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Mappings of Monotone Type: 

Theory and Applications 

VESA MUSTONEN, OULU 

1. INTRODUCTION 

Let X be a real reflexive Banach space and let X* stand for its dual space with respect to the 
continuous pairing ••. A mapping T from its domain D(T) in X to X* is said to be monotone 
if 

T(u) - T(v)u - v > 0 for all «, v € D(T). 

Mappings from a subset of x to X* are rather natural framework for the approach to deal with 
the problems of calculus of variations. Indeed, if <j> is a convex functional from a subset G of 
X to , then its derivative # is a mapping from G to X* and in fact, <j> is convex if and only 
if <j>' is monotone. The basic result for monotone mappings obtained by Minty in early sixties 
says that every monotone hemicontinuous coercive mapping form X to X* is surjective. This 
theorem has many extensions to more general classes of mappings of monotone type as was 
shown by Browder, Visik, Brezis, Leray and Lions, Hess, Gossez and others in the following 
two decades. The principal tool in proving such extension was a Galerkin method which uses 
approximations in finite dimensional spaces. 

On the other hand, the degree of mapping has been one of the most important tools in 
nonlinear functional analysis applied to obtain existence and multiplicity results for solutions 
of functional equations. The classical degree for continuous mappings from a bounded open 
subset G of N to N was constructed by Brouwer in 1912. In the celebrated paper by Leray and 
Schauder in 1934 the degree was extended for mappings in infinite dimensional Banach spaces 
of the form F = I -f C where J is the identity map and C is compact. Since then a number 
of further generalizations have been introduced. Important recent contributions are due to 
Browder in the framework of his larger program of studying the mapping degree for general 
classes of mappings with domains in one Banach space X and ranges in another Banach space 
Y ((Bro 3,4,5]). 

The present notes are concerned with the construction of approximative degree theories for 
some classes of mappings of monotone type and applications to nonlinear partial differential 
equations. We shall start in Section 2 by giving the definitions and basic properties of various 
classes of mappings of monotone type relevant for our applications. In Section 3 we survey the 
construction of the degree for mappings of class (5+) and for quasimonotone mappings. This 
approach was introduced in ([BM 1], [Be]) and it is based on the Leray-Schauder theory rather 
than on Brouwer degree and Galerkin procedure used in the previous approach by Browder 
([Bro 4,5]). Section 4 is devoted to some general theorems obtained by homotopy argument 
whenever a classical degree theory is available. The results are applied in Section 5 to the study 
of nonlinear elliptic partial differential operators in divergence form 

A(w)= ] T (-l)WDaAQ(x,u,..,,Dmu). 
|«|<m 

In Section 6 we consider mappings defined in a Hilbert space H having a representation of the 
form 

F - Qg + Pf\ 
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where H = M ® .W"L, Q and P are the orthogonal projections to M and M x , respectively, 
# = I -J- C is a Leray-Schauder map and / is a mapping of class (S+). We show that the degree 
for such mappings can be constructed as an extension of the Leray-Schauder degree. The 
results of Section 6 are applied to the study of existence and multiplicity of periodic solutions 
for semilinear wave equations of the form 

( & ~ 0 -*(*,<.*) = h in (0,*) x (0,2*) 
< t*(0, •) = « (* , •)=-(> 

[ v(.,*+ 2w) = -*(.-0 

as we shall show later in Section 7. These two sections survey the results of recent papers 
([BM 2,3,4]). Finally, in Section 8 we deal with the extension of the degree for mappings of 
the form F = T-f 5 , where T is a maximal monotone map from a subset D(T) of X to X* and 
S is of class (5+). The case where F-==L-rS,.Ty is a linear densely defined maximal monotone 
map and S is of class (5+) or pseudomonotone with respect to D(X), is discussed in Section 9. 
This makes possible to apply the results to the study of nonlinear parabolic operators of the 
form 

|a|<m 

The material of these two sections is mainly based on Browder's paper ([Bro 5]) and on the 
ideas indicated therein. 

2. MAPPINGS OF MONOTONE TYPE 

Let X be a real reflexive Banach space. We can assume without loss of generality that X and 
its dual space X* are locally uniformly convex (see [De]). We shall be dealing with mappings 
T acting from a subset D(T) of X into X*. The norm convergence in X and in X* is denoted 
by —> and the weak convergence by —-, respectively. We start with the following concepts of 
continuity. T is called hemicontinuous if T(u + tnv) —- T(u) as tn —• 0+, and demicontinuous 
if un -+ u implies T(un) —- T(u). 

A mapping T: D(T) -> X* is called 

- monotone (we denote T € (MON)) if (T(u) - T(v),w - v) > 0 for all u, v 6 D(T). 
- quasimonotone (T € (QM)) if for any sequence {un} in D(T) with un —- u, we have 

limsup(T(wn),Mn - u) > 0. 
- pseudomonotone (T € (P-&1)) if for any sequence {un} in D(T) with un —- u and 

limsup(T(wn),Mn - u) < 0, we have lim{T(un),Mn - u) = 0, and if M € D(T), then 
T(u„) - T(U). 

- o/ claws (5+) (T € (5+)) if for any sequence {un} in D(T) with un —- u and 
limsup(T(Mn),un — M) < 0, we have un —> w. 

- bounded if it takes bounded subsets of D(T) into bounded subsets of X*. 
- locally bounded if for each u € D(T) there exists a neighbourhood 14 oiu such that T(£/) 

is bounded in X*. 
- compact (T € (COMP)) if it is continuous and takes any bounded subset of D(T) into 

a relatively compact subset of X*. 

Moreover, a monotone mapping T is strictly monotone if (T(u) — T(v), u — v) > 0 for all M ^ v 
in D(T), and strongly monotone (denote T 6 (MON)s) if there exists a continuous strictly 
increasing function # from [0, oo) to [0, oo) with g(0) = 0 such that 

{T(u) - T(v), u - v) > gr(||u - v||)||u - v|| for all u, v e D(T). 



If we assume that all mappings are demicontinuous and defined in the whole space X, we have 
the following inclusions 

(MON)s —» (S+) • (PM) > (QM) 

f I 
(MON) (COMP). 

For the sequel it will be important to observe that if S e (5+) and T € (QM) are arbitrary 
demicontinuous mappings, then T-f S £ (S+)• Otherwise, all the classes defined above have at 
least a conical structure. 

It is well known that the conditions 

ll*J»|| = IMI» (JM^) = \M\2 for all u e x , 

determine a unique mapping J from-X to X*, which is called the duality map. In our case it 
is bijective bicontinuous strictly monotone and of class (S+). 

The concept of a monotone map has a natural generalization for multivalued maps. A subset 
A C X x X* is called monotone if for each pair [w1,iy1], [u2,W2] G A we have 
(wi — ti>2,^i — ^2} > 0. Let T be a multi from D(T) C X to 2X , the subsets of X*, where 
D(T) = {u e X \.T(u) ^ 0}. Then T is called monotone if its graph 

G(T) = {[u,w] C X x X* I u € D(T), w e T(u)} 

is a monotone set in X x X*. A monotone multi T is said to be maximal monotone (de
note T 6 (MM)) if G(T) is not a proper subset of any monotone set in X x X*, or equiv-
alently, if [u0,w0] € X x X* and (w0 — w,u0 — u) > 0 for all [u,w] 6 G(T), then [u0,w0] € 
G(T), i.e., w0 £ D(T) and w0 € T(u0). Any monotone multi T has the inverse T-1 from 
ft(T) = (J{T(u) I u e D(T)} to 2X defined by 

T~\w) = {ue D(T) I w € T(w)}, 

which is also monotone. Moreover, T is maximal monotone if and only if T_1 is maximal 
monotone. Using the duality map J one can show that T is maximal monotone if and only 
if 7£(T -f \J) = X* for every A > 0. The results above remainnaturally true if T is a single 
valued mapping. In particular, any single valued hemicontinuous monotone mapping from X 
to X* is also maximal monotone. 

Finally, if L is a linear monotone multi from D(X) to 2X , then its graph G(L) is a subspace 
of X x X*. If D(L) is dense in X, then L is necessarily single valued. We can also define the 
adjoint of L as a map L*: D(L*) —> 2X by 

w 6 L*u if and only if (w,v) = (Lv,u) for all v 6 D(L). 

A necessary and sufficient condition for the maximal monotony of L is that G(L) is closed and 
L* is monotone. For more details and proofs on multis we refer to [De]. 

3. T H E DEGREE FOR MAPPINGS OF CLASS (S+), (PM) AND (QM) 

The topological degree of mappings is one of the most effective tools for studying the existence 
and multiplicity of solutions of nonlinear equations. In our discussion the basic concept to start 
with will be the degree for mappings in infinite-dimensional Banach spaces of the form F = I-j-C 
with C compact, which we shall call the LS-degree according to Leray and Schauder. For later 
reference we recall however the following more general definition of classical topological degree. 



DEFINITION 3.1. Let X and Y be topological spaces andO a family of open subsets ofX. With 
each G € O we associate a class TG of mappings F: G —> Y and with each triplet (F,G,y) 
with F e TG, GeO and y £Y, y $ F(dG) we associate an integer d(F,G,y). The function d 
is said to be a classical topological degree if the following conditions are satisAed: 

(a) J£ d(F, G,y) ^ 0, then there exists u € G such that F(u) = y. 
(b) If G0,G e O, Go C G and F e FG, then the restriction F\^o G TGo. I£Gi,G2eO are 

disjoint subsets of G eO such that y $ F(G\(d U G2)), then 

d(F,G,y) = d(F,G1,y) + d(F,G2,y). 

(c) For an admissible class of homotopies HG = {Ft € TG I 0 < t < 1}, G € O, and for a 
continuous curve {y(t) \ 0 < t < 1} in Y with y(t) f Ft(dG) for all t € [0,1] we have 
d(Ft,G, y(t)) is constant for all t £ [0,1]. 

(d) There exists a normalizing map j : X —> Y such that j [ ^ £ TG for each G € O, and 
d(j, G, y) = 1 whenever y E j(G). 

The unique LS-degree function d&s is obtained by choosing X_= Y a real Banach space, O all 
open bounded subsets of X, TG all continuous mappings from G to X of the form F = I+C,C 
compact. The admissible class of homotopies HG consists of LS-homotopies Ft = I + Ct, where 
(t,u) —> Ct(u) is compact from [0,1] x G to X. Obviously the normalizing map for LS-degree 
is I. 

Our task now will be to introduce approximative procedures which extend the LS-degree to 
further classes of mappings of monotone type. From now on we assume that X is a real reflexive 
separable Banach space and that X and X* are locally uniformly convex. 

In virtue of the embedding theorem by Browder and Ton [BT] there exists a separable Hilbert 
space H and a linear compact injection $ : If —> X such that \I>(If) is dense in X. We define 
a further map $: X* —> H by 

(&(w), v) = {w, &(v)), v € H, we X*, 

where (•,•) stands for the inner product in If. It is obvious that # is also linear compact 
injection. Let G be an open bounded subset in X. We denote 

PG(S+) = {F: G —> X* | F E (S+), bounded and demicontinuous} 

and 
HG(S+) = {Ft: G -> X*, 0<t<l\Ft bounded homotopy of class (S+)}, 

where Ft is said to be a bounded homotopy of class (S+) if it is uniformly bounded in t (E [0,1] 
and if for any sequences {un} in G, {tn} in [0,1] with un —- u in X and tn —> t such that 
limsup(Ftn(un),un — u) < 0, we have un —> u in X and Ftn(un) —- Ft(u) in X*. With each 
F € FG(S+) we can now associate a family of mappings {F€ | e > 0} defined by 

(3.1) , Fe(u) = u + -$4>F(u), uEG. 

For any fixed e > 0, F€ maps G into X and has the form I + Ce where Cc = ^4?F is compact. 
Hence the LS-degree is defined for the triplets (F€,G,y) whenever y £ Fe(dG). We have the 
following basic 

LEMMA 3.1. Let F e ^G(S+), A C G a closed subset and 0 £ F(A). Then there exists e > 0 
such that 0 $ Fe(A) for all 0 < e < e. Moreover, if 0 $ F(dG), there exists e0 > 0 such that 
dLs(F€, G, 0) is constant for all 0 < e < eo-

PROOF: If the first assertion were false, there would exist sequences {en} and {un} C A such 
that en —> 0+ and F€n(un) = 0. Choosing subsequences, if necessary, (we will not change 
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notations) we may assume that un —- u in X and F(un) —- w in X*. Since ^ ^ is linear and 
compact, $4?F(un) -> \J>#ty in K. On the other hand, $4>F(un) = - e n u n -> 0 implying that 
tu =5 0. Hence F(ttn) —- 0 and 

limsup(F(wn),un - u) = limsup(F(un),un) 

= limsup(F(wn), ~-mF(un)) 

= limsup { - ~ | | * F ( u n ) | | H j < 0. 

Since F 6 (S+), we have un -* u with w 6 4- By demicontinuity F(un) —- F(w) implying a 
contradiction F(«) = 0. Hence we may conclude the existence of e > 0 such that Fe(u) ^ 0 for 
all u € A and 0 < e < e. 

For the second assertion we assume that e<, = e for A = 6Yx, 0 < ei < e2 < eo and consider 
the following LS-homotopy 

( 1 + — ) ' 
4*1 e2 ) 

tFei + (1 - t)Fe% = I + - + mF := Fit, 

where e* = (j-% + 1 ~ ) " 1 , 0 < t < 1. Since ex < et < e2 < e0 for all t € [0,1] we have F«t(u) ^ 0 
for all M € #G and < 6 [0,1]. Since the LS-degree satisfies (c), we obtain 

^ 5 ( ^ , 0 , 0 ) = ^ 5 ( ^ , 0 , 0 ) 

completing the proof. I 

In view of Lemma 3.1 it is relevant to define 

(3.2) ds+(F, G, 0) = dLS(Fe, G,0) where 0 < e < e0. 

Moreover, for any y € X* with y £ F(dG) we can define 

(3.3) <.s+(F,G,y) = d s + ( F - y , G , 0 ) . 

To convince ourselves that we have obtained a classical topological degree function ds+ for 
mappings in TG(S+) the conditions (a) to (d) have to be verified. It is obviously sufficient to 
deal with the case y = 0 or y(t) = 0. 

(a) If 0 i F(G), it follows from Lemma 3.1 that 0 $ Ft(G) for all 0 < e < e. Hence 
dLS(F€,G,0) = 0 for all 0 < e < e implying ds+(F, G, 0) = 0. Therefore ds+(F,G,0)^0 
implies 0 6 F(G). __ 

(b) If G\ and G2 are open disjoint subsets of G and 0 ^ F(G \ (Gi U G2)) , we can apply 
again Lemma 3.1 with -4 = G\(GjUG2) and use the property (b) for the LS-degree to 
derive (b) for ds+. 

(c) If Ft € HG(S+) we can extend Lemma 3.1 for homotopies in the obvious way. The 
property (c) follows then from the corresponding property for LS-homotopies. 

(d) To show that J plays the role of normalizing map we consider the affine LS-homotopy 
(1 — t)I + tj€. Since J(u) = 0 if and only if u = 0, and since 

(J(u), (1 - t)u + tj€(u)) = |H|2 + J||*J(*0IIH > 0 

for all u ^ 0 and 0 < t < 1, we obtain 

ds+(J,G,0) = tHm dLS(J,G,0) = dz,5(I,G,0) = 1 

whenever 0 e J(G). 
Using the fact that LS-degree is unique it is not hard to show that also 5+-degree is unique 
(see [Be]). Thus we can conclude 
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THEOREM 3 .1 . Let X be a separable reflexive Banach space, G an open bounded subset in X 
and FQ(S+) the class of admissible mappings. Then there exists exactly one degree function 
ds+> the S+-degree, satisfying the properties (a) to (d) with respect to HQ(S+) and normalizing 
map J. 

REMARK 3 .1: Originally Browder [Bro 4] constructed the 5+-degree by using Galerkin 
approximations, for which in each finite dimensional subspace the Brouwer degree is defined. 
His approach works also when X is not separable. 

REMARK 3.2: The 5+-degree can be constructed to all demicontinuous mappings of class 
(5+), not only for bounded ones as above. It is essential that a demicontinuous (5+)-mapping 
F: X —i• X* is proper on bounded sets, i.e., for any bounded closed set A C X and for any 
compact set K C X*r F""1(K) D A is compact. For the detailed discussion in this direction we 
refer to [Be]. 

REMARK 3.3: The 5+-degree can be extended for quasimonotone mappings, i.e., to the class 
FG(QM) by using the fact that F + ej 6 (S+) whenever F € (QM) and e > 0. However, 
we face here the difficulty that the image F(A) of a closed subset A C G is no more closed. 
Therefore the QM-degree obtained through approximations 

(3.4) dQM(P,G,y) = \im+ds+(F + tJ,G,y) 

is not a classical degree in the sense of Definition 3.1. For instance we have: 

(a)' If dQM(F, G, y) + 0, then y E F(G). 

In fact, for the definition (3.4) we assume y $ F(dG). For more details on weak degree theories 
we refer to [Bro 4,5], [Be]. 

REMARK 3.4: Since (S+) C (PM) C (QM), the QM-degree is defined for all mappings 
F €• FQ(PM). We shall see from applications that many results obtained for (5+)-mappings 
hold true also for pseudomonotone mappings. This is based on the fact that for each 
F € PQ(PM) the set F(A) is closed whenever A C G is weakly closed. Indeed, if {wn} C F(A) 
with wn —• w, then wn = F(un) for some {un} C A. Since G is bounded, un —- u for some 
u e A, at least for a subsequence. Thus 

limsup(F(ttn),t.n - u) == 0 

implying F(urt) —- F(u) and hence w = F(u) G F(A). In particular, if we assume that G is 
convex, then G is weakly closed implying that F(G) is closed. Consequently, for F 6 FQ(PM) 
and G convex, we can conclude instead of (a)', that 

dQM(F,G,y)^0 implies y € F(G). 

4. SOME APPLICATIONS OF CONTINUATION METHOD 

We shall describe some standard results obtained by a continuation method (homotopy ar
gument) when a classical degree theory is available. We use here the 5+-degree but analogous 
results hold for other degree functions which will be introduced in our further discussion. 

Let X be a real reflexive Banach space, G an open bounded subset in X and F € ^ ( 5 + ) . 
If y € X* \ F(dG), a sufficient condition for the solvability of the equation 

F(u) == y 

is that ds+(F, G,y) ^ 0. In many cases this can be shown by using the homotopy argument (c) 
for a suitable homotopy involving F and some reference map T 6 .T"G(5+), i.e., an injection 
satisfying d(T, G,w) ^ 0 whenever w € T(G). Then the property (c) for the (5+)-degree yields 
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THEOREM 4.L Let G be an open bounded subset in X, T G PG(S+) a reference map and 
F G FG(S+). If for a given y € X* there exists w G T(G) such that 

(4.1) tF(u) + (1 - t)T(u) ^ty + (l- t)w for all u G dG, 0 < t < 1, 

then ds+(F, G, y) ^ 0 and the equation F(u) = y admits a solution u in G. 

The obvious reference map for the (5+)-degree is the duality map J. Bearing in mind the 
properties of J we can rewrite condition (4.1) to obtain from Theorem 4.1 the following 

THEOREM 4.2. Let G be an open bounded subset in X and F G .FG(S+). If there exists u G G 
such that 

(4.2) {F(u)-y,u-u)>\\F(u)-y\\\\u-u\\ forallutdG, 

then ds+(F, G, y) = 1 and the equation F(u) = y admits a solution u in G. 

For mappings F which satisfy some coercivity conditions we can derive surjectivity results 

THEOREM 4.3. Let F G Fx(S+) satisfy the conditions 
(i) ify G X* and F(un) —> y in X*, then {un} is bounded in X 
(ii) there exists R > 0 such that 

^ 1 ' ^ + IIFMH > 0 for all u G X with \\u\\ > R. 
\\u\\ 

ThenF(X) = X*. 

PROOF: Let y G X* be given. Then there exist k > 0 and R! > R such that 

(4.3) ||F(w) - tty|| > k for all * € [0,1] and ||u|| > R!. 

Indeed, if we assume the contrary, we find sequences {un} in X and {tn} in [0,1] such that 
||t~n|| —» oo, \\F(un)—tny\\ —• 0 and tn —> t. Hence F(un) —> ty and by (i) we get a contradiction. 
From (4.3) we then obtain by the property (c) 

(4A) ds+ (F, BR,, y) = ds+ (F, BR., 0), 

where BR, = {u G X \ \\u\\ < R!}. In view of (ii) we have (F(u),u) > -| |F(u)| | | |u| | for all 
\\u\\ = R!. By Theorem 4.2 we get ds+(F, BR>,0) = 1 implying by (4.4) that y G F(BR>). | 
REMARK 4.1: It is useful to observe that (i) is met if 

(i)i ||F(itn)|| —> oo whenever ||un|| —* oo in X. 

Moreover, if F satisfies the condition 

«2
 <fy+||F(t<)|1-* ~ »8iHi-oo, 

then clearly both (i) and (ii) are met. Finally, the strong coercivity condition 

r\ (P(^)^) „ „ 
( i ) 3 -> 00 as | |u | | -> 00 

implies (i)2. 
In view of the Remarks 3.3 and 3.4 we can expect that Theorems 4.1 to 4.3 have generaliza

tions for mappings F in FG(QM) and ^ (P -^ I ) - Indeed, the following modifications are easily 
obtained (see [BM 1], [Be]). 



THEOREM 4.4. Let G be an open bounded subset in X and F G PG(QM). If there exists 
u € G such that the condition (4.2) holds, then the equation F(u) = y is almost solvable in the 
sense that y G F(G). In particular, if G is_convex and F G TG(PM), then y G F(G), i.e., the 
equation F(u) = y admits a solution u in G. 

THEOREM 4.5. Let F G FX(QM) satisfy the conditions (i) and (ii), then F(X) = X*. In 
particular, if F G FX(PM), then F(X) = X*. 

REMARK 4.2: For monotone demicontinuous mappings F: X —> X* one can show that 
F(X) = X* if and only if the condition (i) is satisfied. 

For odd mappings we can obtain generalizations of Borsuk's theorem. If G is an open bounded 
symmetric set in X containing the origin and F G ^FG(S-\.) with F(—u) = — F(u) for all u G dG, 
then also F€ given by (3.1) is odd on dG for any e > 0. Hence Borsuk's theorem for LS-mappings 
([De]) implies the existence of u€ G G such that 

F€(u€) = 0 for any € > 0. 

Moreover, if 0 ^ F€(dG), then dLs(F€, G,0) is odd. As in the proof of Lemma 3.1 we conclude 
0 € F(G). For the case 0 £ F(dG) we have also that ds+(F,G,0) is odd. If we assume that 
F G FG(QM) and F is odd on dG, we can consider its 5+-approximation F + ej, which is 
also odd on dG for every e > 0. Thus Borsuk's theorem extends to the class J:G(QM) in an 
obvious way. In particular, we have the following standard surjectivity theorem, which can be 
proved as Theorem 4.3. 

THEOREM 4.6. Let F G FX(QM) satisfy the condition (i) and the condition 

(in) there exists R>0 such that F(-u) = -F(u) for all \\u\\ > R. 

Then F(X) = X*. In particular, if F G FX(PM), then F(X) = X*. 

5. APPLICATIONS TO NONLINEAR ELLIPTIC PROBLEMS 

Since the contributions by Minty, Browder, Visik, Brezis, Leray and Lions in the sixties the 
theory of mappings of monotone type has become a standard frame work (see [PS], [FK]) 
for the study of boundary value problems for nonlinear elliptic partial differential operators in 
divergence form 

(5.1) Au{x)= J2 (~^DaAa(x,u(x),Du(x),...,Dmu(x)), x G tt, 
\a\<m 

where Q is an open subset in R^ (N > 2) and m > 1. The coefficients Aa are func
tions of the point x e 0 and of £ = (77, <) € RN° with 77 = {qp \ \p\ < m - 1} € RNl, 
C = {C/? I l/3| = m } € R^2 and Ni + N2 = N0. We assume that each Aa(x,£) is a Caratheodory 
function, i.e., measurable in x for fixed £ = (77, () 6 RN° and continuous in £ for allmost all 
x G -X We shall assume here, for simplicity, that Q, is a bounded subset of RN. Then the 
familiar growth condition 

(A!) There exist p > 1, cx > 0 and hY G Lp'(£l), p' = ^--, such that 

\Aa(x,o\ < ^ ( i c r 1 + M*-1 + *i (*)) 

for all x G 0, £ = (77,0 G R^0, |a| < m, 
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implies that the operator (5.1) gives rise to a bounded continuous mapping T from any Sobolev 
space X with W0

m,p(n) C l C Wm*(Q) into its dual space X* by the rule 

(5.2) <T(tt),v) - J 5 3 M*>((«))*>**, u,veX. 
n N<"» 

In the sequel we shall consider the case X = W™'P(Q). Then for a given h 6 Lp (H) C K* the 
solutions « € X of the equation 

(5.3) T(u) - h 

are called weak solutions of the Dirichlet boundary value problem 

{ Au(x) = Һ(x) 

Dau(x) = 0 

. .„ . x _; = fc(x) in íí 
K ' } ' n««'-^ - n on 0ÍÍ for all l a k m - 1. 

Hence we are in a position to apply the results of Section 4 to (5.4) as soon as T belongs to 
one of the classes of mappings of monotone type. A condition which obviously ensures that T 
is monotone is 

(A2)M 51 t^t*' 0 " M*> OK&- - £ ) > 0 for all * € ft, {, C € RNo 

|a|<m 

A condition implying, that T is pseudomonotone, is the classical Leray-Lions condition [LL] 
(cf. [LM]) 

(A2)s J] {-Ms,.7,0 - M*,1,C)}(C* ~ C ) > 0 for all x € ft, .7 € RNl and 
l«|-» C ¥> C in R"2 

A remarkable feature on the condition (A2)s is that monotonicity is assigned only to the top 
order part 

(5.5) Aiu(x) - 5 3 (~l)HDQAa(xy i«(x), Dtt(x),..., Dmu(x)) 
ja|-=m 

and the lower order part 

(5.6) A2tt(.r)= 5 2 (~l)^DaAa(x,u(x\Du(x)1...,D
mu(x)) 

| a |<m-l 

is to obey the growth condition (Ai), only. It is interesting to observe that if we define the 
corresponding mappings Ti and T2: X —* X* by 

(Ti(tt),t;) = J 5 3 Aa(x,r,(u),((u))Dav, u,v 6 X 
Q \at\-m 

and 

{T2(u),v)-J 5 3 Aa(x,ri(u),((u))Dav, u,v € X, 
Q | a |<m-l 

then of course (Ai) and (A2)s imply T! € (PM) and (Ai) implies that T2 € (QM). Actually, 
by the Sobolev embedding theorem lim(T2(tt„),ttn — u) — 0 for any sequence {ttn} C X with 
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un —- u. Moreover, T\ remains in the class (PM) although we weaken the strict monotonicity 
condition (A2)s to 

(A») £{i*a(x,-,o--4«(-.'fcr)}(c«-c;)>o. 
|ar)=m 

If we assume only the conditions (Ai) and (A2), then T = T\ -f T2 is in the class (QM) but no 
more necessarily in the class (PM), unless T2 is weakly continuous which is related to linear 
behaviour of A2 with respect to highest order derivatives. For a more detailed discussion with 
some further refinements we refer to [GM]. 

In order to apply the existence and surjectivity results of Section 4 to the problem (5.4) 
a further condition is needed. If the operator A satisfies the condition 

(A3) There exists C2 > 0 and k2 € L1^) such that 

£ AQ(x,Ota>C2\(\
P-k2(x) 

\a\<m 

for all x € H and ( = (17, f) € R*°. 

then T satisfies the strong coercivity condition (i)3, since by the Poincare inequality in 

x = wy*(ft). 
(T(«),u) > ll-y-ll£.(Q) . IIM-MO) 

Ml -C2 ll-ll 11-11 ~* °° 
as ||v|| —• 00. Consequently, we get from Theorem 4.3 and 4.5 the following 

COROLLARY 5.1. Let 0, be a bounded open subset in RN and assume that the operator A 
satisfies the conditions (Ai) and (A3). 

(a) If A satisfies one of the conditions ( A 2 ) M or (A2)s- then T is surjective and the problem 
(5.4) admits a weak solution u in W™'P(Q) for any given h 6 Lp (Q). 

(b) If A satis£es (A2), then T(W0
m,p(O)) is dense in W~^p'(Q) and the problem (5.4) is 

almost solvable for any given h G Lp (£l). 
(c) If A satisfies (A2) and T2 is weakly continuous, then T is surjective and the problem (5.4) 

admits a weak solution u in W™*?(£1) for any given h € Lp (Q,). 

REMARK 5.1: It is not difficult to see that in fact the conditions (Ai), (A2)s and (A3) imply 
that T belongs to the class (S+). If we assume that the problem (5.4) has variational structure, 
i.e., there exists a real valued functional / : X —• R such that / ' = T, and if T happens to 
be quasimonotone and f(u) —• 00 as ||u|| —*- 00, then the result by Hess [He] tells us that / 
is weakly lower semicontinuous and has a minimum. This means that for such operators the 
assertion in the case (b) will be the same as in the cases (a) and (c). 

6. THE DEGREE FOR A CLASS OF MAPPINGS IN A HlLBERT SPACE 

In this section we shall consider mappings of monotone type acting in a real separable Hilbert 
space H. The definitions of Section 2 are to be understood with respect to the inner product 
(•, •) of H. Hence (LS) is a subclass of (S+). We assume that H = M @ M-~ where both M 
and M1- are infinite-dimensional. Let Q and P denote the orthogonal projections to M and 
M-1-, respectively. If G is an open bounded subset of H, we denote 

FG(LS', 5 + ) = {F.G -> JET | F = Qg + Pf for some bounded 

demicontinuous g € (LS) and / € (S+)}, 
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the class of admissible mappings and 

HG(LS; 5+) = {Ft | 0 < t < 1, Ft =- Qgt + Pft}, 

the class of admissible homotopies, where gt is a LS-homotopy and ft a S+-homotopy. For each 
F € PG(LS; 5+) we will find LS-approximations by a partial Galerkin procedure. Indeed, let 
{jVn} be a sequence of finite-dimensional subspaces of M x such that /VmC Nn+i for each n 
and U.!Vn is dense in M1'. Denoting by P n the orthogonal projection to Nn we associate with 
F = Q(I + C) + Pf a sequence {Fn} where 

(6.1) Fn = I + QC? + P n / - P n , n e N . 

Since QC + Pnf - P n is compact, Fn € (L5) for each n G N. Similarly, each Ft € HG(LS\ 5+) 
admits an approximation 

(6.2) (Ft)„ = I + QG* + P „ / t - P „ , n £ N . 

For each y € iI we also need the approximation 

(6.3) yn -= Qy + P„y, n € N. 

Then we have 

LEMMA 6.L l e t F € fa(LS\ 5+) and y € B with y $ F(dG). Then there exists n0 € N such 
that yn ^ Fn(dG) for all n > n0. Moreover, there exists ni > n0 such that dLs(F„,G, yn) is 
constant for all n> n% 

PROOF: Since (F — y)n = Fn — yn, we may assume that y — 0. If the first assertion were 
false, then there would exist sequences {uk} C dG and {nk} C N such that Fnk(uk) = 0 and 
nk —> oo. Separating the components in M and M x we have 

(6.4) Quk + <?£(«*) = 0 and Pu* + Pn*/(t-.0 - P„*«* - 0. 

Taking a Subsequence we have Ujt —- u, C(uk) —• 2 and /(u*) —- u> in If. Hence 
Quk *•*• Qw and Pn* = P„fct-jt for all k implying that P„fc/(t-fc) =- 0 for all k. By (6.4) we obtain 
Pnkf(uk) -* Pu? == 0. Therefore (/(u*),Pu) -> 0 and 

limsup(/(wjb), Uk — w) = limsup(/(wjfe), Pw* — Pu + Quk — Qu) 

= limsup(/(ujt), PnfcWjb) 

= limsup(Pnfc/(uib), «jb) 

= 0. 

Since / € (S+), uk —+ w with w 6 #G and Pnfc(ujfc) —- F(u) = 0, a contradiction. Hence there 
exists n0 € N such that the LS-degree dis(Fn, G, 0) is defined for all n > n0. 

Assume that the second assertion is false. Then there exists a sequence {nk} C N, nk> n0, 
nfc —> oo such that 

dLs(F„fc,G,0) ^ dLS(Fnk+l,G,0) 

for all k = 1,2, In view of the property (c) for the LS-degree we find sequences {uk} C dG 
and {t*} C (0,1) such that 

(6.5) (1 - tk)Fnk(uk) + tkFnk+l(uk) = 0. 
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Bearing in mind that F = Q(I + C) + Pf we get from (6.5) 

uk + QC(uk) + (1 - tk)Pnk(f(uk) - uk) + tkPnk+x(f(uk) - Uk) = 0. 

Separating the components, in M and M1- we have 

(6.6) 
í Quк + < 

l Pц* + < 

ŕQwjfc + Q C Ю = 0 

- (1 ~ tк)PПк(f(uк) - uк) + tкPПк+1(fЫ) -uк) = 0. 

We can assume again that Uk —- u, C(i~jfc) —• z and /(ujfc) —- w in if. As in the former proof we 
get Quk -* Qu, Puk — Pnfc+1W/c, Pnkf(uk) = 0 and Pw = 0. Moreover (6.6) also implies that 

JW(-») = -—r-4 i(' ,-.t.-- - J'-.-*)-

Hence 

limsup(/(гífc),Ujfe - u) = limsup(/(гíjь),PПfc+1ujfe) 

= l i m s u p | _ ( l _ J i ) | | P n i + i t ( t _ p„ i U t |p J < o. 

By the (5+)-property of / we obtain itjk —• u with u G #G and F(u) = 0, a contradiction. | 
REMARK 6.1: The first part of Lemma 6.1 extends for admissible homotopies Ft € HG(LS; 5+) 
and continuous curves {y(t) | 0 < t < 1} in H. 

By virtue of Lemma 6 A it is relevant to define 

(6.7) dH(F,G,y) = limdLS(Fn,G,yn) 

for any given F € TG(LS; 5+) and y € H with y £ F(dG). It is not hard to verify that the 
function dn defined by (6.7) satisfies the properties (a) to (d) of the classical topological degree 
with respect to HG(LS', S+) and the identity map I as the normalizing map. We indicate here 
how to verify (c), for example. Let Ft 6 HQ(LS\ 5+) and let {y(t) | 0 < t < 1} be a continuous 
curve in H such that y(t) £ Ft(dG) for all t 6 [0,1]. To show that dn(Ft,G,y(t)) is constant 
for all t 6 [0,1] we first use the extension of Lemma 6.1 as mentioned in Remark 6.1. Hence 
there exists no € N such that (y(t))n £ (Ft)n(dG) for all t € [0,1] and n > n0. For any pair 
*i,*2 € [0,1] we can then apply the definition 6.7 to find k > no such that 

dH(Fti,G,y(ti)) = dL5((F*,)ik,G,(y(t0)ib) 

for each t = 1,2. Using the property (c) for the LS-degree the assertion follows for dn-
For (d) it is sufficient to note that In = I for all n 6 N and yn € G for ^11 large n whenever 

y eG. Therefore 
dH(I,G,y)-lim<1L5(I,G,y).--l 

for all y 6 G. 
Finally the uniqueness of the degree dn can also be shown (see [BM 2]) and hence we have 

THEOREM 6.1. Let H be a real separable Hilbert space, G a bounded open subset in H and 
!FG(LS', 5+) the class of admissible mappings. Then there exists exactly one degree function 
dn satisfying the properties (a) to (d) with respect to HG(LS;S+) and normalizing map I. 

REMARK 6.2: A weak degree theory can be established here (cf. Remark 3.3) for mappings 
TG(LS', QM) by using the approximations f€ = / + tl for / € (QM). 

It is now obvious from Section 4 how the existence and surjectivity results can be derived for 
admissible mappings F. 
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THEOREM 6.2. Let G bean open bounded subset in H,T £ TG(LS; S+) a reference map and 
either F £ TG(LS;S+) 
orFe FG(LS; PM), G convex,and F = Q(I + d + C2f) + Pf with Cu C2 compact 
linear operators. 

If for a given y £ If there exists w £ T(G) such that 

(6.8) tF(u) + (1 - t)T(u) .-& (1 - t)w + ty for alluedG,te [0,1], 

then the equation F(u) = y admits a solution u in G. 

PROOF: Since the case F £ FG(LS; S+) is obvious by Theorem 4.1, we consider the latter case. 
It is sufficient to show that F(G) is closed. In order to show this, let {wn} be a sequence in 
F(G) with wn —> w. Then wn = F(un) for some {un} C G and since G is bounded and convex, 
un —- u with u £ G for a subsequence. Using the representation of F we have 

Qwn = Qun + Qd(un) + QC2(f(un)) and Pwn = Pf(un). 

Since / is bounded and C\, C2 are compact linear operators, we can choose a further subse
quence of {un} such that Qun —> Qu and Pf(un) --> Pu>. Therefore 

limsup(/(un),un - u) = limsup{(P/(un),un - u) + (f(un),Qun - Qu)} 

= 0. 

Using the fact that / £ (PM) we have f(un) —- f(u) implying F(un) = Qun + QCi(un) + 
QC2(f(un)) + Pf(un) -> F(u). Hence w = F(u) with u £ G completing the proof. | 

We are now in a position to derive surjectivity results from Theorem 6.2 along the lines of 
Theorems 4.3 to 4.6. For our applications we shall need the following 

THEOREM 6.3. Let F £ .Fff(L5;5+) or F £ fH(LS;PM) with a representation 
F = Q(I + C\ + C2f) + Pf where C\, C2 are compact linear operators. Assume that F 
satisfies the condition 

(i) ify£H and F(un) —• y, then {un} is bounded, 
and one of the conditions 

(ii) there exists R>0such that ^ ^ + ||P(u)|| > 0 for all \\u\\ > R, 
H 

(hi) tiiere exists R>0 such that F(-u) = -F(u) for all \\u\\ > R. 

Then F(H) = H. 

7. APPLICATIONS TO SEMILINEAR WAVE EQUATIONS 

We consider semilinear wave equation of the form 

( utt — uxx — g(x,t,u) = h in (0,7r) x R 
u(0, •) = «(*,.) = 0 

u(;t+27T) = u(;t), t£ R 

where the function (x,t,s) —> g(x,t,s) from Q, x R to R is measurable in w = (x,t) £ Q = 
(0,7r) x (0,27r) for each s £H and continuous in s for almost all w £ Q and h is a given function 
in L2(il). Moreover we assume that there are positive constants a and ft that 

a<ik±JL?l<i3 for all .s^O 

^ ' i g(x, •, s) is 27r-periodic and g(-, -, 0) = 0 

g(x,t,-) is nondecreasing. 
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Then it is clear that g gives rise to a Nemytskii operator N in L2(Q) by 

jV(W) = <?(•,.,ii), ueL2(U). 

Moreover, jV is continuous bounded and monotone. We denote in the sequel the Hilbert space 
L2(Cl) by H. Let C2 stand for twice continuously differentiable functions v: [0,7r] x R —> R such 
that v(0, •) -= V(T,-) = 0 and v(x,t) is 27r-periodic in t. Then a function u € If is said to be 
a weak solution of (7.1) if 

(u, vtt - vxx) - (N(u), v) = (h, v) for all v e C2. 

Define 

( -£- sin(/x) sin(mt), /, m € Z+ 

isin(/.r), *€Z+, m = 0 

*-• sin(/x) cos(m<), /, —m € Z+. 
Then the set {<f>im | / € Z+, m £ Z} forms an orthonormal basis in If and each u e H has 
a representation 

oo +oo 

/=1 m=—oo 

The wave operator has an abstract realization in If defined by 
oo +oo 

(7.3) Lu = Y E C2 ~ ™2K»<£/m, 
/=1 m=—oo 

from D(L) = {u e If | £ / , m |(/2 - m2)|2 |a/m |2 < oo} to If. It can be shown that u G If is a 
weak solution of (7.1) if and only if 
(7.4) Lu-N(u) = h with ueD(L). 

The operator L is linear, densely defined, self adjoint and closed with closed range. In particular 
If = Im L 0 Ker L and L has a pure point spectrum of eigenvalues 

cr(L) = {A/m = I2 - m2 | / € Z+, m € Z} 

with corresponding eigenvectors < /̂m. Here Ker I is infinite-dimensional, but all non-zero eigen
values have finite multiplicity. If we denote by Lo the restriction of L into I m l f l D(L), then 
its inverse Lo"*1: ImL —* ImL f) D(L) is well-defined linear compact operator. To see the 
connection between the equation (7.4) and the class FG(LS; S+) we consider the mapping 

(7.5) F = Q(I - Lo"1^) + FN, 

where Q and P are the orthogonal projections to ImL and KerL, respectively. If we assume 
that jV is strongly monotone, i.e., 

g ( v , - ) - g ( v . - ) > s¥:t 
s — t 

for some constant p, > 0, then obviously F G FG(LS;S+)- Otherwise we only have 
F e FG(LS; PM), where F admits a representation F = Q(I + C2N) + P with C2 = -L^Q 
a compact linear operator as required in Theorems 6.2 and 6.3. Hence the results of Section 6 
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are available for the equation (7.4) as soon as we observe that (L — P)(L0
 1Q — P) = Q + P =. I 

implying the equivalence of the equations 

(7.6) Lu-N(u) = h with ueD(L)C\G 

(7.7) F(u) = y with u € G, y = (L^Q - P)h, 

where F is given by (7.5). 
The obvious reference map in the class fo(LS; S+) is the identity map I corresponding to 

L — P in the setting of (7.6). If we assume that G is an open bounded (convex in the case 
N e (PM)) subset in H with 0 € G, the condition (6.8) of Theorem 6.2 with w = 0 and T = I 
becomes 

(7.8) Lu - tN(u) - (1 - t)Pu 7- th for all u € dG, 0 < * < 1. 

We get the following well known result ([BN], [Ma]) 

COROLLARY 7.1. If 0 satisfies (7.2) witii 0 < a < ft < 1, then the equation (7.1) admits a weak 
solution u in D(L) for any given h £ H. 

PROOF: Let h € H be given. It suffices to show that there exists R such that (7.8) holds for 
\\u\\ = R, 0 < tf < 1. We argue by contradiction. Assume there exist sequences {un} C L)(L), 
{tn} C [0,1] with \\un\\ —• 00 and tn —»t such that 

(7.9) Lun - tnN(un) - (1 - *n)Pun = tnh, n <E N. 

Hence | |£*n | | = i»||<?* + (?-V(tin)|| < MII^II + II^K)II). By (7.3) we have (Lun, un) < \\Lun\\
2 

and by (7.2) we get ^ | | -V(M„)| |2 < (N(un),un) and ||un|| < £||JV(un)||. Using also the fact that 
0 < t2

n < tn < 1 we obtain from (7.9) 

tl\\N(un)f + 2tn||h||||iV(un)|| + ||h||2 > (L(un),un) 

= tn(N(un), Un) + (1 - tn)(Pun, Un) + <n(/|, Un) 

> ^l\\N(un)\\
2 + (1 - tn)| |P^n | |2 - ^ np| | i | | iV(W n ) | | . 

Since 0 < a < /3 < 1, we can conclude that On||-V(wn)||} and {(1 — *n)||Pwn||2} remain 
bounded. In the case that t > 0 we obtain a contradiction from ||wn|| < ^||IV(un)||. If t = 0, 
then {||Ptt„||} is bounded and by (7.9) also {||Lwn||} is bounded. Since ||Qun|| < UL3"1 ||||Lun||, 
a contradiction follows from ||wn|| < ||Qwn|| + ||Pitn||. I 

The result of Corollary 7.1 can be easily extended to cover the non-resonance cases where we 
assume that [a, ft] f) cr(L) = 0. This is shown by replacing in (7.8) the reference map L — P by 
A\ = L — TI, where r = | ( a +/?), for example. The corresponding reference map in the setting 
of the equation is Fi = Q(I - TLQXQ) + rP. 

COROLLARY 7.2. If g satisfies (7.2) with 0 < a < ft and [a, ft] C\ a(L) = 0, then the equa
tion (7.1) admits a weak solution u in D(L) for any given h € IT 

The resonance problem around an eigenvalue A € cr(L), A > 0, can be tackled by choosing the 
reference map A2 = — AI + PA, where PA stands for the orthogonal projection into Ker(L — AI). 
For the results in this direction we refer to [BM 2], where the condition (7-2) is also given in 
a more general form. Similar results by different methods can be found in [BN], [Ma], [MW], 
for example. 

Next we indicate briefly how the problem of multiple periodic solutions for semilinear wave 
equations can be dealt with using the framework of Section 6. We are interested in the case 
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where the nonlineaxity g interacts on the spectrum of L. For convenience we consider an 
autonomous wave equation of the form 

I y-tt - uxx = g(u) in (0,7r) x R 

«(0,.) = w(*v ) -G 

u(-,i + 27r) = u(.,t), t € R , 

where g is continuous non-decreasing with g(0) = 0 and satisfies the condition 

(7.11) 0 < a = i n f - ^ < s u p - ^ - = t3<oo 
s^O 5 9^Q S 

where (a, /J) fl cr(L) ?- 0. We also assume that 

(7.12) A/-i < a < h*(oo) < Xi < .• • < Am < h*(0) <p< Am + i , 

where iV(oo) = limsup-^-- and h*(0) = liminf ~-~--. The condition (7.12) means that 
|*|->oo « l«H0 « 

h(s) = crosses finitely many positive eigenvalues when s goes from 0 to oo. The idea 

is to use the homotopy argument similar to (7.8) with a suitable reference map Fo = L — A 
with A € (5+) and find open bounded convex sets G in H such that for some w £ Fo(GC\D(L)), 

(7.13) Lu - tN(u) - (1 - t)A(u) 7- (1 - t)w for all u 6 <9G D D(L), 0 < t < 1. 

Then we can conclude that the equation (7.10) admits at least one solution u in G 0 D(L). 
Since (7.10) obviously has the trivial solution, we must require that 0 $ G. 

To deal with the simplest possible case we assume that only one simple eigenvalue Am = X is 
crossed. (In fact, for the wave operator such eigenvalues are Ai = 1 and A3 = 4 , only.) Let ^ 
be the eigenvector associated with A. We denote H2 = sp{$}, Hi = sp{(j>im 1I2 — m2 < A} and 
1I3 = sp{<t>im I /2 — m2 > A}. Then H = Hi © H2 ® Hz and each u £ H has a representation 
u = Pi« -f P2u + Pzu where Pi is the orthogonal projection to Hi, i = 1,2,3. A suitable 
homotopy will be Po = L — AI -f P2, i.e., A = AI — P2 in (7.13). Thus we are led to find a priori 
estimates for the solutions of the equation 

(7.14) Lu - tN(u) - (1 - t)(Xu - P2u) = (1 - t)w, u 6 D(L), 0 < t < 1, 

where w = <j> or w = - $ . It is shown in [BM 4] that using (7.11) and (7.12) such estimates 
can be obtained and we get the following 

COROLLARY 7.3. Let X e {1,4} and let g satisfy the conditions (7.11) and (7.12) with Xt = 
Am = A. Then there exist constants p and R with 0 < p < 1 < R such that (7,10) admits at least 
one nontrivial solution in each of the sets G+ = {u € D(L) | ||w|| < R, P2u = Q$, p < $ < R} 
and G_ = {u € D(L) | ||n|| < R, P2u = -$$, p<B<R}. 

It turns out that dim H2 plays a crucial role when we look for sets G where to apply homotopy 
argument. The case where dimB2 = 2 and A = I2 — m2 for some /,m 6 Z+ can be dealt with 
as shown in [BM 3] (cf [Hi]) but all other cases where dim1I2 > 3 seem to be open. 

On the other hand, we can generalize Corollary 7.3 by constructing subspaces V of H which 
are invariant under L and N and apply Corollary 7.3 to the reduced problem 

Lvu^Nv{u), u€D(L)nV, 

where Ly and Ny are the restrictions of L and N into V, respectively. This idea for wave 
equations was used by Vejvoda [Ve] and Coron [Co]. For more general results we refer to 
[BM 3,4], 
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8. T H E DEGREE FOR PERTURBATIONS OF MAXIMAL MONOTONE MAPPINGS 

We shall assume again that X is a real reflexive Banach space and that X and X* are locally 
uniformly convex. We consider mappings F = T + S where T is a maximal monotone multi (or 
a single valued map) from D(T) C X to 2X with 0 G T(0), and 5 is a bounded demicontinuous 
mapping from X to X* of class (5+). With T we associate the family of generalized Yosida 
approximations 

Te(u) = (T" 1 + ej~lyl(u), u G X, e > 0. 

It is well-known (see [De], [Bro 5]) that for each e > 0, Te is a bounded continuous maximal 
monotone single valued mapping from all of X to X* with Tc(0) = 0. Moreover, Te(u) —- T°(u) 
on D(T) as e —> 0+, where T°(u) denotes the unique element of the set T(u) having minimal 
norm, i.e., | |T°(M)| | = dist(0,T(«)). On the other hand, ||T€(u)|| -> oo as e -> 0+, if u £ D(T). 

We shall sketch the extension of the degree function for the mappings F = T + S by using 
approximations F« = T€ + S in the class (5+). Let G be an open bounded set in X. We denote 

fG(MM', 5+) = {F = T + S | T: X 3 D(T) -> 2** maximal monotone 

with 0 G T(0) and 5 : G —> x* bounded demicontinuous 

of class (5+)}. 

The obvious idea now is to show that we can define the degree function djMM f° r all admissible 
triplets (F, G,y), F G TG(MM; S+),y<£ F(dG), as the limit 

(8.1) dMM(F,G,y)= Km+ds+(Fe,G,y). 

To this end we start with the following (cf. [Bro 5]) 

LEMMA 8.1. Let T be a maximal monotone multi: X D D(T) —> 2X* with 0 G T(0) and let 
{u>n}, {en}« {̂ n}« {^n} °e sequences such that un -—• u in X, en —> 0+, 6n —» 0+, 0 < sn < 1. 
Let ?;n = Ten(un), zn = T^n(un) and wn = (1 — -sn)vn + .snzn and assume that wn —- IO in x* 
andlimsup(wn, t*n) < (^,«). Then w € D(T), tt> G T(u) and\im(wn,un) = (iu,u). 

PROOF: Since vn = TCn(un) and zn - T6n(un), vn G T(un - e n J- 1 (^n)) and 
2n G T(wn - ^nJf-^zrt)). Since T is monotone and 0 G T(0), we have 

( v n , t t n - € n J - 1 ( v n ) ) > 0 and (zn,un-6nJ-1(zn))>0. 

Therefore 
*n(vn,J~l(vn)) = en\\vn\\

2 < (vn,Un) 

and similarly 
6n\\Zn\\2 <(Zn,Un). 

Multiplying these inequalities by (1 — sn) and sn, respectively, and adding we get 

( l ^ - 5 n ) e n |K | | 2 + ^ n ^ n | | ^ | | 2 < K , W n ) fo ra l lnGN. 

Since {(wn,un)} remains bounded, we conclude that (1 — sn)en||vn|| —> 0 and «sn«5n||^n|| —> 0. 
Let [x,y] G G(T) be arbitrary. By the monotony of T we have 

(vn -y,un ~enJ~l(vn)- x) > 0 and (zn - y,un - 6nJ~1(zn) - x) > 0. 

Hence 
(vn-y,un-x)>~en\\y\\\\vn\\ and (zn - y,un - x) > ~6n\\y\\\\zn\\. 
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By multiplying and adding as above again we get 

(wn - y,un - x) > -\\y\\ {(1 - 5n)en||vn|| + sn£n | |zn | |} 

implying 

liminf(wn — y,un-x) > 0. 

Bearing in mind the assumption we obtain 

(w, u) > limsup{ion,un) > liminf(iyn,un) > (w, x) + (y,u) — (y,x). 
Hence (w—y, u—x) > 0 and since T G (MM) we conclude u G D(T) and w G T(u). Substituting 
[u,w] for [x,y] above we also get lim(u;n,un) = (w, u). | 

Now we are in the position to continue in the familiar way. 

LEMMA 8.2. Let F G TG(MM, S+) andy€X* with y i F(dG). Then there exists e > 0 such 
that y ^ F€(dG) for all e with 0 < e < e. Moreover, there exists e0 < e such that dis(Fe,G,y) 
is constant for all e with 0 < e < e0. 

PROOF: Assume that the first assertion is false. Then there exist sequences {un} C dG and 
{en} such that un —- u, en —>• 0+ and 

Fen(un) = Ten(un) + S(un) = y for all n G N. 

Since 5 is bounded, we can assume that vn = T€n(un) = y—S(un) —- v. Since 5 € (5+) C (QM) 
we also have 

limsup(vn,wn — u) = limsup(y — 5(u n ) ,u n — u) < 0 

and we can employ Lemma 8.1 with the specialization sn = 0 for all n G N. Consequently 
u G D(T), v G T(u) and (vn ,un) —• (v,u) implying that 

limsup(5(un),«n - u) = 0. 

Using the fact that 5 € (5+) we get wn —> u with u e dG and 5(«n) —- 5(w). Thus 
v = y — 5(w) € T(u) and j / € (T + S)(u), a contradiction. 

If the second assertion were false, we could find, using the property (c) of the 5+-degree, 
sequences {un} C dG, {en}, {Sn} and {sn} such that un —- u, en —> 0+, £n —> 0+, 0 < sn < 1 
and 

(1 - sn)Fen(un) + 5nF5n(un) = y for all n G N. 

Thus 
(1 - sn)Ten(un) + snT6n(un) + S(un) = y for all n G N. 

Denoting vn = TCn(un), zn = T«n(wn) and wn = (1 — 5n)vn + 6nzn we can assume that wn = 
y—5(un) —- w in K*. Hence we can invoke Lemma 8.1 if we know that limsup(ion, un) < (w, u). 
But this is again a consequence of the fact that 5 G (5+). Thus we may conclude that u G D(T), 
w G T(u) and lim(w;n, un) = (w>, w), which implies as above that limsup(5(un), un — u) = 0 and 
un —> u with w G dG. A contradiction is achieved by the fact that y G (T + 5)(u). I 

By Lemma 8.2 the definition (8.1) is relevant. To verify that dMM is a classical degree 
function we need the class of admissible homotopies. We shall call a homotopy Ft, 0 < t < 1, 
permissible if Ft = Tt-\-St, where St is a bounded homotopy of class (5+) and Tt is a permissible 
homotopy of maximal monotone mappings in the sense that Tt G (MM) for each t G [0,1] and 
the mapping t —> (Tt + J)~l(v) is continuous from [0,1] to the strong topology of X. In fact, it 
is shown by Browder ([Bro 5]) that an equivalent condition for Tt is the following generalized 
pseudomonotonicity condition: if tn —• t in [0,1], [un,wn] G G(Ttn) with un —- u, wn —- w and 
limsup(ifn,«n) < (w,u), then i* G D(Tt), w G Tt(w) and limsup(u>n,un) = (w,u). However, 
for applications and even for uniqueness of the degree function (8.1) it seems adequate to deal 
with the class of affine homotopies of the form 

HG(MM; 5+) = {Ft = *F0 + (1 - t)Sx | F0 G TG(MM; 5+), Sx G FG(S+)} 

Then we have 
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THEOREM 8.1. Let X be a real reflexive Banach space, G an open bounded subset in X and 
FG(MM; S+) the class of admissible mappings. Then there exists exactly one degree function 
d-MM satisfying the properties (a) to (d) with respect to HG(MM; S+) and normalizing map J. 

For the proof we need generalized versions of Lemmas 8.1 and 8.2 for homotopies as shown 
by Browder [Bro 5j. We check only the property (a). Indeed, assume ^MM(T + S,G,y) ^ 0, 
Then ds+ (Tt + S, G, y) is constant and non-zero for e small enough, and there exist sequences 
{un} C G and {en} such that T€n(un) + S(un) = y for all n G N, un —- u and en —> 0+. We 
can proceed exactly the same way as in proving Lemma 8.2 to conclude that un —• u G G and 
y G T(u) + S(u). 

Existence and surjectivity results for mappings F = T + S G ^(MM; S+) can be derived 
along the lines of Section 4, For example we get from Theorem 4.3 the following 

COROLLARY 8.1. Let F = T + S G TX(MM; S+) satisfy the conditions 
(i) F~l is locally bounded 

(ii) there exists R>0 sucn that 

{W*M)iU) + "̂  + 5(w)l1 > ° for ̂  W ^R>we T(u)-
Then7l(T + S)=X*. 

REMARK 8.1: It can be shown by different methods that for T G (MM), ll(T) = X* if and 
only if T" 1 is locally bounded (cf. Remark 4.2), We also know that 7l(T + XJ) = X* for all 
A > 0 if and only if T G (MM) (for more details consult [De]). 

REMARK 8.2: The degree function obtained above can be extended to the class ^(MM; QM) 
as in the previous cases by approximations T + S + ej, T G (MM), S G (QM), e > 0. On 
the other hand we may also use approximations T€ + S for which the weak degree is already 
defined. To indicate the results in this direction we have 

COROLLARY 8.2. LetF-T+S, where T is maximal monotone with 0 G T(0) and S: X -» X* 
is bounded demicontinuous pseudomonotone and strongly coercive. Then %(T + S) = X*. 

PROOF: We know that T6 is bounded demicontinuous monotone mapping from X to X* for 
each € > 0. Hence Te G (PM) and Ft = Tc + S G (PM). Since T«(0) = 0, we have 

(Ft(u),u) (T((u),u) (S(u),u) 

By Theorem 4.5, Ft(X) = X* for each e > 0. Let y G X* be arbitrary and {en} a sequence 
with en —• 0+. For each n G N there exists un G X such that 

Ten(un) + 5(i*„) = y. 

Since S is strongly coercive, {un} is bounded and we can assume that un —- n and 
S(un) —- h. Denoting vn = T<n(«n) we also have i?n —- y — h = v. Since S G (PM) we 
obtain limsup(vn, wn — u) < 0 and we can invoke Lemma 8.1 to derive u G D(T), v G T(u) and 
Iim(vn, un) = (v,u), Hence limsup(S(Mn),wn—w) = 0 implying S(un) —- S(w) andv = y—S(w), 
i.e.,j/G(T + S)(u). | 

9. PERTURBATIONS OF LINEAR MAXIMAL MONOTONE MAPPINGS 
AND APPLICATIONS TO PARABOLIC PROBLEMS 

The study of perturbations of maximal monotone multis is motivated for instance by the 
connections to generalized Hamrnerstein equations, variational inequalities and subdifferentials 
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of lower semicontinuous functionals. We are interested here in the parabolic initial-boundary 
value problems for differential operators of the form 

(9.1) ^§^+ £(-1)^^^ («,*) <= Q 
l«|<m 

where Q = Q, x (0,T), Q an open bounded subset in RN, m > 1 and the coefficients Aa are 
functions of (x,t) € Q and of £ = (77,C) € RN° with .7 6 RNl and (' € RNa, Ni + N2 = -Y0, as 
in Section 5. We assume also that each A0(a;, £, {) is a Caratheodory function and satisfies the 
polynomial growth condition (Ai) for some cj > 0, 1 < p < 00 and k% € Lp (Q). The latter 
part of the operator (9.1) gives rise to a bounded continuous mapping 5 : V •--> V* by the rule 

(9.2) ( S « , f > = / £ Aa(M,£M)Dai;, « , « € V , 
Q l«|<m 

where V = i^(0, T; X) with X = W0
m,P W» *° r example. If we assume, for simplicity, that p > 2 

and if we give also an initail value u(0) = 0, then the former part of (9.1) has a realization L 
as a maximal monotone closed linear mapping from 

D(L) = {» € V | | ~ 6 V , t, € C(0, T; I 2 («) ) , «,(0) = o} 

to V*, (see [Li]). Hence the initial-boundary value problem for the operator (9.1) admits 
a weak formulation 

(9.3) Lu + S(u) = h, ueD(L), 

where h is a given element in V* = Lp (0, T\X*). If we knew that 5 is coercive and pseu
domonotone we can apply the results of Section 8. Indeed, if the coefficients Aa satisfy the 
monotonicity condition 

(A2)M £ { - 4 a ( * f t , 0 - - 4 « ( » , < , r ) } ( « « - G ) > 0 te«U(M)€©MKU,r€RN!» 
|o|<m 

and the strong coercivity condition 

(As)s J2 ^«(*.*-0&- > c2ieip ~ h2{x,t) for all (x,t) € Q, £ € RN° 
\a\<m with c2 > 0 and fc2 € X-1(Q), 

then 5 is monotone and hence also pseudomonotone. By Corollary 8.2 the equation (9.3) has 
a solution for any h € V*. In order to deal with more refined monotonicity conditions like 

(A2)s ] T {Aa(x,t,r},O-Aa(x,t,rl,C)}((:a-C)>0 
\q\=m 

for all (x, t)eQ,n€ RN> and ( ^ C € RN* 

we need a further extension of the degree for mappings of the form F = L + 5 where £ is a 
linear maximal monotone closed densely defined operator from D(L) in V into V* and 5 is of 
class (S+) or pseudomonotone with respect to D(L), i.e., for any sequence {un} in D(L) with 
un —- u in V, Lun —- Lw in V* and limsup(5(un),tjn - u) < 0, we have un —> u in V, or 
S(un) —- $(u) in V* and (5(un),tJn) —> (S(u),u), respectively. 
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LEMMA 9 .1 . If the operator (9.1) satisfies conditions (Ai) and (A2)s, then the mapping S 
defined by (9.2) is pseudomonotone with respect to D(L). If also the condition (A3)s is satisfied, 
then S is of class (S+) with respect to D(L). 

PROOF: For the proof of the first part we refer to [Mu] which deals with the case where fi may 
be unbounded. Assume that the conditions (Ai), (A2)s arid (A3)s are satisfied. Hence for any 
sequence {un} in D(L) with un —- u in V, Lun —- Lu in V* and limsup(S(un),un — u) < 0 we 
have S(un) —- S(u) in V* and (S(un), un) —> (S(u),u). Moreover we know by the proof of first 
part that Daun -> Dau in L*(Q) for all |a | < ra-1 and Daun(x, t) -> Dau(x,t) a.e. in Q for all 
|a | = ra, at least for a subsequence. Denoting hn(xy t) = J2 Aa(^ *» £(wn(#. t)))DQun(.r, *) + 

|a|<m 
&2OM), h(xyt) = £^ Ac.OM.£(u(a:,£)))Dau(;r,£) + £2(2, *), we have /in(.r,t) > 0 a.e. in Q, 

\a\<m 
H^nlU-(Q) -» ||^IU-(Q) and hn(xyt) —> h(x,t) a.e. in Q. Hence hn —> h in L^Q) and there 
exists a function h € Ll(Q) such that 

£ Aa(xyti£(un(x,t)))Daun(x,t) < k(xyt) a.e. in Q 
\a\<m 

for some further subsequence. Using now (A3)s we can conclude by the dominated convergence 
theorem that un —> u in V. I 

In order to get suitable approximations for the map F = L+S we denote Y = D(L) equipped 
with the norm ||u||y = ||u||y + ||Lu||y*. Y is also a reflexive Banach space with continuous 
embedding j : Y —> V. For each e > 0 we then define (cf. [Li, Chapitre 3]) 

(9.4) a€(u,v) = e(J-\Lu)yLv) + (Lu,u> + (5(u),u), ti,v € D(L), 

where /J stands for the duality map: V —> V*. It is easy to see that v —> a€(u, v) is a bounded 
linear functional in Y and therefore (9.4) defines a mapping F€: Y —> Y* by 

(9.5) (F«(«).v) = ««(«»v), u, v 6 Y". 

If we assume that 5 is of class (5+) with respect to D(L), then F€ is of class (5+) for each 
e > 0. Indeed, let {un} be a sequence in F with un —- u in Y and limsup(Fc(un), un — u) < 0. 
Hence un —- u in V, Lun —- Lu in V* and 

(9.6) limsup{e(/f"1(Lun) - J _ 1 ( L u ) , L u n - Lu) + (Lun - Lu,un - u) 

+ (5(un) ,un-u)}<0 . 

Since /J - 1 is strictly monotone and L is monotone, we have 

limsup(5(un),un — u) < 0 

implying un —> u in V. Hence also 

lim(Jr~1(Lun) - J-x(Lu)y Lun - Lu) = 0. 

Since J-1 has the properties of the duality map: V* —> V**, ||L^n | | —> ||LM|| and thus Lun —> Lu 
in V*. Hence Fc is in the class (5+) for any e > 0. 

Using the approximations {Fe | e < 0} we can now proceed in the familiar way to obtain 
a degree function for mappings F = L + 5. However, some further work is to be done due to 
the fact that the bounded sets in Y and V are not the same. A more detailed discussion on this 
extension will appear elsewhere. We close these notes by a remark that existence results for 
tlQ equation (9.4) under the conditions (Ai), (A2)s and (A3)s can be obtained also directly by 
using approximating equations Fe(u) = j*h in F , where j * : V* —* Y* denotes the adjoint of j . 
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