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INSENSITIVITY ANALYSIS OF MARKOV CHAINS∗

Martin Kocurek

Abstract

Sensitivity analysis of irreducible Markov chains considers an original Markov chain
with transition probability matix P and modified Markov chain with transition prob-
ability matrix P̃ . For their respective stationary probability vectors π, π̃, some of the
following charactristics are usually studied: ‖π − π̃‖p for asymptotical stability [3],

|πi − π̃i|, |πi−π̃i|
πi

for componentwise stability or sensitivity[1]. For functional transi-
tion probabilities, P = P (t) and stationary probability vector π(t), derivatives are
also used for studying sensitivity of some components of stationary distribution with
respect to modifications of P [2].

In special cases, modifications of matrix P leave certain stationary probabilities
unchanged. This paper studies some special cases which lead to this behavior of
stationary probabilities.

1 Introduction

A Markov chain is a sequence of random variables X1, X2, X3, . . . , with the
Markov property, namely that, given the present state, the future and past states
are independent. Formally,

P (Xn+1 = x|X1 = x1, X2 = x2 . . . , Xn = xn) = P (Xn+1 = x|Xn = xn),

where the possible values of Xi form a countable state space S of the chain. Markov
chains are often described by a directed graph, where the edges are labeled by the
probabilities pij of moving from state i to the other state j. These probabilities are
called transition probabilities and together they form a transition probability matrix
denoted by P , with row sums equal to 1. We will study finite Markov chains (a finite
chain has a finite state space S = {x1, ..., xn}). A state i has period p if any return
to state i must occur in multiples of p time steps. Formally, the period of a state i
is defined as p = gcd{k : P (Xk = i|X0 = i) > 0}. If p = 1, then the state is said to
be aperiodic i.e. returns to state i can occur at irregular times. Otherwise (p > 1),
the state is said to be periodic with period p. If all states are periodic with period p,
the chain is called p-cyclic.

Let us denote

e = (1, . . . , 1)T , ei = (0, . . . , 0, 1, 0, . . . , 0)T = (δi,j)
n
j=1, i = 1, . . . , n, P = (Pij)

n
i,j=1.

A Markov chain is called irreducible, if there exists a connection between every
two states. That means, matrix P is irreducible. In this case, matrix P has a unique
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eigenvalue 1 (which equals to spectral radius ρ(P ) of P ) and unique left and right
eigenvectors associated with this eigenvalue, π = (π1, . . . , πn) and e, so that

πP = π, Pe = e.

Vector π is called stationary probability vector, we usually normalise this vector to
πe = ‖π‖1 = 1; i-th component πi of π shows, how often the chain “visits state i”,

πi = lim
m→∞

|{j;Xj = xi, j = 1, . . . ,m}|
m

.

We will also use a different normalisation, πk = 1 and in this case, the eigenvector
will be denoted by π(k), so that π(k)k = 1.

In the following, we will partition matrix P and vector π into subblocks,

π = (π(1), . . . , π(N)), P =




P11 . . . P1N
...

. . .
...

PN1 . . . PNN


 , (1)

where N is the number of subblocks in matrix P , n1, ..., nN will be respective di-
mensions of subblocks. Conformally with partitioning of P we shall partition vector
e = (e(1)T , . . . , e(N)T )T , where e(i) is a vector (1, . . . , 1)T with ni components.

As an example we will use a Markov chain with the following matrix:

Pc =
1

64




62 1 0 0 0 1 0 0 0 0 0 0 0
62 0 2 0 0 0 0 0 0 0 0 0 0
2 0 60 2 0 0 0 0 0 0 0 0 0
62 0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 63 0 0 0 0 0 0 1 0
62 0 0 0 0 0 2 0 0 0 0 0 0
2 0 0 0 0 0 60 2 0 0 0 0 0
62 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 63 1 0 0 0
0 0 0 0 0 0 0 0 62 0 2 0 0
0 0 0 2 0 0 0 0 2 0 60 0 0
0 0 0 0 62 0 0 0 0 0 0 0 2
0 0 0 0 2 0 0 2 0 0 0 0 60




. (2)

2 Normalisation πk = 1

Normalisation πk = 1 is useful for computing the eigenvector as a solution of
a system of equations π(k)P = π(k), or P

TπT
(k) = πT

(k), (I −P T )πT
(k) = 0. By replacing

an arbitrary equation with equation π(k)ek = 1, or equivalently, eTk π
T
(k) = 1, we obtain

a system with better spectral properties, than when using condition eTπT = 1 [4].
When we use this normalization, we can state the following simple theorem.
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Theorem 1. Let the state space of a Markov chain can be decomposed into three
groups S1, {xk} = S2, S3, so that in oriented graph of the Markov chain each path
from S1 to S3 contains a vertex xk. Then no modifications of transition probabilities
between states of S1 affect components in π(k) associated with states from S3

Proof: With given restrictions, the graph of the chain can be simplified into

At this picture, S1 is denoted by 1, xk by k, S3 by 3. It then follows that nonzero
structure of P is

P =




X . . . X X 0 . . . 0
...

. . .
...

...
...

. . .
...

X . . . X X 0 . . . 0
X . . . X X X . . . X
X . . . X X X . . . X
...

. . .
...

...
...

. . .
...

X . . . X X X . . . X




.

After forming left-hand side matrix (I − P T ), we remove k-th equation and replace
it with eTk π

T
(k) = 1. This way we obtain a system of equations with matrix A(k) and

right-hand side ek. A
(k) has the following nonzero structure

A(k) =




X . . . X X X . . . X
...

. . .
...

...
...

. . .
...

X . . . X X X . . . X
0 . . . 0 1 0 . . . 0
0 . . . 0 X X . . . X
...

. . .
...

...
...

. . .
...

0 . . . 0 X X . . . X




,

it is clearly reducible. Thus, no modifications of transition probabilities between
states in S1 (block 1, 1 in A(k)) will affect k-th,. . . , n-th components of π(k)
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Example: In example with Pc, we may draw an oriented graph:

We see that vertices 2, 3, 6, 7 are accesible only through vertex 1. Thus if we fix the
first element of π, no modifications of transition probabilities between vertices 4, 5,
8, 9, 10, 11, 12, 13 will affect components no. 2, 3, 6, 7 in π(1).

3 Normalisation πe = 1

For a more usual normalisation πe = 1, let us first introduce a concept of lumpa-
bility
Definition: Let us partition a transition probability matrix P into blocks (Pij)

N
i,j=1

so that for every block Pij and vector e(j) of appropriate dimensions

Pije
(j) = αije

(j)

for some αij ∈ R.Then matrix P is said to be lumpable.

Theorem 2. Let P (t) be a perturbed transition probability matrix of an irreducible
finite aperiodic Markov chain, whose state space divided into subsets S1, . . . , SN+1,
where states of SN+1 are accessible only through SN . Let perturbations depend on
a variable t and be restricted to lumpable submatrix of blocks (Pij(t))

N−1
i,j=1 . If for

every i = 1, . . . , N − 1 exists a column vector x(i) such that

Pi,N = e(i) · x(i)T , (3)

then subblocks π(N), π(N+1) are independent of t
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Proof: From the assumption it follows that

Pije
(j) = αije

(j), Pi,N+1 = 0, i, j = 1, . . . , N − 1. (4)

We will prove the theorem by using a power method for computing π. Assump-
tions guarrantee the existence of a unique steady point – eigenvector π [4].

Let us choose a π(0) =
(
π
(0)
1 , . . . , π

(0)
N+1

)
, for l = 1, 2, . . .

π(l+1) = π(l)P.

a) At first we will show by induction, that for every l the ‖ · ‖1-norms of subvectors

π
(l)
1 , . . . , π

(l)
N+1 of π(l) do not depend on t. π(0) does not depend on t. The l1-norm of

the j-th subvector, j = 1, . . . , N − 1, in the (l + 1)-th iteration is

‖π(l+1)
j ‖1 = π(l)P∗,je(j) =

N−1∑
i=1

π
(l)
i Pi,j(t)e

(j) +
N+1∑
i=N

π
(l)
i Pi,je

(j) =

N−1∑
i=1

π
(l)
i αi,je

(j) +
N+1∑
i=N

π
(l)
i Pi,je

(j),

which does not depend on t. For j = N,N + 1 subblocks P∗,j do not depend on t,

thus ‖π(l+1)
j ‖1 = π(l)P∗,je(j) is also independent of t.

b) Now let us suppose that in iteration π(l) subvectors N,N +1 are independent
of t. First, by (4) we have

π
(l+1)
N+1 =

N+1∑
i=1

π
(l)
i Pi,N+1 =

N+1∑
i=N

π
(l)
i Pi,N+1,

which by induction hypothesis does not depend on t.
Finally, because of (3),

π
(l+1)
N =

N+1∑
i=1

π
(l)
i Pi,N =

N−1∑
i=1

π
(l)
i e(i)x(i)T + π

(l)
N PN,N + π

(l)
N+1PN+1,N =

=
N−1∑
i=1

‖π(l)
i ‖1x(i)T + π

(l)
N PN,N + π

(l)
N+1PN+1,N ,

with all terms independent of t.
Remark: The above theorem holds also for periodic chains. If P is a transition
probability matrix of p-cyclic chain, it has exactly p eigenvalues on a unit circle (one
of them being 1). If we transform matrix P onto

P̃ = αP + (1− α)I,

111



we obtain a matrix with submatrix of subblocks (P̃ij(t))
N−1
i,j=1 remaining lumpable and

for i = 1, . . . , N − 1 we will have Pi,N = e(i) · αx(i)T . Furthermore πP̃ = π and all
eigenvalues other than 1 will be inside the unit circle, ensuring convergence of power
method.
Example: If we change the order of states in Markov chain represented by Pc to 13,
11, 12, 10, 5, 9, 4, 8, 1, 2, 6, 3, 7, then the resulting chain has a transition probability
matrix (zeros omited)

P̄c =
1

64




60 2 2
60 2 2

2 62
2 62

1 63
1 63

2 62
2 62

62 1 1
62 2
62 2

2 2 60
2 2 60




,

which is lumpable and if we have perturbations for example

p̄11(t) =
60

64
− t, p̄12(t) = t, p̄66(t) =

63

64
− 2t, p̄65(t) = 2t,

the resulting matrix satisfies conditions of the theorem.

4 Summary

This paper intends to present some conditions for insensitivity of a Markov chain
towards perturbations in transition probability matrix. These conditions involve
existence of cutpoints and regularity described by the concept of lumpability.
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