NAFSA 3

L. D. Kudryavtsev

On stabilization of functions and free boundary variational problems on unbounded intervals [Summary]

In: Miroslav Krbec and Alois Kufner and Jiří Rákosník (eds.): Nonlinear Analysis, Function Spaces and Applications, Proceedings of the Spring School held in Litomyšl, 1986, Vol. 3. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1986. Teubner Texte eur Mathematik, Band 93. pp. 140--141.

Persistent URL: http://dml.cz/dmlcz/702434

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
[3] O. V. BeSOV: Estimates of L_{p}-moduli of continuity and imbedding theorems for domains with the flexible horn property (Russian). Dokl. Akad. Nauk SSSR (5), 275 (1984), 1036-1041.
[4] O. V. BESOV: Estimates of integral moduli of continuity and imbedding theorems for domains with the flexible horn property (Russian). Trudy Mat. Inst. Steklov 172 (1985), 4-15.
[5] O. V. BESOV: On the Hörmander theorem on the Fourier multipliers (Russian). Trudy Mat. Inst. Steklov 173 (1986), 3-13.

ON STABILIZATION OF FUNCTIONS AND FREE BOUNDARY VARIATIONAL PROBLEMS ON UNBOUNDED INTERVALS

L. D. Kudryavtsev
Moscow, U.S.S.R.

We consider the class of functions $u:(1, \infty) \rightarrow \mathbf{R}$ which stabiIize to polynomials $P(t ; u)=\sum_{m=0}^{r-1} a_{m} t^{r l} \quad(r \in \mathbb{N}$ is fixed) as $t \rightarrow+\infty$. For functions fron this class the inequality

$$
\begin{aligned}
\left|u^{(s)}(t)\right| \leqq & c\left(\sum_{\mu=1}^{k}\left|u^{\left(i_{\mu}\right)}(1)\right|+\sum_{V=1}^{\ell}\left|a_{j_{\nu}}\right|+||\phi u||_{L_{p}(1,+\infty)}\right), \\
& 1 \leqq p \leqq+\infty, \quad j=0,1, \ldots, r-1, \quad t \in(1,+\infty),
\end{aligned}
$$

is established where ϕ is a given function (a weight), $t^{\alpha} \phi^{-1}$ $\in L_{\mathrm{C}}(1,+\infty), \alpha>r-1,1 / p+1 / \mathrm{q}=1, \mathrm{k}+\ell \geq r ;\left\{i_{\mu}\right\}_{\mu=1}^{\mu=k}$ and $\left\{j_{\nu}\right\}_{\nu=1}^{v=\ell}$ are admissible sets of indices i, $j \in \overline{0, r-1}$, connected with the Pólya problem [1], a_{j} are the coefficients of the polynomial $P(t ; u)$, the constant $c>0$ is independent of the function u $[2,3]$.

In the case $p=2$ we prove existence and uniqueness of a function minimizing the corresponding quadratic functional in the class (${ }_{\mu}$)
considered, $u^{\mu}(1), \mu=1, \ldots, k$, and $a_{j_{\nu}}, v=1, \ldots, \ell$, being fixed.

The conditions are explained which are satisfied by the solution to this problem with arbitrary values of i and j at the ends of the interval $(1,+\infty)$.
[1] G. POLYA: Bemerkung zur Interpolation und zur Näherungstheorie der Balkenbiegung. Z. Anciew. Math. Mech. 11 (1931), 445-449.
[2] L. D. KUDRYAVTSEV: On estimates of derivatives on unbounded intervals (Russian). Dokl. Rkad. Nauk SSSR (6), 287 (1986), 1305-1309.
[3] L. D. KUDRYAVTSEV: On a certain inequality by Lizorkin and Nikolskii for an unbounded interval (Russian). Trudy Mat. Inst. Steklov 173 (1986), 140-148.
$|4|$ L. D. KUDRYAVTSEV: On the variational method for generalized solutions of differential equations in functional spaces with a power weight (Russian). Differentsial'nye Uravnenija 19 (1983), 1723-1740.

