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NONLOCAL TANGENT OPERATOR
FOR DAMAGE PLASTICITY MODEL∗

Martin Horák, Mathieu Charlebois, Milan Jirásek, Philippe K. Zysset

1 Introduction

Realistic description of the mechanical behaviour of quasi-brittle materials re-
quires a constitutive law with softening. Softening is one of the destabilising factors
that may lead to localisation of inelastic processes into narrow bands. Standard
“local” models fail to describe this phenomenon in an objective way. The boundary
value problem becomes ill-posed due to the loss of ellipticity of the governing differ-
ential equation and results obtained numerically are not objective with respect to the
discretisation. To avoid pathological sensitivity of the numerical results to the finite
element mesh, the model is regularised by a nonlocal formulation based on a spa-
tial averaging procedure, which acts as a localisation limiter. The return mapping
algorithm based on the closest-point projection is developed and the correspond-
ing consistent algorithmic stiffness is derived using an extension of the approach
proposed in [2] for nonlocal damage models.

2 Constitutive model

In this section a model combining anisotropic elasticity and anisotropic plas-
ticity coupled with isotropic damage is described. This model was first presented
in [4]. The main feature of plasticity models is irreversibility of plastic strain while
irreversible processes related to damage lead to degradation of stiffness. The basic
equations include an additive decomposition of total strain into elastic (reversible)
part and plastic (irreversible) part,

εij = εeij + εpij,

the stress strain law,

σij = (1− ω (κ)) σ̄ij = (1− ω (κ))De
ijklε

e
kl,

loading-unloading conditions in Kuhn-Tucker form,

f(σ̄ij, κ) ≤ 0 λ̇ ≥ 0 λ̇f(σ̄ij, κ) = 0,
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evolution laws for plastic strain,

ε̇pij = λ̇
∂f

∂σ̄ij

,

and for cumulated plastic strain,

κ̇ =
√

ε̇pij ε̇
p
ij,

the law governing the evolution of the damage variable,

ω(κ) = ωc(1− e−aκ),

and the hardening law,
σY (κ) = 1 + σH(1− e−sκ).

In the equations above, σ̄ij is the effective stress tensor, De
ijkl is the elastic stiffness

tensor, f is the yield function, λ is the plastic multiplier, ω is the damage variable,
κ is the cumulated plastic strain, σY is the yield stress and s, a, σH and ωc are
positive material parameters, to be identified from experiments. Superior dot marks
the derivative with respect to time. To complete the formulation, the specific form
of yield function needs to be introduced:

f(σ̄ij, κ) =
√

σ̄ijFijklσ̄kl − σY (κ).

Material anisotropy is characterised by the second-order fabric tensor. The eigen-
vectors of the fabric tensor determine the directions of material orthotropy and the
components of the elastic stiffness tensor De

ijkl are linked to eigenvalues of the fab-
ric tensor. Similar relations are postulated for the components of the fourth-order
tensor Fijkl used in the yield condition.

3 Nonlocal formulation

The standard elasto-plasto-damage model based on continuum approach was de-
scribed in the previous section. However, such a model fails after the loss of ellipticity,
which leads to an ill-posed boundary value problem. From the numerical point of
view, ill-posedness is manifested by a pathological sensitivity of the numerical results
to the size of finite elements. One possible regularisation technique is a nonlocal for-
mulation based on spatial averaging. The model is regularised by the over-nonlocal
formulation with damage driven by a combination of local and nonlocal cumulated
plastic strain,

κ̂ = (1−m)κ+mκ̄,

where

κ̄(x) =

∫

V

α(x, s)κ(s) ds (1)
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is the nonlocal cumulated plastic strain and m is a model parameter that should
exceed unity to suppress the sensitivity of the numerical solution to the mesh shape.
The nonlocal weight function is usually defined as

α(x, s) =
α0(‖x− s‖)∫

V
α0(‖x− t‖) dt

where

α0(r) =

{
(1− r2/R2)

2
if r < R

0 if r ≥ R

is a nonnegative function, for r < R monotonically decreasing with increasing dis-
tance r = ‖x− s‖, and V denotes the domain occupied by the investigated material
body. The key idea is that the damage evolution at a certain point depends not only
on the cumulated plastic strain at that point, but also on points at distances smaller
than the interaction radius R, considered as a new material parameter. Note that
the over-nonlocal cumulated plastic strain affects only damage evolution while the
yield condition remains local.

4 Numerical algorithm

To implement the constitutive model into a displacement-driven finite element
code, the governing equations need to be expressed in an incremental form, and an
algorithm for the evaluation of the stress increment from a given strain increment
must be developed. In plasticity, this procedure is often called the stress-return algo-
rithm. Within a computational increment number n+1, the mapping of strain εn+1

at the end of the step onto the effective stress σ̄n+1 at the end of the step, pro-
vided by the stress-return algorithm, is denoted as function θ, and the mapping of
strain εn+1 onto the cumulated plastic strain κn+1 at the end of the step is denoted
as function η. The Jacobi matrix of θ, denoted as ∂θ/∂ε, is the consistent elasto-
plastic material stiffness. Using the standard finite element assembly procedure, the
consistent structural tangent stiffness can be constructed. However, for an elasto-
plastic model with damage, it is necessary to take into account additional terms that
result from damage growth, and if damage is driven by the over-nonlocal cumulated
plastic strain κ̂, such terms have a more complicated structure than usual, but are
still manageable. The resulting nonlocal tangent stiffness matrix of the structural
(finite element) model is used in equilibrium iterations of the Newton-Raphson type
and leads to quadratic convergence, provided that the linearisation is done in a fully
consistent manner.

4.1 Predictor-corrector scheme

The stress return algorithm is based on elastic-plastic operator split, which consist
of a trial elastic predictor followed by the return mapping algorithm. The over-
nonlocal formulation described in the previous section has computational advantages
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Algorithm 1 Return mapping algorithm

given εn+1, εp,n, κn, ωn

compute elastic predictor
σtr
ij = De

ijkl(ε
e,n+1
kl − εp,nkl ) and f tr = f(σtr

ij , κ
n)

check for plastic process
if f ≤ 0 then
elastic step: set σ̄n+1 = σ̄tr, εp,n+1 = εp,n, κn+1 = κn, ωn+1 = ωn

else
return mapping algorithm
1. solve system of nonlinear equations

σ̄n+1
ij = σ̄tr

ij −∆κ
De

ijklFklmnσ̄
n+1
mn

‖Fijklσ̄
n+1
kl ‖

√
σ̄n+1
ij Fijklσ̄

n+1
kl − σY (κ+∆κ) = 0

=⇒ σ̄n+1 = θ(εn+1); ∆κ = η(εn+1)
2. update state variables

εp,n+1
ij = εp,nij +∆κ

Fijklσ̄
n+1
kl

‖Fijklσ̄
n+1
kl ‖ , κn+1 = κn +∆κ, κ̂n+1 = (1−m)κn+1 +mκ̄n+1

ωn+1 = ω(κ̂n+1), σn+1
ij = (1− ωn+1)σ̄n+1

ij

end if

because the plastic part of the model remains local and the standard return mapping
algorithm can be applied at each Gauss point separately. After that, the nonlocal
cumulated plastic strain and damage are evaluated in a fully explicit manner. This
procedure is summarised in Algorithm 1.

4.2 Consistent tangent operator

The concept of a consistent tangent operator was first presented in [1] for the
case of a local elastoplastic problem. As shown in [2], the quadratic convergence is
preserved also for a nonlocal damage problem, but only with a consistent nonlocal
tangent operator. The consistent stiffness operator is obtained by differentiating the
internal force vector with respect to the nodal displacements:

K =
∂f int

∂d
.

The internal force vector is defined as
∫

V

BTσ dx ≈
∑
r

wrB
T
r σr = f int (2)

In the above, subscript r refers to the integration points of the finite element model,
wr are the corresponding integration weights and B is the usual strain-displacement
matrix.
Using the expression for stress at Gauss point r,

σr = (1− ωr)σ̄r,
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we can expand (2) as

f int =
∑
r

wrB
T
r (1− ωr)σ̄r.

The effective stress at Gauss point r is given by the return mapping evaluated for
strain at Gauss point r:

σ̄r = θr(εr).

One can then express damage as

ωr = ω(κ̂r) = ω (mκ̄r + (1−m)κr)

and after numerical approximation of integral (1) by

κ̄ ≈
∑
s

αrsκs

one gets

ωr = ω

(
m

∑
s

αrsκs + (1−m)κr

)
,

where
κs = η(εs)

is also supplied by the return mapping algorithm. Combining all this with the
standard relation εs = Bsd, one can evaluate the consistent nonlocal tangent stiffness
operator as

K =
∑
r

wr(1− ωr)B
T
r

∂θ(εr)

∂ε
Br − (1−m)

∑
r

wrω
′
rB

T
r σ̄r

(
∂η(εr)

∂ε

)T

Br

−m
∑
r

∑
s

wrω
′
rαrsB

T
r σ̄r

(
∂η(εs)

∂ε

)T

Bs (3)

5 Numerical example

The algorithm described in section 4 has been implemented into the open-source
finite element code OOFEM [5, 6]. Properties of the model have been explored for
several examples in [4], but with the secant stiffness matrix, which provides only
linear convergence rate. The compression of a cylinder is simulated in 100 incre-
mental steps, using a three-dimensional model containing 915 nodes and 609 linear
brick elements. As follows from (3), the nonlocal tangent operator is nonsymmetric.
One important consequence of nonlocality is a growing profile of the stiffness ma-
trix, caused by the stepwise activation of interaction between pairs of Gauss points
belonging to different elements. The evolution of error versus the number of it-
eration for three steps, corresponding to a pre-peak, peak and post-peak state as
indicated in the load-displacement curve in Figure 1(a), is depicted in Figure 1(b) in
a semilogarithmic scale. The convergence curves are approximately parabolic, i.e.,
the convergence rate is quadratic and the equilibrium is reached in a few iterations.
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Fig. 1: (a) Load-displacement curve. (b) Evolution of error during the equilibrium itera-
tion process.

6 Conclusions

The constitutive law combining anisotropic elasticity, anisotropic plasticity and
isotropic damage with the over-nonlocal regularisation is presented. The stress-
return algorithm is described and the nonlocal consistent tangent operator is derived.
It is shown by a numerical example that the nonlocal consistent tangent operator
leads to a quadratic rate of convergence, even if the tangent operator is nonsymmetric
and the profile of nonzero elements is growing during the simulation.
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