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Faculty of Mathematics, Physics and Informatics
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Abstract

Integro-differential equations with time-varying delay can provide us with realistic

models of many real world phenomena. Delayed Lotka-Volterra predator-prey systems

arise in ecology. We investigate the numerical solution of a system of two integro-

differential equations with time-varying delay and the given initial function. We will

present an approach based on q-step methods using quadrature formulas.

1. Introduction

Integro-differential equations (IEs) are one of the most important mathematical
tools used in modelling problems of many real world phenomena. Here, we consider
the Lotka-Volterra like predator-prey model [1]. This system of two IEs is frequently
used to describe the dynamics of biological systems in which two species interact.
One is the population of predators of the size x1(t) and the other is that of preys of
the size x2(t)

x′

1(t) =

[

c− k1x2(t)−

∫ 0

−τ

α1(x2(t+ s))ds

]

x1(t)

x′

2(t) =

[

−c+ k2x1(t)−

∫ 0

−τ

α2(x1(t + s))ds

]

x2(t)

where x′

1(t) and x′

2(t) represent the growth of the two populations with time, c, ki, αi

are parameters representing the interaction of the two species.
Also, one of the models for human immunodeficiency virus (HIV) in a homoge-

neously mixed single-gender group with distributed waiting times can be described
using IEs, see [3].

So elaboration of numerical methods for IEs is a very important problem. Pre-
sently, various specific numerical methods are constructed for solving specific IEs.
Most investigations are devoted to numerical methods for systems with discrete de-
lays, see e.g. [2].

The approach described in this article has been applied to numerical solution of
integro-differential equations with time-varying delay (IDETVD) .
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2. Equations with time-varying delay

Delay differential equations (DDEs) represent the principal form of mathematical
models occuring in Ecology. In DDEs, also called functional differential equations or
time-delay systems, dependent variables are simultaneously evaluated at more than
one value of the independent variable.

The considered DDE Cauchy problem is

x′ = f(t, x(t + τ1), · · · , x(t + τk)), t ≥ t0,

x(t) = Ψ(t), t ≤ t0

f is a function with the independent variable t representing time, dependent vari-
able x(t) is a phase vector and x(t + τj), τj ∈< −rj , 0 >, j = 1, 2, · · · , k are the
functions characterizing the influence of the pre-history of the phase vector on the
dynamics of the system. A class of DDE with constant delay τj , j = 1, 2, · · · , k is
called DDEs with discrete delay. Supposed that delay τj = τj(t) we speak about
differential equations with time-varying delay.

Let us consider some of them. The delay logistic equation

x′(t) = r(t)x(t)

(

1−
x(τ(t))

K

)

, τ(t) ≤ t

describes a delay population model and is known as Hutchinson’s equation [2]. One
can see that it is insufficient to know the initial value only to define the phase
vector x(t). It is also necessary to know an inital function (initial pre-history) Ψ(t).
Hence the DDEs are generalizations of the ODEs such that the velocity x′(t) of
a process depends also on the pre-history x(τ(t)), τ(t) ≤ t.

Delay can also be distributed as in the equation

x′(t) = f

(

t, x(t),

∫ 0

τ(t)

α(t, s, x(t+ s))ds

)

.

So, the Volterra integro-differential equations

x′(t) = f

(

t, x(t),

∫ t

0

β(t, s, x(s))ds

)

represent a special class of DDEs with distributed delays.
The purpose of this article is to derive a numerical method for the approximate

solution of delay differential systems with time-varying delay of the form

x′(t) = f

(

t, x(t), x(τ1(t)),

∫ 0

τ(t)

χ(t, s, x(t + s))ds

)

.

In [3], Kim and Pimenov proposed an exact solution to a system of IDETVD

x′

1(t) = − sin(t)x1(t) + x1(t−
t

2
)−

∫ 0

−t/2

sin(t+ s)x1(t+ s)ds− ecos(t) (1)

x′

2(t) = − cos(t)x2(t) + x2(t−
t

2
)−

∫ 0

−t/2

cos(t+ s)x2(t+ s)ds− esin(t) (2)
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corresponding to an inital function

Ψ1(s) = ecos(s)

Ψ2(s) = esin(s)
, s ≤ 0.

The solution (x1(t), x2(t))
T , t ∈ [0,∞) of (1), (2) has the form

x1(t) = ecos(t),
x2(t) = esin(t).

Then by considering the maximum absolute errors in the solution at grid points
for different choices of step size, we can conclude how further presented approaches
produce accurate results in comparison with those exact ones.

3. A numerical approach

The most popular numerical approaches for solving Cauchy problem of ODEs are
called finite difference methods. Approximate values are obtained for the solution
at a set of grid points {tn : n = 1, 2, · · · , N} and the approximate value at each
point tn+1 is obtained by using some of values obtained in previous steps. The best
known methods are Euler’s methods (explicit, implicit), trapezoidal method, Milne’s
methods, Adams methods.

Most integrals cannot be evaluated explicitly and with many others it is often
faster to integrate them numerically rather than evaluating them exactly. Formulas
using such interpolation with evenly spaced grid points are the composite trapezoidal
rule and the composite Simpson’s rule. These Newton-Cotes formulas can be used
to construct a composite method with mentioned methods.

The simplest way how to solve our problem is the combination of the explicit
Euler’s method with the trapezoidal rule, outlined in the following procedure solving
the problem (1) on an equidistant mesh tn+1 − tn = h, where we abbreviate x1(t)
by x(t).

First, the trapezoidal rule is defined by applying

x(tn+1) = x(tn)+
h

2

[

− sin(tn)x(tn)+x(tn/2)−

0
∫

−tn/2

sin(tn+ s)x(tn+ s)ds− ecos(tn)

− sin(tn+1)x(tn+1) + x(tn+1/2)−

0
∫

−tn+1/2

sin(tn+1 + s)x(tn+1 + s)ds− ecos(tn+1)

]

to successive subintervals [tn, tn+1], where

h = 2H, tn = 2kH, tn+1 = 2(k + 1)H, k = 0, 1, 2, . . . .
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Hence,

x(2(k + 1)H) = x(2kH) +H

[

− sin(2kH)x(2kH) + x(kH)

−

∫ 0

−kH

sin(2kH + s)x(2kH + s)ds− ecos(2kH) − sin(2(k + 1)H)x(2(k + 1)H)

+ x((k + 1)H)−

∫ 0

−(k+1)H

sin(2(k + 1)H + s)x(2(k + 1)H + s)ds− ecos(2(k+1)H)

]

Since
∫ 0

−(k+1)H

A =

∫

−kH

−(k+1)H

A +

∫ 0

−kH

A

and letting

I(k) =

∫ 0

−kH

sin(2kH + s)x(2kH + s)ds

I(k + 1) =

∫ 0

−(k+1)H

sin(2(k + 1)H + s)x(2(k + 1)H + s)ds

we have

x(2(k + 1)H) = x(2kH) +H
[

− sin(2kH)x(2kH) + x(kH)− I(k)− ecos(2kH)−

− sin(2(k + 1)H)x(2(k + 1)H) + x((k + 1)H)− I(k + 1)− ecos(2(k+1)H)
]

Now, we shall confine our discussion to evaluating I(k) and I(k + 1) approximately.
For a sufficiently small mesh size H the composite trapezoidal rule gives a good
approximation to the integrals

I(k) =

k−1
∑

p=0

H

2

[

sin((k + p)H)x((k + p)H) + sin((k + p+ 1)H)x((k + p+ 1)H)
]

I(k + 1) =

k
∑

p=0

H

2

[

sin((k + p+ 1)H)x((k + p+ 1)H)

+ sin((k + p+ 2)H)x((k + p+ 2)H)
]

However, it is possible to obtain finite sums which give better approximations by the
same amount of computation. One sees, immediately, that x(tn+1) can be computed
when tn+1 is the even multiple of H . If tn+1 is the odd multiple of H then we apply
explicit Euler method to the model equation on an equidistant mesh tn+1 − tn = h.

Then, the explicit Euler method is defined by applying

x(tn+1) = x(tn)+h

[

− sin(tn)x(tn) + x(tn/2)−

∫ 0

−tn/2

sin(tn + s)x(tn + s)ds− ecos(tn)
]
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to successive subintervals [tn, tn+1], where h = H, tn = 2kH, tn+1 = (2k + 1)H,
k = 0, 1, 2, · · · . This yields

x((2k + 1)H) = x(2kH) +H

[

− sin(2kH)x(2kH) + x(kH)

−

∫ 0

−kH

sin(2kH + s)x(2kH + s)ds− ecos(2kH)

]

It can be seen that this formula contains the integral I(k).
Also,

x((2k + 1)H) = x(2kH) +H
[

− sin(2kH)x(2kH) + x(kH)− I(k)− ecos(2kH)
]

.

4. Numerical experiments

In order to test the viability of the proposed composite methods and to demon-
strate its convergence computationally we have considered several tests with some
steps, to assess the convergence property and efficiency of methods mentioned in
Section 3.

We divide the time interval t ∈ [0, 6.3] into N subintervals in order to obtain the
approximate values for the solution at the grid points tn. Here we are only interested
in showing the errors of the solution at some grid points. The idea was to calculate
the numerical solution by Milne-Simpson’s method of 5-th order with the Simpson’s
rule on an equidistant mesh tn+1 − tn = h = 0.003. Table 1 contains the errors in
this numerical solution in selected gridpoints.

Numerical and exact results are illustrated in Figure 1 in the time varying plane
and in Figure 2 in the phase plane also.

Figure 1: Graph of x1(t) and x2(t) versus time.
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Figure 2: Graph of x1(t) versus x2(t).

t x1(t) error of x1(t) x2(t) error of x1(t)
2.1 0.6035988 0.0052716 2.3707579 0.0185469
4.2 0.6124669 0.0043827 0.4182918 0.0038792
6.3 2.7178976 0.0118452 1.0169558 0.0298354

Table 1: Errors in the numerical solution.

The solid lines indicate the graphs of exact solution (x1(t), x2(t))
T with

x1(0) = e, x2(0) = 1, t ∈ [0, 6.3]. Our program begins with the second order
trapezoidal formula and the explicit Euler’s formula, the accuracy then increases as
extra starting values become available.
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