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Abstract

A simple beam subjected to a row of regularly distributed moving forces and
simultaneous vertical motions of its supports is described using a simplified theoretical
model and a finite differences approach. Several levels of simplification of the structure
and input data are supposed. Numerical results confirm legitimacy of the assumptions.

1. Introduction

Although dynamic action of moving loads on structures was studied since middle
of the nineteenth century, the combined effect of train and earthquake attracted
attention only recently, [5]. In the present work, we concentrate to the problem of
vertical vibrations of a beam, which is subjected to a row of regularly spaced fast
moving forces and simultaneously to motion of its supports due to an earthquake.

An approximative analytical solution to the problem was formulated at the cost
of significant simplification many times, e.g., [2]. However, these formulae bring
their own difficulties for numerical enumeration: they involve partial sums of infinite
trigonometric series, which can introduce spurious oscillations, or hidden pairs of
terms, which cancel themselves under certain conditions and thus they are a poten-
tial source of numerical instability. Moreover, simplifying assumptions like lack of
damping or a limited number of eigenmodes taken into account lower credibility of
the formulae. Such obstacles divert attention to numerical alternatives.

Numerical algorithms for solution to fourth order parabolic PDEs have a long
tradition. The available methods comprise explicit and implicit finite difference
schemas or several variants of finite element methods. Method of lines gained in
popularity for general problems. It reformulates the PDE to the form, which is
convenient for application of a standard ODE solver.

In this paper, we present an attempt to employ an implicit difference schema for
solution to the PDE describing the transverse vibrations of a beam. The numerical
procedure is tested on the benchmark case introduced by Evans in [1] and on a simple
model of a real bridge, see [3].
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Figure 1: Simplified model of the beam, moving forces, and movement of supports

2. Description of the model and closed form solution

Let us assume a simple damped beam of span `, which is subjected to a row
of n moving forces Fi, i = 1, 2, . . . , n at the distances di, see Figure 1. The forces
are moving from the left to the right with a constant velocity c. The supports of
the beam perform vertical movements α(t) (left support) and β(t) (right support),
respectively. The problem is governed by the partial differential equation:

EI vıv(x, t) + µ v̈(x, t) + 2µγ v̇(x, t) =
∑n

i=1
Fiεi(t)δ(x− di), (1)

v(0, t) = α(t), v(`, t) = β(t), v′′(0, t) = 0, v′′(`, t) = 0, (2)

v(x, 0) = v̇(x, 0) = 0, (3)

where v(x, t) is the vertical displacement of the beam at x and time t, respectively,
EI is the flexural rigidity of the beam (constant), µ is the mass per unit length
of the beam (constant), γ is the circular frequency of the beam damping, εi(t) =
h(t− ti)−h(t−Ti) with h(t) being the Heaviside unit step function, δ(x) is the Dirac
function, ti = di/c, Ti = (` + di)/c is the time when the i-th force enters or leaves
the beam, di is the distance between the first and i-th force d1 = 0, and primes and
dots denote the differentiation with respect to space and time, respectively.

The boundary conditions (2) characterize the “simply supported beam” with
prescribed movement of its both ends. The soil displacement functions are usually
assumed to be equal α(t) = β(t) or shifted α(t) = β(t±∆t) on both ends, however
the general choice α(t) 6= β(t) is supposed here.

The closed form solution to the problem of beam vibration (1–3) used in this
work is described in detail in [3]. Thus, due to space limitation only a few incomplete
formulae will be presented here.

The response of the beam v(x, t) is resolved into the so called quasi-static com-
ponent vs(x, t) comprising variable boundary conditions and dynamic component
vd(x, t), which includes the moving load on the right hand side:

v(x, t) = vs(x, t) + vd(x, t). (4)
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The time-variable boundary conditions α(t), β(t) in equation for vs(x, t) are as-
sumed to be represented by a sum of m selected (dominant) terms of a finite Fourier
approximation, possibly modulated by a function of “slow time” τ , τ=σt, σ � 1,

α(t) =
∑m

k=1
γ(τ) sinωkt. (5)

Harmonic character of the boundary conditions and assumption of zero damping
enables to find analytical solution as a sum of eigenmodes vs,i(x, t) :

vs(x, t) =
∑m

k=1
vs,k(x, τ) sinωkt, (6)

vs,k(x, τ) = Ck,1 sin
λkx

`
+ Ck,2 cos

λkx

`
+ Ck,3 sinh

λkx

`
+ Ck,4 cosh

λkx

`
, (7)

where λk = ` (µω2
k/EI)

1
4 and Ck,j(τ) are given by boundary conditions.

The dynamic component can expressed in the form of eigenmodes expansion:

vd(x, t) =
∑∞

j=1
qj(t) sin

jπx

`
, (8)

where the functions qj(t) sum contributions of individual forcing components.

3. Finite difference schema

Let us assume a uniform discretization of the beam with N − 1 interior points,
0 = x0 < x1 < . . . < xN = `, xi = ih. The difference schema for the 4th order
derivative in (1) with boundary conditions (2) will be deduced from a transformed
system (z(x, t) = v′′(x, t) ):

z′′(x, t) + v(x, t) = f(x, t) and v(0, t) = α(t), v(`, t) = β(t), (9)

v′′(x, t)− z(x, t) = 0, z(0, t) = 0, z(`, t) = 0,

which can be discretized using the standard second order difference schema h2v′′(xi) ≈
v(xi−1)−2v(xi)+v(xi+1). This procedure avoids explicit formulation of second order
boundary conditions. Eliminating the auxiliary variable z the linear algebraic system
conforming to (9) with boundary conditions (2) can be written in the matrix form:

1

h4
M · vj = fj +

1

h4
gj. (10)

Vector vj represents unknown displacements of internal nodes xi, i = 1, . . . , N − 1
at time instant tj = j · ∆. Vector fj = {f(xi, tj)}N−1

i=1 corresponds to the value of
the right hand side in the internal nodes. The symmetric matrix M ∈ R(N−1)×(N−1)

consists of 5 non-zero diagonals with numbers 6,−4, 1 on the main-, 1st, and 2nd sub-
and superdiagonal, respectively, with the exception of the corner values: M1,1 =
MN−1,N−1 = 5. Elements of vector gj ∈ R(N−1) are given as

gj = (2α(t),−α(t), 0, . . . , 0,−β(t), 2β(t))T . (11)
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The time derivatives at t = tj = j ·∆ will be approximated by formulae

∆2v̈(tj) ≈ v(tj−2)− 2v(tj−1) + v(tj) , 2∆v̇(tj) ≈ v(tj−2)− 4v(tj−1) + 3v(tj). (12)

The final implicit recurrence formula can be written in the matrix form for j = 1, . . .(
b2M +

(
1 +

3

2
γ∆

)
I

)
·vj =

∆2

µ
fj +b2gi+2(1+γ∆)vj−1−

(
1− 1

2
γ∆

)
vj−2, (13)

where

b =

√
EI

µ

∆

h2
. (14)

In compliance with the initial conditions (3) the two starting values can be considered
zero: v−1 = v0 = 0.

The discretization parameters h, ∆ should be chosen to allow consistent descrip-
tion of the moving load. The value of h should correspond to axle distances of the
supposed train and the time step ∆ has to be dependent on the train velocity

h =
1

k
GCD{d1, . . . , dn} , ∆t =

1

l

h

c
for some k, l ∈ N. (15)

The consistent distribution of the axle load Fi between two adjacent space nodes is
necessary if l > 1. This can be assured, e.g., by the choice

f(x, t) =
∑n

i=1
Fi max

{
0, 1−

∣∣∣∣x− (ct− di)
h

∣∣∣∣} . (16)

4. Numerical verification

Problem 1. The simple benchmark case was used first in [1] and then subse-
quently several times. It considers free vibration case (f(x, t) = 0) of an undamped
system (1–2) with parameters ` = 1, EI = 1, µ = 1, γ = 0, α(t) = β(t) = 0 and

v(x, 0) =
1

12
x(2x2 − x3 − 1) ; v̇(x, 0) = 0 for 0 ≤ x ≤ 1. (17)

The exact solution to the continuous problem is obtained by Fourier series analysis:

v(x, t) =
∑∞

s=1

4

s5π5
(cos(sπ)− 1) sin(sπx) cos(s2π2t). (18)

Figure 2(a-b) shows numerical approximation (solid curves) of v(0.5, t) computed
using the finite difference recurrence (13) together with the corresponding exact solu-
tions (dashed curves) for two different time steps, ∆ = 0.005, 0.00125. The relatively
high decrease of the computed amplitude in the plot b) is caused by numerical dis-
persion (damping), see [4]. The rate of numerical dispersion depends on the value
of coefficient b (14). The same coefficient occurs in the stability criterion of explicit
difference schemas but with different interpretation.
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Figure 2: Mid-span deflection (x = 1
2
`) of three benchmark cases – numerical ap-

proximation (solid, blue) and exact solution (dashed, red).
(a–b) Free vibration benchmark, h = 0.05, (a) ∆ = 0.00125, (b) ∆ = 0.005.
(c–d) Concrete bridge (` = 20m), train passing at speed c = 100 km/h, h = 0.5,∆ =
0.0045, (d) detail for t ∈ (10, 15).
(e–f) Concrete bridge (` = 20m), train passing at speed c = 100 km/h and an earth-
quake shock at te = 6.76s, ∆ = 0.0045, (f) detail for t ∈ (5, 10).
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Problem 2. The second example is selected from the parametric study presented
by authors in [3]. Parameters of the concrete bridge are specified as ` = 20m,
µ = 8 · 103kg, EI = 65.5 · 106m3kg.s−2, γ = 1.27s−1. The train Talgo AV consists of
2 indentical formations with 7 carriages and 20 axles, 16 tons each. Figure 2(c-d)
shows the mid-span deflection of the bridge caused by train cruising at speed of
c =100km/h. The three significant peaks are caused by the motorized carriages
(one on each end of the train and two in the middle). The highly oscillating curve
(red) depicts the approximative analytical solution, only first eigenmode is taken
into account. The dark smooth curve corresponds to numerical solution (13) with
a relatively large quotient b ≈ 32. It follows approximately the mean value of the
analytical solution. Difference of both solutions in greater detail can be seen in part
d) of the figure. The high numerical damping wiped out small oscillations as well as
the free vibration after the train left the bridge (t = 13.5s).

Problem 3. Figure 2(e-f) shows effect of the combined load of train and earth-
quake. The earthquake is represented by its several Fourier components and a simple
modulation function, see [3]. The shock reaches the bridge at the moment when the
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first formation of the train leaves the bridge. At this moment is the response due to
passing train maximal because the four middle axles forces of the Talgo train repre-
sent a pair of engines. It is apparent that after the earthquake shock the amplitude
increases. Coincidence between approximate analytical (red, dashed) and numerical
(blue, solid) is fairly good: the maximal relative error is ∼ 10% despite the significant
simplification of the analytic model and the large time step which leads to b ≈ 32.

5. Conclusions

We presented a simplified analysis of the vertical vibration of a bridge, which is
is caused by a concurrent action of a long sequence of axle forces or their groups
distributed in almost regular distances and a support motion due to an earthquake.
The implicit finite difference scheme was introduced to verify justifiability of the
simplifying assumptions of the approximative closed form solution. The computed
responses were compared to those obtained using analytical methods with good re-
sults: the agreement between analytical and numerical results for the benchmarks
was within desired 1% provided that the time step ∆ was sufficiently small. Some
problems with high numerical damping are reported.
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