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Abstract

Paper deals with hydro-thermal performance of concrete exposed to a fire. It is
introduced mathematical model, numerical approach and some results provided by
the model.

1. Introduction

Behavior of concrete exposed to the high temperature plays crucial role in the
assessment of the reliability of concrete structure. There exist several mathematical
models that aim to predict and simulate such a behavior. One of the first models
was developed by Bažant and Thonguthai. Its improved version is described in [3] or
in [4]. Another model was formulated by Gawin et al. [6] or by Dwaikat and Kodur
in [5]. These models differ in its complexity, dimension, number of variables and
equations. Their common characteristic is that models contain nonlinear differential
equations and lot of empirical data.

In the paper we introduced mathematical model which is slightly revised and
modified approach of [4]. The model belongs to the simpler ones because the only one
phase (free water) is assumed. Surprisingly some phenomena observed in experiments
can by explained by the analysis of the model.

2. Physical phenomena

Let us describe physical processes, which occur in concrete during fire. Concrete
is non-combustible material with low thermal conductivity. Although concrete does
not contribute to fire load of the structures significant changes occur in its structure
during a fire exposure. Besides reduction of mechanical, deformation and material
properties also chemical composition of concrete is varied during heating [3].

Concrete, as a porous material, contains a large amount of pores, which can be
filled fully (saturated concrete) or just partially with water. The water occurred
in the pores is evaporable water and starts to evaporate at early beginning of the
fire. The first changes of concrete structure arise at 105 ◦C as stated in [8], when
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chemically bounded water is released from cement gel to the pores. Some small
micro-cracks start to appear as the capillary porosity arises. The peak of the de-
hydration process is reached around 270 ◦C. The color of concrete is changed and
a slight decrease of strength, modulus of elasticity and changes in material proper-
ties like thermal conductivity can be noted. Temperature of 300 ◦C is the extreme
temperature beside which the concrete structure is irreversibly damaged [7]. In range
of 400–600 ◦C calcium hydroxide decomposes into calcium oxide plus water (rise of
amount of free water) and transition of α and β quartz, accompanied by increase in
its volume, induces another creation of severe cracks in concrete.

Simultaneously with a change of temperature can be investigated also the change
of mass of free water (mostly vapor) and distributions of pore pressure. The pore
pressure is one of the main reasons of concrete spalling, which happened at the begin-
ning of heating (10–30 minutes) and is accidental. Small or grater areas of concrete
cover can be broken and cross section of member is reduced then. Furthermore in
most cases the reinforcement is exposed directly to the fire and the member is heated
faster, which can lead to loss of loadbearing capacity.

3. Mathematical model

The aim is to model behavior described above. We consider two-dimensional
model. Let Ω be a domain representing a concrete skeleton with the points x=(x1, x2).
Let us denote by Γ the boundary of domain Ω. The boundary consists of two parts:
ΓR, which represents part exposed to the fire and ΓN , which is exposed to the atmo-
sphere. It is supposed that ΓR and ΓN are non-intersecting sets and ΓR ∪ ΓN = Γ.
By n = (n1, n2) is denoted outer unite normal of Ω.

In the model, there are three unknowns: w(x, t) denotes amount of free water,
P (x, t) is pore pressure and T (x, t) is temperature in the point x and time t.

Mass balance equation of free water takes into account diffusive flow (L 1.2)
and variation (L 1.1) of free water. Source of the free water is water dehydrated from
the skeleton (R 1.1). The equation is:

∂w

∂t︸︷︷︸
L 1.1

+∇ · J︸ ︷︷ ︸
L 2.1

=
∂wdeh

∂t︸ ︷︷ ︸
R 1.1

in Ω× (0,∞) , (1)

where J is flow of free water. Function wdeh = wdeh (T ) gives mass of dehydrated
water. It is empirical function, we adopted the one specified in [5].

Enthalpy balance equation considers conductive (L 2.2) and convective (L 2.3)
heat flows. Source terms in the equation describes effects caused by dehydration of
skeleton (R 2.1) and evaporation of free water (R 2.2). Then, the equation is:

ρsCs
∂T

∂t︸ ︷︷ ︸
L 2.1

+∇ · q︸ ︷︷ ︸
L 2.2

−Cw∇T · J︸ ︷︷ ︸
L 2.3

= −∆Hdeh
∂wdeh

∂t︸ ︷︷ ︸
R 2.1

+ ∆Hevap
∂w

∂t︸ ︷︷ ︸
R 2.2

in Ω× (0,∞) , (2)
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where q means heat flux, ρs = ρs(T ) density of concrete , Cs = Cs(T ) specific heat
of concrete, Cw specific heat of water, ∆Hdeh enthalpy of dehydration, ∆Hevap =
∆Hevap(T ) enthalpy of evaporation.

State equation Now, we have three unknowns and only two equations, (1) and (2).
For that reason we add state equation

w = Φ(P, T ), (3)

where Φ is empirical function described in [10], p. 530.

Constitutive relationship: According to [3], the heat and moisture flux can be
considered in the form of Fourier’s respectively Darcy’s law, i. e.:

J = −K
g
∇P and q = −λ∇T,

where K = K(T, P ) denotes permeability of concrete and λ = λ(T ) thermal conduc-
tivity and g gravitational acceleration (included for the reasons of dimensionality).

Boundary conditions: The model is completed with boundary conditions. They
are of the Robin type:

−J · n = βN(P − P∞) on ΓN × (0,∞), (4)

−J · n = βR(P − P∞) on ΓR × (0,∞), (5)

−q · n = αN(T − T∞) on ΓN × (0,∞), (6)

−q · n = αR(T − Ten) + eσ(T 4 − T 4
en) on ΓR × (0,∞), (7)

where αR, αN are heat transfer coefficients for boundary exposed to the high tem-
perature and to the atmosphere , βR, βN denote coefficients of moisture transfer
through the boundary ΓR resp. ΓN , e emissivity of concrete and σ Stefan- Boltz-
mann constant. P∞ resp. T∞ denotes outer pressure resp. temperature and finally
Ten = Ten(t) gives temperature caused by fire.

Initial conditions: To describe environment for t = 0, we prescribe initial condi-
tions

P (x, 0) = P0 for x ∈ Ω, (8)

T (x, 0) = T0 for x ∈ Ω, (9)

where P0 and T0 are pressure and temperature in t = 0.
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4. Numerical methods

Equations (1)–(3) together with boundary conditions (4)–(7) and with initial
conditions (8), (9) form mathematical model. This model is implemented in Matlab,
where we use following approach.

For time discretization we use Rothe method. It leads to a system of nonlinear
partial differential equations. To solve this we used finite element method in each
time step. Basis and test functions are bilinear polynomials as we choose, for spatial
discretization, square conforming uniform mesh. Integrals appearing in finite element
method are computed by Gaussian quadrature. Finite element method provides
system of nonlinear equations, which is solved by Newton’s method. Stopping criteria
is residual tolerance set to the value 10−8.

5. Example

Let us present results of our model problem. The set Ω is a rectangle 50 mm ×
100 mm. ΓR is left and upper side of the Ω and so ΓR is right and lower side.

The data of the model were set as follows: Cw = 4180 J kg−1 ◦C−1, ∆Hdeh =
2.44 · 10−6 J kg−1, g = 9.81 m s−2, αR = 25 W m−2 ◦C−1, αN = 4 W m−2 ◦C−1,
βR = 20 · 10−9 s m−1, βN = 10 · 10−9 s m−1, e = 0.7, P∞ = P0 = 1330 Pa,
T∞ = T0 = 25 ◦C.

For thermal conductivity of concrete λ holds, see [2], λlow ≤ λ ≤ λup, where

λlow(T ) = 2−0.2451
T

100
+0.0107

(
T

100

)2

, λup(T ) = 1.36−0.136
T

100
+0.0057

(
T

100

)2

.

In the model was set λ =
λlow+λup

2
.

Following [2], density of concrete ρs and specific heat of concrete Cs(T ) is:

ρs(T ) =


2500 for 20 ◦C ≤ T ≤ 115 ◦C,

2500
(
1− 0.02 T−115

85

)
for 115 ◦C ≤ T ≤ 200 ◦C,

2500
(
0.98− 0.03 T−200

200

)
for 200 ◦C ≤ T ≤ 400 ◦C,

2500
(
0.95− 0.07 T−400

800

)
for 400 ◦C ≤ T ≤ 1200 ◦C ,

and

Cs(T ) =


900 for 20 ◦C ≤ T ≤ 100 ◦C,

800 + T for 100 ◦C ≤ T ≤ 200 ◦C,

900 + T
2

for 200 ◦C ≤ T ≤ 400 ◦C,

1100 for 400 ◦C ≤ T ≤ 1200 ◦C .

Enthalpy of evaporation is given in [9],

∆Hevap(T ) = 2.672 · 105 (374.15− T )0.38 for T ≤ 400 ◦C.
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Figure 1: Logarithmic plot of permeability K (T, h(T, P )) of concrete

As Ten, we used ISO curve given by [1], Ten(t) = T0 + 345 log(480 t+ 1).

Permeability K(T, P ) can be found in [3] and is given by relationship:

K(T, h) =



10−12

(
α + 1−α

1+( 1−h
0.25 )

4

)
e2 700 ((T0+273.15)−1−(T+273.15)−1) for T ≤ 95 ◦C,

h ≤ 1,

10−12 e2 700 ((T0+273.15)−1−(T+273.15)−1) for T ≤ 95 ◦C,
h > 1,

10−12 e2 700 ((T0+273.15)−1−(368.15)−1) e
T−95

0.881+0.214(T−95) for T > 95 ◦C,

where several auxiliary functions are used. We define α(T ) and h(T, P ) as

α(T ) =

(
1 +

19 (95− T )

70

)−1

, h(T, P ) =
P

Ps
=

P

e23.5771− 4 042.9
(T+273.15)−37.58

,

where Ps is a saturated vapour pressure. Plot of the permeability is on the Figure 1.

Results of the model are on the Fig. 2. Time step is set to 5 sec., number of mesh
elements is 20× 40.

6. Conclusion

Development of reasonable models for the prediction of behavior of concrete struc-
tures is strongly required by the applied research in civil engineering. Practical val-
idation of the models suffers from the lack of data from experiments. Sufficiently
general formulation of the problem should be a motivation for further research.
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Figure 2: Time development of pressure P [kPa], temperature T [◦C] and moisture
[kg m−3]. Time step: 5 sek, number of spatial elements: 20× 40.

186



Acknowledgments

This work was supported by Brno University of Technology, grant No. FAST-J-
14-2362.

References
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