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Institute of Mathematics AS CR, Prague 2015

DIFFERENT APPROACHES TO INTERFACE WEIGHTS
IN THE BDDC METHOD IN 3D
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Abstract

In this paper, we discuss the choice of weights in averaging of local (subdomain)
solutions on the interface for the BDDC method (Balancing Domain Decomposition
by Constraints). We try to find relations among different choices of the interface
weights and compare them numerically on model problems of the Poisson equation and
linear elasticity in 3D. Problems with jumps in coefficients of material properties are
considered and both regular and irregular interfaces between subdomains are tested.

1. Introduction

An important ingredient of many domain decomposition methods is a technique
used for determining a continuous approximation of solution at interface from discon-
tinuous local solutions from adjacent subdomains. A standard approach described
already in [3] is to compute global value of any given interface unknown as some
weighted average of local (subdomain) values of the corresponding unknown only.
Very often just arithmetic average is used, based simply on counting number of sub-
domains to which the interface unknown belongs. More sophisticated method is to
derive the weights from diagonal stiffness of subdomain Schur complements with
respect to the interface. As these complements are typically not computed explic-
itly in efficient implementations, the diagonal of the Schur complement is sometimes
approximated by the diagonal of the original matrix (also known as the diagonal stiff-
ness scaling). Another method is the so called ρ-scaling (see e.g. [5] for theoretical
analysis). However, it is limited to the case of material coefficients constant on each
subdomain, which is often too restrictive requirement for applications, and it is also
not preserved in our examples. Nevertheless, we tried its modification, using mate-
rial coefficients on individual elements instead. In any case, this approach requires
access to material coefficients from the equations solver in an implementation.
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A different recent method of evaluation of global values, called deluxe scaling,
represents solving local problems containing two or more adjacent subdomains (see
e.g. [4]). Implementation of this method is quite demanding, and it is not covered by
our numerical experiments, although we involve it in our theoretical considerations.

Our method of averaged unit jump was originally derived by approximate mini-
mization of the upper bound on the condition number of the preconditioned operator
(see e.g. [1]).

In this paper, we analyze theoretically relationships among methods mentioned
above. We use an abstract formulation of the BDDC preconditioner presented in [6]
in order to obtain a clearer form of our results formulated in Lemma 1 that seems to
be new. We also test the methods numerically on 3D Poisson and linear elasticity
problems, together with two heuristic methods (called unit jump and unit load ; unit
load was proposed and tested on 2D Poisson problem in [2]).

2. Notation

Consider a system of linear equations Ku = f obtained by discretization of
boundary value problem with a self-adjoint operator defined on a domain Ω. Let
us decompose the domain Ω into N non-overlapping subdomains Ωi, i = 1, . . . , N .
Unknowns common to at least two subdomains are called interface unknowns, and
the union of all interface unknowns form the interface. The first step is the reduction
of the problem to the interface. We thus arrive at the Schur complement problem
for the interface unknowns Ŝ û = ĝ, where Ŝ is a symmetric positive definite (SPD)
matrix. This system is solved by the preconditioned conjugate gradient method
(PCG). More detailed description of this reduction to the interface can be found
in [2].

According to [6], let us interpret the matrix Ŝ as an operator Ŝ : Ŵ → Ŵ ′, where

Ŵ is a finite dimensional linear space. Let us introduce another space W̃ such that
Ŵ ⊂ W̃ (in terms of subdomains, the space W̃ represents functions which can be
discontinuous across parts of the interface, it means they can have different values
of interface unknowns on individual subdomains – there can be a jump across the
interface). Let S̃ be an extension of Ŝ to W̃ . Denote R the natural injection from

Ŵ to W̃ , then we have Ŝ = RT S̃R . The space W̃ has to be chosen so that the
extended operator S̃ is positive definite and its inversion can be applied efficiently.
Then the BDDC preconditioner can be expressed as

M = ES̃−1ET , (1)

where operator ET represents splitting of the residual to subdomains, S̃−1 stands
for solution on subdomains and the coarse level, and E represents averaging of
subdomain solutions back to the global problem. The condition number κ of the
preconditioned operator MŜ is bounded by

κ ≤ ||RE||2S̃ , (2)
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where the energetic norm on the right-hand side is defined by the scalar product
as ||u||2S̃ = 〈S̃u, u〉. The relationship (2) was proved in [6] assuming that ER = I,
which means that if the problem is split into subdomains and then projected back
to the whole domain, the original problem is obtained.

3. Theoretical background of the averaging methods

In every step of PCG, for the given residual r ∈ Ŵ ′, an approximation Mr of
its preimage e = Ŝ−1r is to be computed. Our goal is to construct the averaging
operator E so that good convergence of the PCG method is achieved, and its action
is not too expensive. There is an upper bound on the distance of e from Mr :

Lemma 1. Assume ER = I and use the notation from Section 2. Denote w =
S̃−1ETr. Then the following estimation holds:

||e−Mr ||Ŝ ≤ ||Re− w ||S̃ + ||(I −RE)w ||S̃ , (3)

where ||.||Ŝ and ||.||S̃ are the energetic norms in Ŵ and W̃ , respectively.
Square of the first term on the right-hand side can be expressed as

||Re− w ||2
S̃

= 〈Mr, r〉 − ||e||2
Ŝ
. (4)

Proof. The inequality (3) is obtained from triangle inequality and the fact, that the

energetic norms in Ŵ and W̃ are equal:

||e−Mr ||Ŝ = ||e− Ew ||Ŝ = ||Re−REw ||S̃ ≤ ||Re− w ||S̃ + ||w −REw ||S̃ .

Rewriting square of the first term on the right-hand side of the inequality (3):

||Re− w||2
S̃

= 〈Re− w, S̃(Re− w)〉 = 〈Re− S̃−1ETr, S̃Re− S̃S̃−1ETr〉
= 〈Re, S̃Re〉 − 〈Re,ETr〉 − 〈S̃−1ETr, S̃Re〉+ 〈S̃−1ETr, ETr〉
= 〈e, RTS̃Re〉 − 〈ERe, r〉 − 〈r, ERe〉+ 〈ES̃−1ETr, r〉
= 〈e, Ŝe〉 − 2〈e, r〉+ 〈Mr, r〉 = 〈Mr, r〉 − 〈e, r〉 = 〈Mr, r〉 − ||e||2

Ŝ
.

It seems that nearly all methods used so far for averaging have some connection
with minimizing the second term ||(I−RE)w ||S̃ on the right-hand side of (3), as we
show bellow. Moreover, there is also a connection with the upper bound (2), because
norms of the complementary projections are equal: ||RE||S̃ = ||I −RE||S̃ .

Our approach in [1] to find proper weights for averaging (in other words, to find
the so called weight matrix) is to minimize the term ||(I − RE)u ||S̃ for some given

u ∈ W̃ under the standard assumption that the global value of any given interface
unknown is computed as weighted average of subdomain values of the corresponding
unknown only – it means that the weight matrix is supposed to be diagonal. For two

49



adjacent subdomains (with no coarse space) it leads to a system of linear equations
for unknown diagonal of the weight matrix A:

Ad = Ŝ−1S1d = (S1 + S2)−1S1d, (5)

where Si is the local Schur complement of the i-th subdomain, and the vector d
represents a jump across the interface in some given test vector u. For more details
see [1]. This relationship can be interpreted as: for a given jump d, find a diagonal
representation A (dependent on d) of some general matrix (S1 + S2)−1S1 that is
independent of d. And so maybe we can use this general matrix for a construction of
the averaging operator E independent of d and use the (full) matrix (S1 + S2)−1S1

instead of the diagonal matrix A. By this approach we arrive to deluxe scaling
proposed in [4]. In this method, the system (S1 +S2)v = S1r is solved for every pair
(or, in some cases, group) of adjacent subdomains in every step of the PCG method,
where r is a local residual on the appropriate part of the interface.

As we would like to avoid solving that large number of local systems, we look for
some simplification of system (5). One option is to omit all off-diagonal entries of
matrices Si, which leads to the choice of weights as ratios of diagonals of local and
global Schur complements. Another option is to assume that all weights on the local
interface are equal (as in the case of arithmetic average) and choose some suitable
test jump d. We have chosen a unit jump for numerical tests and call the method
averaged unit jump method.

Note: The expression (4) has led us to the idea of trying to minimize the term
〈Mr, r〉. For the case of two adjacent subdomains, using the same assumption of
diagonal weight matrix and using the same process of minimization as in [1], we
arrive at equations

Ar = (S−1
1 + S−1

2 )−1S−1
2 r, (6)

where the vector r represents a local residual on the appropriate part of the interface.
Nevertheless, this result does not seem to bring any practical advantage compared to
system (5). Again, omitting all off-diagonal entries of matrices Si leads to the well-
known choice of weights as ratios of diagonals of local and global Schur complements.

4. Approaches for computation of weights at interface nodes

For the sake of clarity, formulas are presented again for two adjacent subdomains.
We also assume one degree of freedom per node, so that numbering of nodes and
degrees of freedom coincide. It is straightforward to generalise these methods to
more than two adjacent subdomains (on edges) or more degrees of freedom at a node.
Notation:

j . . . number of a node in numbering with regard to the interface
i . . . global number of the j-th interface node with regard to the global numbering
w1

j . . . weight at the j-th node at the interface corresponding to the first subdo-
main (the weight w2

j for the second subdomain is then w2
j = 1− w1

j )
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• aa . . . arithmetic average: w1
j = 1

2

• dk . . . fractions of diagonal entries of the system matrix K: w1
j =

k1qq
kii

, where kii is

a diagonal entry of the (global) system matrix K, k1
qq is the corresponding diagonal

entry of the local matrix for the first subdomain; q is a local number (at the first
subdomain) of the i-th node (in global numbering)

• rho . . . element-wise ρ-scaling: w1
j =

α1
j

α1
j+α2

j
, where αk

j is a local material coef-

ficient computed as an arithmetic average of material coefficients given on elements
containing the j-th node and belonging to k-th subdomain

• auj . . . averaged unit jump method: w1
j = dTS1d

dT (S1+S2)d , where d stands for test

vector equal to ones at the common face of the two subdomains and zeros otherwise
(representing jump at that face), and Sk is the local Schur complement for the k-th
subdomain

• uj . . . unit jump method: w1
j =

g2j
g1j+g2j

, where gk = (gk1 , g
k
2 , . . . )

T is the local

vector of reaction on the k-th subdomain induced by a unit jump: gk = Sk d

• ul . . . unit load method: w1
j =

v1j
v1j+v2j

, where vk = (vk1 , v
k
2 , . . . )

T is the vector of

the local solution on the k-th subdomain under unit load, i.e. with the right-hand
side equal to ones: Sk v

k = d

5. Numerical results

Our aim is to numerically compare the robustness of the approaches to averaging
listed in Section 4 with respect to two model aspects known to cause issues to domain
decomposition methods, namely (i) roughness of the interface among subdomains,
(ii) jumps in material coefficients inside the domain.

Following our preliminary 2D numerical tests of some of the methods for averaging
(see [2]), we choose 3D Poisson and linear elasticity problems on a unit cube
domain for testing (solutions of the problems are illustrated in Figure 3). The Poisson
equation has unit right-hand side and homogeneous Dirichlet boundary conditions
on the surface of the cube. For linear elasticity problem, the cube is mounted at
a vertical face and loaded by its own weight.

Problems are discretized by the finite element method using trilinear cubic ele-
ments, all of them of the same size h. The domain was divided into 4×4×4 cubic
subdomains of size H, and we test different numbers of elements per subdomain
edge, H/h = 4, 8, 16, 32, and 60. The interface is either regular, i.e. consisting of
plane sections only, or jagged (see Figure 1). Both homogeneous and nonhomoge-
neous materials are considered. For the Poisson problem, the low material constant
is chosen as 1 and the high one as 106, for elasticity the low value of Young modulus
is 105 and the high one is 2.1·1011. Three nonhomogeneous material arrangements
are designed (see Figure 2):

• Material 1 – Random elements : For each element, the value of the material
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coefficient is chosen randomly with a uniform distribution between the low and
high values.

• Material 2 – Slices along the interface: Only the low and high values of the
material coefficient are used as depicted in Figure 2. The solution to the Poisson
problem defined on this domain is in Figure 3.

• Material 3 – Stiff rods of material with the high coefficient arranged in a 4×4 lat-
tice inside the material with the low coefficient.

These arrangements have been chosen to model several situations encountered in
engineering, such as rapidly oscillating coefficients, layered structures, or reinforced
composite structures.

Coarse nodes at all crosspoints and coarse averages are used. Quality of the
preconditioner is measured by the number of iterations of PCG needed to reduce the
relative residual below 10−6.

For computations, the BDDCML library – a massively parallel implementation
of the Adaptive-Multilevel BDDC method – is used. The Schur complements are not
computed explicitly in this implementation, so the averaging by values on diagonals
of the complements is only approximated by diagonals of the subdomain matrices.

For homogeneous material and regular interface, the same results have been
obtained by all methods of averaging, only the ul method has performed little worse.
For Poisson problems the number of iterations are depicted on Figure 4 (left), for
linear elasticity the results are very similar and they are not reported.

For jagged interface, the results are summarised in Table 1, and for Poisson
problems, they are also plotted in Figure 4 (right). The behaviour of the methods is
again very similar for both Poisson and linear elasticity problems, the main difference
is worse convergence for elasticity. The interesting observation is that the rate of
worsening of the convergence with growing ratio of H/h is different for different
methods: for instance, the auj method is much more stable than dk method, and
although auj is the worst method for 4 elements per subdomain edge, it belongs to
the best for the 32 and 60 elements per edge.

Poisson problem linear elasticity
H/h 4 8 16 32 60 4 8 16 32
aa 11 14 15 16 18 28 35 37 39
dk 6 8 11 17 24 13 18 28 44
rho 11 14 15 16 18 28 35 37 39
auj 12 14 15 16 18 32 40 41 42
uj 7 9 14 22 32 19 30 41 68
ul 10 13 17 22 27 21 37 51 61

Table 1: Number of iterations: homogeneous material, jagged interface
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The results for nonhomogeneous materials are illustrated by graphs only. For
Material 1 (random elements), the behavior is again very similar for both Poisson
and linear elasticity problems, so only results for the Poisson problem are depicted
in Figure 5 for regular (left) and jagged (right) interface. Note the different scale
of the vertical axes. We can see that the jagged interface worsens dramatically the
behaviour of both aa and auj methods, which do not adapt locally to the jumps
along the interface and use a single weight for the whole part of the interface.

In the case of Material 2 (slices), for regular interface, all methods perform equally
well with the exception of aa. For the Poisson problem, see Figure 6 (left). For jagged
interface (Figure 8), methods aa and uj did not converge in 1000 and for others, there
is a difference between Poisson problems (left) and linear elasticity (right): for the
former, the dk method worsens quite rapidly with growing H/h, for the latter dk it
is the best even for H/h = 32.

Material 3 (stiff rods) leads to quite challenging problems: the results are diverse
and difficult to predict. Methods behave differently for Poisson problems and linear
elasticity even for regular interface (see Figure 9). For jagged interface, convergence
was achieved only for Poisson problems (Figure 7 right).

Figure 1: Regular (left) and jagged (centre) interface, and a detail of an interior
jagged subdomain (right)

Figure 2: Material 1 – random elements (left), Material 2 – slices (centre), and
Material 3 – stiff rods (right)
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Figure 3: Solution to the Poisson problem with homogeneous material (left), for the
Poisson problem with Material 2 – slices (centre), and magnified displacement of the
linear elasticity problem with homogeneous material (right)
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Figure 4: Homogeneous material, Poisson problem, regular (left) and jagged (right)
interface
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Figure 5: Material 1 (random elements), Poisson problem, regular (left) and jagged
(right) interface. Note the different scale on the vertical axes
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Figure 6: Material 2 (slices), Poisson problem, regular (left) and jagged (right)
interface
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Figure 7: Material 3 (stiff rods), Poisson problem, regular (left) and jagged (right)
interface. Note the different scale on the vertical axes.

6. Conclusions

Three new forms of the averaging operator (auj, uj, ul) have been numerically
compared with three standard ones (aa, dk, rho) on several challenging test problems.
We have found that the choice of the method of averaging has a significant influence
not only on the convergence of the BDDC method, but also on the rate of worsening
of the convergence with growing ratio of H/h. The main conclusion one can draw
from our numerical results is that there is no single universal method for averaging
that would perform well for all cases; the performance of the methods depends on
the problem, on the H/h ratio as well as on the profile of the interface (regular or
jagged). Moreover, it is usually not clear in advance, which method would be the
best one for the given problem. It seems that a robust and efficient implementation
of the BDDC method should offer a flexible choice from several different averaging
methods, and it is worth trying several of them before a production computations
are performed.

55



 0

 200

 400

 600

 800

 1000

 4  8  16  32  60

nu
m

be
r 

of
 it

er
at

io
ns

H/h

aa
dk
rho
auj
uj
ul

 0

 200

 400

 600

 800

 1000

 4  8  16  32  60

nu
m

be
r 

of
 it

er
at

io
ns

H/h

aa
dk
rho
auj
uj
ul

Figure 8: Material 2 (slices), jagged interface, Poisson (left) and linear elasticity
(right) problems. Note the different scale on the vertical axes.
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Figure 9: Material 3 (stiff rods), regular interface, Poisson (left) and linear elasticity
(right) problems. Note the different scale on the vertical axes.

Nevertheless, some recommendations based on our results can still be made: For
homogeneous problems, the simplest method aa is sufficient for both regular and
irregular interface. It seems also less sensitive to growing H/h ratio than other
methods. However aa should not be applied to nonhomogeneous materials for which
the convergence can be disastrous. For nonhomogeneous problems, dk or, if the solver
has access to material data, the rho scaling perform well. Moreover, rho seems
more reliable, as convergence for dk deteriorates more rapidly with growing H/h
ratio, especially for jagged interface. For several complicated cases combining jumps
and irregular interface, the newly developed methods, auj, uj, and ul noticeably
superseded the standard approaches, especially for linear elasticity problems.

In Lemma 1, some relationships between preconditioned residual and its preimage
in both the spaces Ŵ and W̃ for the BDDC preconditioner have been presented.
However, they have not led us to any new practical method for averaging so far.
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in the BDDC method. In: T. Vejchodský et al. (Eds.), Proceedings of Programs
and Algorithms of Numerical Mathematics 15, Dolńı Maxov, Czech Republic,
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