|| 1 0 . 
W1.-- WL--

During the last two decades a theory of potentials and capacities has been 

developed, which is connected to w in much the same way as the classical 
1 2 

theory is connected to W . It is remarkable that a very large part of the 

classical theory has been carried over to this more general situation, in spite 

of the fact that w"1*1* neither is a Hilbert space (for p * 2), nor is closed 

under contractions (for m * 1). 

This theory has increased our understanding of the ViT^-spaces, and in view of 

the importance of these spaces in the theory of partial differential operators, 

there should be many applications. 

The purpose of these lectures is to give an introduction, and a survey of 

parts of the theory. Then the interested reader should be able to find his way 

through the theory by means of the bibliography. Especially we want to draw 

attention to the recent treatise by V.G. Maz'ja (1985). The bibliography does 

not claim to be complete, but it is not limited to papers mentioned in the text. 



2. Some basic results 

For mp > N the elements in W (R ) can be represented as continuous functions 

by S.L. Sobolev's theorem. It is a rather natural idea to try to measure the 

lack of continuity when mp < N by means of a set function, (m,p) - capacity, 

C , which is associated to the norm of the space. (C. Loewner (1959). V.G. 

Maz'ja (1963). 

N 
Definition 1; Let K c E be compact. Then 

Cm,p(K) = inf {MPm,p; * e C0' ̂ (x) " X ° n K}' 

We extend this definition to all sets in the following way. 

N 
Definition 2; Let G c E be open. Then 

C (G) = sup {C (K); K c G, K compact}. m,p m,p 

N 
Let E cJR be arbitrary. Then 

C (E) = inf (C (G); G D E, G open}. 
m,p m,p 

A capacity extended in this way to all sets is called an outer capacity. 

A property that holds true for all x except those belonging to a set of zero 

(m,p)-capacity is said to be true (m,p)-quasieverywhere• 

For m = 1 and p = 2 the extremal problem in Definition 1 immediately leads to a 

second order linear partial differential equation and to classical potential 

theory. For p -* 2, however, the corresponding equations are non-linear, and very 

difficult to h a n d l e . ! 

Because of this the theory of (m,p)-capacities was not developed very far. It 

was a breakthrough when around 1970 it was realized by several people (B.Fuglede 

(1968), N.G. Meyers (1970), V.G. Maz'ja and V.P. Havin (1970), (1972), Ju.G. 

Resetnjak (1969)) that one can get much further by redefining (m,p)-capacity 

slightly. 

The key to this observation is A.P. Calderon's theorem (1961) about 

representation of W m , P as spaces of Bessel p o t e n t i a l s . 

The Bessel kernel, G , is most easily defined through its Fourier transform, 



%(() = (l • mVm/2. 

Then G has the following properties for 0 < m <. N: 

(a) G > 0, G is radial, decreasing, and continuous for x * 0. 
m m 

(b> Gm<x) " r ^ E + °{—h-] as x -. 0 for 0 < m < N. 

(c) GN(x) = A log -ĵ j- + o(l), as x - 0. 

(d) G e L1, and G (x) = 0(e"c,x|), as x -> «. 

(See also E.M. Stein's (1970) book). 

Let S denote the Schwartz class of C functions that tend rapidly to zero at 

infinity. Let f e S. Then for any real number m, there is a uniquely defined 

function g e S such that f = G * g. (Here # denotes convolution). In fact, 

g = G * f. We introduce a norm, 
-m 

| f lm ,p - u i p . 

and we denote by Lm'P(R ) the closure of S in the norm || • || 

Equivalently, Lm,p(R ) can be defined (for m > 0) as the space of Lp-functions 

f such that f = G * g, with g e Lp. 

Now according to Calderon's theorem (which is a consequence of the Calder6n-

Zygmund theory of singular integrals), 

Lm'PCRN) = W^CR1*) 

for 1 < p < oo and all positive integers m, and there are constants A., and Ap 

such that 

A, 1 f || < |f| SAJf| . 1" "m,p " "wm,p 2" "m,p 

We now redefine (m,p)-capacity in the following way. Let K be compact, and set 

fiv = (f e S ; f > 1 on K}, 



D e f i n i t i o n 3 : For a compact K c E 

C (K) - i n f {||f||p ; f 6 ( L ) . m,p v ' " "m,p K 

The definition of C is extended to arbitrary sets as in Definition 2. 
m,p 

Clearly there are constants A. and Ap such that 

A, C (E) < C (E) <. A„ C (E) 
1 m,p

v ' m,p
x ' 2 m,pv

 ' 

for all sets. This constant is not going to be important for us, so we shall 

from now on drop the distinguishing notation C , and assume that C is 

m,p m,p 

defined by Definition 3-

The following properties are obvious or easy to prove. 

Proposition 1: E± c E,, =* ^ ( E ^ < 0m^(E2). 

oo oo 

Pvoposition 2: C ( u E.) < Y C (E.). K
 m,p

v

i = 1
 i' ^ m,p

x
 i' 

This apparently slight change in the definition of capacity has very 

important consequences for the extremal functions. In fact we can now easily 

prove the following theorem, (0 denotes the closure of SL. in L .) 

iV 
Theovem 1: Let K c E he compact, m > 0, and 1 < p < ». Then theve is a 

unique element f„ = G * gv in Clv such that \\gv\\ ~ C (K). Moveovev, 
i\ m i\ J\ ftp m,p 

(a) Theve is a positive Radon measuve nv such that 

f_. = G # (G * /-J*
3
"
1
. ~ + - = 1, 

K m
 v

 m Hv P q 

C

m
,p'

K
> • '<

G
„ * "K>

9 d X
 " J*

 f
K

 d
"K = 

(c) f (x) < 1 evevywheve on supp /_„; 

(d) f к ^ X ; " - - (m«P)~ <?•«• o n K ; 



(e) M K ( K ) = C m # p ( K ) ; 

(f) C
m,p<

K) * sup ((fQKln| )P; * * °« supp * C K,; 

(s) C (K) « sup {/-(K); /-.>0, supp/i c K, G#(G»M)q"1(x)^l for all x e supp n). 
m,p m m 

For any Radon measure /* -> 0 the function G *(G_ « »u)q" • vf* _ is 
m m m,p 

called a nonlinear potential of p . We observe that for p • q = 2, 

Vm,2 " Gm*(Gm * "> * G2m * »' 

so then we have a classical potential. Then Theorem 1 is a well-known result in 

classical potential theory, although it is more often formulated for the Newton 

kernel |x|2"N or the M. Riesz kernel R (x) « |x|m"N, 0 < m < N, than for G . 
m m 

See e.g. the book by N.S. Landkof (1966). 

Proof of Theorem 1: By the uniform convexity of Lp for 1 < p < • there is a 

uniquely determined extremal fK • G • gR in the closure Q-. of CL. 

Let <p • G * i> be a non-negative function in S. Then fK + ttp e CL. 

for all t . » 0 , so that 

J|gK • ttf|
pdx ;> J|gK|

Pdx * Cm p(K), t * 0. 

Taking the derivative for t « 0 it follows that 

J|gKl
P~2 gK H x - 0 

for all i> € S such that G » \p 2t 0. 
Set |gKl gK

 s h. Then h e Lq, and 

<- * i» . p |h|M - |gKl 

There is a distribution T • G # ht belonging to L "
m , q ( R ) , such that 

h = G * T. It follows that m 

J(Gm * T) * dx l> 0. 

But by the properties of convolutions of distributions this is the same as 

saying that 



<T, G * ф> >. 0, 
ш 

i.e. <T, <p> > 0, 

<, > denoting the action of a distribution on a test function. 

This being true for all positive test functions <p, T is a positive 

measure, which we denote ju„. Thus h = G # \LV, and gv = h
q
 = (G * /-T,)

q
 , 

i\ m i\ i\ m i\ 

which proves part (a) of the theorem. (The final equality follows from a change 

of order of integration.) 

If the same reasoning is repeated with <p e S such that supp <p c K , so 

that f„ + tcp e CL. for all t € R, we find that 

<T, <p> = <џv, <p> = 0 

for all such <p, and thus 

supp nK c K, 

which is (b). 

We observe that f v = G # g„ is a lower semicontinuous function, so that 
K m K 

the set {x; f
K
(x) > 1} is open. It follows that for all test functions <p with 

supp <p c {x; fjAx) > 1}, we have f
R
 + t<p e Q

R
 for all t with |t| sufficiently 

small. Again we find that </..., <p> = 0 for all such <p, so that 

supp ju
R
 c {x; f

R
(x) < 1}, 

which is (c). 

In order to prove (d) we consider a sequence {f } . in (L such that 

n n=i J\ 
| | f | | P •+ i n f ||f||P = C (K). By t h e uniform convex i ty of L P , {f }? i s a n"m,p „ n " "m,p m,p x ' * * n 1 

K 

Cauchy sequence in L
m
'

p
. By the definition of capacity 

C
m,p<

(
*< V * ' -

 f
n

2
«

X
"
 & £" * £"P Hf

ni "
 fn2C,p-

By choosing a sufficiently sparse subsequence {f }i=1 one proves in a 
i 

standard way, using Proposition 2, that lim f (x) = fR(x) (m,p)-q.e., (and 
i-xo i 

uniformly outside an open set of arbitrarily small capacity). Thus fR(x) > 1 

(m.p)-q.e. on K. 

10 



Now let fi be a positive Radon measure with support in K, and let 

f = G * g e a.. Then 

/I(K) < ; f d** = ;(Gm * g) dM = ;(Gm * M)g <-X < |aB * /*|q | |g | |p . 

It follows from H61der's inequality that the same holds true for f € ft... In 

particular, f = f„ gives 
i\ 

I r ^ | - * 0 (K)1'*. 

and thus 

sup {(ll/^jl ) P ; H > 0, supp /i c K} < C m (K). 
II m A*||q »P 

On the other hand, choosing / * . - / ! „ , (c) gives that 

V K ) * ; fK <JPK 

and also that 

t fK d*K * -T(Gm * *K> d"K * -f(Gm * "K>«K * 

• ̂ (Gm * "K>q * • / 4 fc " Cm,p(K> • »Gm * "K»q Cm,p ( K ) 1 / P-

i.e. we have equality in Holder's inequality. It follows that 

"K<K> = Cm,p( K )' 

and (|.n * || ) p = C (K), 
I'V'W m'P 

which proves (e) and (f). 

Finally, in order to prove (g), we consider a positive measure y. with 

supp fj, c K such that v'4 (x) < 1 on supp /-. 

Then ; V£ p d/i < /*(K) . 

But ; v£ t p d„ = ; Gm*(Gm * M ) ^ 1 d/i = ;(Gm * ^ ) q dx, 

||Gm * „ | q < )u(K)1/q. 

On the other hand, by (f) 

11 



„(K)
 S
 |G

B
 . „|

q
 C

B p
( K )

1 / p
. 

whence /.(K) S / . (K) 1 ! q
 C (K)

1 / p
. 

m,p 

and џ(K) ssC
 n
(K). 

m,p 

By (c) and (e) the measure ?„ gives equality, and this proves (g). 

Remark; This approach to Theorem 1 is due to Maz*ja and Havin (1970), (1972) 

and to Resetnjak (1969). Another very elegant approach, due to B. Fuglede 

(1968), is to apply the Minimax Theorem to the bilinear functional 

*(p.g)
 s f(0m » ;-)g dx - J(G

m
 # g) d>. 

See N.G. Meyers (1970). The advantage is that this works equally well for more 

general kernels k(x,y) instead of G (x - y). Here k does not have to be 

symmetric, and x and y do not even have to belong to the same space. The theory 

has been applied in weighted L
p
-spaces, and in Besov and other spaces by D.R. 

Adams (1983) and (1986). 

3. Comparison theorems. 

In order to give a more concrete idea of the properties of (m,p)-capacities we 

give some comparison theorems. The results should be compared to those for 

classical potentials given by L. Carleson (1967). 

We first recall the definition of Hausdorff measure. Let h(r) be 

increasing and continuous for r ;> 0, with h(0) * 0, and let K c E be compact. 

Then, for any p, 0 < p <. +«, we set 

* CO CO 

lSp)(K) = inf { I h(r.); K c u B(x,, r A , r, < p) , 
n
 i s l

 1
 i s l

 i 1 1 

i.e. the infimum is taken over all coverings of K by balls B(x., r.) with radius 
(A>J (p7) ln\ 

< p . Clearly A.̂  x
 (K) 2S A

h
 * (K) if P 2 < p v so lim A^

p;
(K) = A^K) < +« exists. 

p->0 
This is the Hausdorff measure of K with respect to h. If h(r) - r we write 

(00) 
A (K). The set function A/ '(K) is sometimes called Hausdorff content. One 

a
 {*«>.

 n 

can prove that A.: ' =- 0 if and only if A.(K) • 0. See e.g. Carleson (1967). 

The following proposition is easy to prove. See Meyers (1970). 

12 



Proposition S: Let B denote a ball inH with radius r, 0 < r s 1. 

Then there are constants A. and A2 such that 

(a) A1r
N~fflp £ C B f p (B p ) * A./""*, mp < N 

(b) A^log fV" P S Cm > p(B r) 5 A2(log fV" P , mp * N. 

The first statement in the following theorem is an immediate consequence of 

proposition 3» The theorem is proved in Meyers (1979) and in Maz'ja and Havin 

(1972). 

Theorem 2: Let K c E be compact, and suppose that K belongs to the unit 

ball. Let h(r) = r N" m p if mp < N, h(r) = (log | ) 1 - p if mp * N. Then 

(a) there is a constant A such that 
C . ^ m - S A ^ K ) ; 

(b) c

m t P <
K ) * 0 if A^K) < «. 

In the converse direction we have the following deeper result. 

Theorem 3: Let K c E be compact, and let h(r) be an increasing 
continuous function with h(0) * 0. Suppose that 

1 

Jłírl 
rN-mp 

q-i 
!?£< 

0 

Then there is a constant A such that 

A^(K) iAC||p(K), 

and thus A. (K) * 0 if C (K) = 0. n m,p 

Theorems 2 and 3 have the following corollary. 

Corollary: Let M, be a smooth d- dimensional manifold in B . Then 
Cm *Md* = 0 if and only if mp < N - d. 

Theorem 3 was proved by Maz'ja and Havin (1972) by means of quite 

difficult estimates of nonlinear potentials (found independently by D.R. Adams 

13 



in his Minnesota thesis). A somewhat easier proof can now be given by means of 

an important inequality of T. Wolff (L.I. Hedberg and T. Wolff (1983)). 
1 

dr 

—-, if /1 is a positive Radon measure, and 
Set W^

p
(x) = 

/-(B(x,r)) 

r
N-mp 

0 
0 < mp <. N. 

Theorem 4: Let p be a positive Badon measure. There are constants A. and A
2 

such that 

A. ГW
/1 dџ < Г VЏ dџ < A

0
 Г W** dџ. 

1
 J
 m,p ̂

 J
 m,p

 ľ 2 J m,p ľ 

What is remarkable here, and due to Wolff, is the right inequality. The left 

inequality follows from an easy pointwise estimate: V^ (x) > A1 w'* (x) (see 

e.g. Hedberg (1972a)). The converse to this is false, if p < 2 - j-j. To see 

this it is enough to let n be a point mass. The original proof of Wolff was 
quite complicated. Different simplifications were given, until D.R. Adams (I985) 

finally deduced the inequality from a known inequality of B. Muckenhoupt and R. 

Wheeden (1974). We sketch this proof. 

If JU > 0 we define a maximal function 

M . fx(x) = sup / A ( B

N

X

m

r ) ), 0 < m < N, p > 0. 
m,/> 0<r<p r 

Then by the theorem of Muckenhoupt and Wheeden 

G * n\\ < A M J , for 1 < q < «. 11 m "q p" m;p^"q 

(This is actually a modification, due to D.R. Adams, of their result). 

ll/q 
Set J д(x) 

m,q 

1/2 
Г | џ(B(x,r)) 

0 
N-m 

dr 1 < q < co; 

J
m,co"

(x)
 = ^шa/2^' 

Then, for any 5, 0 < 6 * ; 

J
m,q^

( x )
 * 

í 25 

í 
S 

џ(B(x,r)) 

N-m 
r 

q đ г 
r 

1/q 
MB(x,t)),

 l p g 2 )
l/q 

(2SY 

14 



so t h a t 

Vl/^30 - A Jm,q" ( x )-

We r e c a l l t h a t / V^ d/t = ||G * /tilq , so a l l we have t o show i s t h a t fo r some m,p m q 
c o n s t a n t A 

flj 4 q < A / WM d/i. 11 m,q "q J m,p 

1/2 

But J u . ^ a, = J ( J (*<1^)9 *) ax -
E N E N ° r 

1/2 

0 E N 

and / / i ( B ( x , r ) ) q dx = / # i ( B ( x , r ) ) q " 1 ( / d/*(y)) dx 
-RN K N | y - x | < r 

- / ( / / i ( B ( x , r ) ) q " 1 dx) d#i(y) < A r N / /*(B(y,2r) ) q " 1 d / - (y) . 
BN | x - y | < r ^N 

The result follows. 

Theorem 3 now follows from Theorem -. by means of the well-known lemma of 

0. Frostman, which gives the existence of a measure /. supported on K such that 

/i(Br) < h(r) for every ball Br, and A^
0' (K) < A/i(K). See Carleson (1967) and 

Maz'ja - Havin (1972). 

4. Thinness of sets. 

One of the fundamental ideas in classical potential theory is the concept of a 

thin set, which is the generalization to arbitrary sets of the idea of an 
N 

irregular set for the Dirichlet problem. In other words, if Q c B is a domain, 

then a boundary point x is irregular if and only if fi is thin at x. The 

irregular boundary points were characterized in terms of capacities by Wiener 

(1924) (the Wiener Criterion). Brelot (1940) defined thin sets in general, and 

extended the Wiener Criterion. Much of this theory has been generalized to the 

present nonlinear setting. The theory generalizes in a non-trivial and sometimes 

unexpected way, and there are still some open p rob lems . 

We briefly recall the classical situation, expressed in our n o t a t i o n . See 

e . g . the books Helms (1969) and Landkof (1966) . 

N 
Definition 4: Let E c E be an arbitrary set. Then E is thin at a point xn if 

15 



there exists a positive Radon measure /* such that 

V? 2(xn) < lim inf V? 2(x). 
lf* U x-x0.x€E\{xQ}

 lf* 

This is interpreted as meaning that E is thin at xQ if xQ ̂  E. Note 

that V? ? is lower semicontinuous, so that always V? ?(xn) .5 lim inf V? «(x) , 
%* x^x0.x€E\{x0)

 l>* 

The set of points where E is thin is denoted e(E). 

The main result characterizing thin sets is the following: 

Theorem 5: Let E c B , N ;> 2, and let xQ € E. The following statements are 

equivalent . 

(a) E is (1,2)- thin at xQ. 

(b) Let G be a neighbourhod of xQ and let /i be the (1,2) - capacitary 

measure for EnG. 

If G is small enough, then V? 2(xQ) < 1. 

i 

(-) I *'* ».- " ІГ < -• 
0 

1 

f
 C
1 . 2

( B П B ( X
0 ' 

J 
г
» d r 

c N 

In the special case when E = 0 and 0 is a domain in B , N > 2, we 

have Wiener's theorem. 

Theorem 6: A point x
Q
 e dCl is regular for the Dirichlct problem for the 

Laplace equation in Q if and only if 

f C
1 2
(

O

c
n B ( x

0
. r ) )

d r 

< oo 
N-2 r " 
r 

An important consequence of Theorem 5 is the so called Kellogg 

property. 

Theorem 7: C^
 2
(E n e(E)) * 0 for all E. 

The earliest nonlinear generalization seems to be due to V.G Maz'ja 

(1970). 

16 



equation div(grad u |grad u|p~ ) • 0, 1 < p £ N, in 0 (fov solutions in W ,p) 

Theovem 8: A point xQ e 30 is vegulav fov the Divichlet problem fov the 

equ 

if 

1 
ГC

l ł P(O
cnB(x o tr))1 

Г
N-P 

-1 
dг . 

< co. 

Г 

It was proved by R. Gariepy and W.P. Ziemer (1977) that the same result is true 

for much more general quasilinear elliptic equations of the type 

div A(x
t
u,grad u) * B(x

t
u

t
grad u). On the other hand, until quite recently it 

was a completely open problem whether the converse is true. The following 

theorem is contained in results proved by P. Lindqvist and 0. Martio (1985). 

See also V.I. Skrypnik (1984) for necessary conditions. 

Theovem 9: The condition in Theorem 8 is both necessavy and sufficient fov 

vegulavity t/N-l<p.£N. 

The natural generalization of Definition 4 would be by means of the following 

statement about E c E and xQ eJR : 

(A) There exists a positive Radon measure /* such that 

Another possibility is the following: 

(B) There exists a positive Radon measure /* such that \r" is bounded and 
mtp 

VM (xj < lim inf V*4 (x). 
m.p 0 „. . m.p tV w x-xQtx€E\{x0)

 , v 

The natural generalization of the Wiener integral condition is the following: 

1 

, . I I ^ ^ ' 1 " 1 — < <». mp ̂  N. 

Unfortunately (A), (B) and (C) are not equivalent in general. What is known is 

the following result (Adams-Meyers (1972), Hedberg (1972a)). 

Theovem 10: (a) (A) # (B) o (C) fov 2 - | < p {* ~); 

2 Krbec, Analysis 1 7 



(b) (B) => (C) fov 1 < p <. 2 - =; 

(c) (C) -> (B) fov 1 < p < 2 - g. 

Because of this we have to choose, which property to take as definition 

of a thin set. It turns out that (C) is the best choice. 

Definition 5: A set E c E N is (m,p)-thin at xn €_R
N if mp < N and 

Г íCm.P<
E П B (

V
г ) )

1 
N-mp 

q-1 
dr 

The set of points where E is (m.p)-thin is denoted e (E). 

A good reason for saying that this is the right choice of a definition is 

that the Kellogg property generalizes. (Hedberg-Wolff (1983)). 

Theovem 11: C (E n e (E)) = 0 fov all E. 
m,p

v
 m,p

v
 "

 J 

Covollavy: The set of ivvegulav boundavy points in Theovem 8 has zevo 

(l,p)- capacity. 

If E is a Borel set, Theorem 11 follows quite easily from Wolff's 

inequality (Theorem -I), which was in fact proved for this purpose. One needs the 

following lemma of Wolff. 

Lemma: If theve is a Bovel set E without the Kellogg pvopevty, then fov any 

e > 0 theve is a compdct F c E such that C (F) > 0, and 
m,p 

C (FnB(x.r)) 
Ш
» P 

N-mp 

q-1 
dr -Ţ < c fov all x c F. 

Now assume that the Kellogg property fails, and choose F by the lemma. 

Let n„ be its capacitary measure. Then V (x) < 1 everywhere on supp /-p by 

Theorem 1(c), so by (g) in the same theorem, /*F(B(x,r))) = /ip(FnB(x,r)) < 

C (FnB(x,r)). Thus 



W (x) 
m,p

v
 ' 

M
ғ
(B(x,r)) 

N-mp 

q-1 

r 

C (FnB(x,r)) 
ш,p 

N-mp 

q-1 
dr 

for all x c F. By Theorems 1 and -I 

t V.>F S A ; Wm.p đ"ғ S A£ "F<F> " A£ Cm.p<F>-

But by Theorem 1(a) f V d/i- = C AF), which is a contradiction if Ac < 1. m,p r m,p 

This finishes the proof. 

The truth of the Kellogg property is a strong indication that 

Definition 5 is a good definition of (m,p)-thinness. Much more is true, however. 

Theorem -I leads one to a third equivalent definition of (m,p)-capacity, using 

WM instead of V** . In fact, by Theorem 1 m,p ni,p 

C ÍK) = sup ( . , m-P I W' Ы1'* 
[ ~.K) I

1 

l ( K a,.)1"* J 
ï џ ł> 0, supp џ C K}. 

m,p 
Thus, by Theorem -., if we define 

c;p(ю = suP i 
f_дffl f. „ 

ІUKP*0 1 /«Г' 
.> 0, supp џ c K), 

then there are constants A., and A? such that 

AlCm,p<K> á C; .p<K> SA2Cm.p<K>-

It is then natural to pursue this idea further, and prove an analogue of Theorem 

1, with W^ now playing the role of a nonlinear potential. This was carried out 

in Hedberg and Wolff (1983). Later it was observed by Adams (1985) that this can 

be made to fit into the general theory of Meyers (1970), so that the existence 

of extremals, dual definition of capacity, etc. follow automatically. 

Among other things, it turns out that the potentials W^ provide the 

problem to which the definition of an (m,p)-thin set gives the answer. In fact, 

Theorem 5 has the following extension (Hedberg-Wolff (1983)). 

Theorem 12 A set E c B is (m,p)- thin , m > 0, mp _s N, at a point 

if and only if there exists a positive Radon measure /* such that 

W-.p<x0> < lim inf W* m,p 
(x). 

X-+X0,XGE\{XQ) 

This is more than a curiosity, because W^ appears in a natural way as a 
m,p 

nonlinear potential if one makes a capacity theory for Besov spaces analogous to 

the theory for Bessel potential spaces given here. In particular, Theorem 4 
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shows that the (m,p)-capacity associated to the Besov space B p , p is equivalent 

to Cm . See Adams (1985) and (1986). 

A further consequence of the theory is the following generalization of 

the well-known Choquet property (Choquet (1959)) in classical potential theory. 

See Hedberg and Wolff (1983). 

Theorem 13: For any E c R and any e > 0 there is an open G such that 

e (E) c G and C (EnG) < c. 
m,p ffi.p 

The Kellogg property, Theorem 11, is an immediate consequence. 

5. Traces. 

By the definition of fcr,p(R ) its elements are (or can be identified 

with) elements in LP(R ), i.e. the elements are equivalence classes of functions 

defined and equal outside Lebesgue nullsets. However, in applications it is 

important to be able to give values to these elements on many sets of zero 

measure, for example on manifolds of dimension k <. N - 1. 

For mp > N there is the Sobolev imbedding theorem, which tells us that 

every element in W ,P(R ) contains exactly one continuous representative, so 

that elements in W (R ) can be identified with continuous functions in a 

natural way. If mp < N this is no longer possible, however, but according to the 

well-known imbedding theorems of S.L. Sobolev and others, the elements of 

foP,p(R ) have traces on k-manifolds, if k is large enough, the traces being 

integrable functions with respect to k-dimensional measure. See e.g. the books 

by S.L. Sobolev (1950) and R.A. Adams (1975). 
1 2 

In the case of W ' , traces can be defined on arbitrary sets of positive 

(1,2)-capacity by means of the "precisely defined functions" of J.-L. Lions and 

J. Deny (1953). We shall now see how this theory generalizes to the more general 

W ,p- and Lm,p-spaces. 

Let f e Lm,p(RN) (or W^CR1*) if m is an integer), and let ixn)" be an 

approximate identity, i.e. x (-0 - n x(~) • where x € CQ(B(0,1)), x -- 0, and 

J X dx = 1. Set f = f * xn. Then f -> f in Lm,p, f (x) -»• f(x) a.e., and by the 

definition of capacity 

c
m .P

( ( x=i f
n i

( x> - v > i * «» * A£"p»f
ni - f

n 2 C p -

As in Theorem 1(d) one easily proves that a sufficiently sparse subsequence 

converges to a function f(x) outside a set of zero (m,p)-capacity, and uniformly 

outside an open set of arbitrarily small (m,p)-capacity. (D.R. Adams (1972) even 

proved that lim f (x) = f(x) (m,p)-q.e., without choosing any subsequence.) It 
n->«> 

follows that 
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(a) f(x) is defined (m,p)-q.e. 

(b) f(x) = f(x) a.e. (or more precisely, the function f is a representative 

of the element f of L m , p ) . 

(c) for every £ > 0 there is an open set G with Cm -AG) < e such that 

f e C(GC), i.e. f|Gc is continuous on G
C (in the induced topology on G c). 

Functions with the properties (a) and (c) are called 

(m,p)-quasicontinuous. What gives the notion interest is the following 

uniqueness theorem. 

Theovem 14: Let f. and f2 be two (m,p)- quasi continuous functions, such that 

f^x) = f2(x) a.e. Then f^x) = f2(x) (m,p) - q.e. 

Covollavy: Evevy element in Lm,p(R ) has an (m,p)- quasi continuous 

vepvesentative, which is uniquely detevmined up to sets of zevo 

(m,p) - capacity. 

Theorem 14 was first proved in the classical case by H. Wallin (1963). 

See also Deny-Lions (1953) and Deny (196-4). The extension to the nonlinear case 

is due to Maz'ja and Havin (1972). See also T. SjGdin (1975). 

It is now clear how to define the trace on an arbitrary set E of an 

element f of L m , p or Wm,p. 

Definition 6: The trace f L of f e L m , p (or Wm'p) is the restriction to E of 

any (m,p)-quasicontinuous representative of f. Thus, f|_ is defined (m,p)-q.e. 

on E. 

We shall now use the preceding definition of trace in order to study the 

continuity of Sobolev functions from another point of view. Suppose that 

f € Wm'p, and that the traces of f and a certain number of its derivatives 

(understood in the sense of distributions) vanish on some set K. What can be 

said about f on a neighbourhood of K? 

Clearly, what we can say depends on the capacity of K. For example, if 

C (K) - 0, then f L = 0 is a vacuous statement. More generally, Daf belongs to 

Wm 'a''p, so Daf|K is defined (m-|a|,p)-quas-everywhere. Thus, D^fl^ = 0 , is a 

statement that does not give any information about the function, if 

C . . (K) = 0. m-|a|,pv 

In order to formulate the precise result it is convenient to define a 

"condenser capacity". 
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Definition 7« Let K be a compact subset of an open set G, let k be a positive 

integer, and p > 1. Then 

C, (K;Q) = inf { £ /|Da<p|Pdx; 9 e c"(Q), <p > 1 on K). 
K , P |a|=k U 

We also define a "relative capacity". 

Definition 8: Let K be a compact subset of an open ball B. with radius S. Then 

c. (K;Br) = 5
kp~N C. (K;Bf). k,pv S' k,pv * S' 

It is easily seen that c, is homogeneous of degree 0, i.e., if 

SK = {x; x = Sy, y e K), B = B(0,5), and SK c Bc, then 
O 0 

c k , p < * K < v = ck,p<K= B l>-

Moreover, it is easily seen that if kp < N and S < 1, then there is A > 0 such 

that for any compact K 

C, (KnB ) 
A c , (KnB.;B 0 A < TP . < A c (KnBf; B o c ) , 

k,pv S 25 gN-kp k,px S 2S' 

and if kp > N, then 

c. (KnBf; Boc) > A > 0 k,pv 5' 2S' 

unless KnB. = 0. (B^ is concentric to B..) 

The result is the following inequality of Poincare type. (We denote by 

Vkf the vector (Daf). . , .) |a| =k 

Theorem 15: Let f e Wm'pQR ) for some integeT m and 1 < p < », and let 

K be a compact set contained in some ball B. with radius S. Suppose that 

f|K = 0 and Daf|K = 0 for all a, 0 < |a| < m-k, for some k, 1 < k < m. 

Then 

AÍ ; | f | p
đ x đ * ; iv m f | p

đ x, ť / k . i. 
s 

and 
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/ |f|pdx * A*<m"k+1>p / |v®-k+1f|pdx • e
 Af! P

B . / ,y"f|Pdx, 

if 2 < k <. m. 

Proof: By homogeneity we can assume that 5 = 1 , and we let B- be the unit ball, 

which we denote by B. By a well-known theorem of Hestenes (19**--) we can redefine 

f outside B so that / \VJf|Pdx < A / |Vjf|pdx. 
2B B 

Thus, it is enough to prove that 

/ |f| pdx< c
 A

 B ) J |V
mf|Pdx (1) 

B Cl,p^'*; 2B 
or 

; |f|pdx S A / IT-^^flPdx • c
 A

( R S |7"f|"dx. (2) 
B B k,p 2B 

First let f e C , without any assumption about its zeroes. For any x and y we 

write the Taylor expansion of f about y as 

f(x) * I h <x - y)aDQf(y) + Rim~1}f(x), (3) 
|a|<m-l a' y 

where 

R ( m"1 )f(x) - 7 - V l ' T ' tm-1(a.V)mf(x - tcrjdt. a - - ^ y (m-1)! J
Q |x-y| 

I t i s well-known, and not hard to show, that 

/ I R ^ f W i d y ^ A J ^ ^ d y 
|y-x|<i y |y-x|<i | x - y f m 

(see e.g. Hedberg (1981), p. 2 4 6 ) . 

Now let x e B, and integrate (3) with respect to y over B. It follows 

that 

|f(x) - / TWT / ̂?(x - y)Vr(y)dy| < 
|a|<m-l ' ' B a' 

s A 4, f^dy-
2B |x-y| 

The sum on the left is a polynomial P _1(x) of degree < m-1, whose constant term 

is fB = jlj JB f(y) dy. It follows from (4) that i f x e B 

|f(x) - f | < A \ J lV^tyJldy + A / ' ^ ^ j , dy. (5) 
B i= lB 2B |x -y | W 



Let ,u be a probability measure on K, and integrate f (x) - f
B
 with respect to /.. 

We find if mp < N (we omit the other cases), using the estimate for the Bessel 

kernel given earlier, 

m-1 

ђ î - 1 B 2B l K |x-yГ J 
lXf(x)d,u(x) - fR| < A l S |V Íf(y)|dy + A J l^f fy) ! 

B i*l B 2B 

- A í / l^fťyJldy • A {/ |V*f(y) | p dy} 1 / p |fl * M | . (6) 
i-1 B 2B m q 

By Theorem 1 we can choose /* so that 

2 ^ A 
^ " V - ( K ) V P - C (к.2B, 

m,p m,p* ' 

І/P* 

Now let f e ViT^CR ), and assume that f|
R
 • 0. Let (f }" be a regularizing 

sequence of C functions. We can assume that {f (x)} converges uniformly outside 
1 

a set G with C (G) < r C ^(K), so that f (x) -» 0 uniformly on K\G, and 
,« m f p & ID ̂  p n 

C » , P ( K \ G ) fcic».P<K»-
If fi is chosen so that supp /* c K\G it follows that 

J* f (x)d,u(x) -* 0, asn-*«. 

Applying (6) to f it follows after a passage to the limit that 

|f | < A l LlV^yJldy • A {/ |v"f (y) |
P
d y }

1 / p
 c

m o
(K;2B)"

1 / p
. (7) 

° isl
 D on m*p 2B 

Substituting this into (5) we find, again after a passage to the limit, that 

f m-1 
|f(x)| < A l S |VÍf(y)|dy • {/ |Vmf(y)|pdy}1/pcm (K;2B)"1/p • 

2B |x-y|N-m . 
(m,p)-q.e. in B. (8) 

Integrating over B, and using the fact that c (K;2B) is bounded above, we find 

(L|f(x)|Pdx)1/p < A "Ž (S l^ftyj^dx) 1^ • 
i=l B 

* MS |Vmf(y) |pdx)1 / p . c <K;2Bf1/p. 
2B a,P 

By the well-known inequality 
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(J|V1f(y)|pdy)1/p s A(;|Vf(y)|pdy)1/p • A(/|-*f(y)|pdy)1/p 

B B B 

we obtain 

(J|f(x)|Pdx)1/p < A(J|Vf(x)|pdx)1/p + 
B B 

+ A(J |Vmf(x)|Pdx)1/p c n(K;2B)"
1/p. (9) 

2B m,p 

If it is further assumed that Vf|K - 0, we can apply (9) to the first 

derivatives of f in r 'p, and find 

(J|Vf(x)|Pdx)1/p < A(J]V2f(x)|Pdx)1/p+ A(J|Vmf(x)|Pdx)1/pcm , (K;2Bf1/p 

B B 2B m 1 , p 

If D f|„ = 0 for all a with 0 < |a| < m - k, we continue like this step by step. 

Substituting into (9) we obtain 

( J | f ( x ) | P dx) 1 / p < A(J |Vm"k + 1f(x)|Pdx)1 / p + 
B B 

+ A(J |Vmf(x)|Pdx)1 / p(c n(K;2B)"1/p + ...+C, (K;2Bf1 / p) <. 
PR t a » P K » P 

< A(J |Vm-k + 1f(x) |Pdx)1 / p
 + A(J l ^ f t x j ^ d x ) 1 ^ c, n(K;2B)-1 / p , 

B 2B , p 

since cfc (K;2B) ^ cm (K;2B) i f k <. m. 

If k - 1 we have obtained (1), otherwise (2). 

Remark 1: It is easily seen that the theorem can be improved. For example, if 

mp < N, then by applying Sobolev's lemma to (8) we can replace the Lp-norm on 

the left hand side by the Lp -norm, - # « ~ - jj. (See Hedberg (1972) for a quick 
P P 

proof of the Sobolev lemma.) 

Remark 2: Theorem 15 was proved in Hedberg (1981), Corollary -L3» in a 

straightforward but more complicated way. Closely related inequalities had been 

proved much earlier by Maz'ja. The proof given above is close to the proof given 

in the book Maz'ja (1985), §10.1.3. but Maz'ja avoids duality, and so obtains a 

result that holds for p > 1. N.G. Meyers (1978) has given an abstract approach 

to this kind of inequalities. 

We finish this exposition by briefly mentioning a related, but more 

difficult result. 
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Theovem 16: Let m be a positive integer, let 1 < p < «, and let 

f e Wm,PCR )• Let Q c B be an avbitvavy open set. Then the following 

statements ave equivalent: 

(1) Daf I = 0 fov all a, 0 £ |a| <. m - 1; 
'Oc 

(2) fe«5»p((l); 

(3) fov any e > 0 and any compact K c 0 there is a function rj € c"(f.) 

such that J7 = l o n K , 0 £ 17 £ 1, and ||f - iff] < e. 

Here the implications (3) -* (2) and (2) -> (1) are obvious or easy, so 

the hard part is the implication (1) => (3). This was proved in increasing 

generality in Hedberg (1978), (1981), and Hedberg-Wolff (1983). We shall not 

discuss the proof here, suffice it to mention that it consists in an explicit 

construction of the multiplier rj, and that the Kellogg property in Theorem 7, 

and the Poincare inequality in Theorem 15 play a decisive role. In a special 

case, a simple proof was given in the author's (1980) expository paper (p. 96). 

This case is sufficient for many applications, and the proof indicates the role 

of the Poincare inequality and of thinness. 
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