
PANM 12

Radek Kučera
Complexity and memory requirements of an algorithm for solving saddle-point linear systems with
singular blocks

In: Jan Chleboun and Petr Přikryl and Karel Segeth (eds.): Programs and Algorithms of Numerical Mathematics,
Proceedings of Seminar. Dolní Maxov, June 6-11, 2004. Institute of Mathematics AS CR, Prague, 2004.
pp. 131–135.

Persistent URL: http://dml.cz/dmlcz/702785

Terms of use:
© Institute of Mathematics AS CR, 2004

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702785
http://dml.cz


COMPLEXITY AND MEMORY REQUIREMENTS
OF AN ALGORITHM FOR SOLVING SADDLE-POINT

LINEAR SYSTEMS WITH SINGULAR BLOCKS ∗

Radek Kučera

Abstract

The paper deals with fast solution of large saddle-point systems arising in wavelet-
Galerkin discretizations of separable elliptic PDEs. The periodized orthonormal com-
pactly supported wavelets of the tensor product type together with the fictitious
domain method are used. A special structure of matrices makes possible to use the
fast Fourier transform that determines the complexity of the algorithm. Numerical
experiments confirm theoretical results.

1. Formulation of the problem

We shall propose a fast method for finding a pair (u, λ) ∈ Rn × Rm that solves
the linear system of algebraic equations called the saddle-point system [1], [2]:

(
A B>

B 0

) (
u
λ

)
=

(
f
g

)
, (1)

where the n× n matrix A is symmetric positive semi-definite, the m× n matrix B
has full row-rank and the vectors f , g are of the order n, m, respectively. We shall be
interested especially in systems (1) with n large, A singular, B sparse and m much
smaller than n. Moreover we shall assume that the defect of A, i.e. l = n− rankA,
is much smaller than m.

2. Model PDE problem

Let ω be a bounded domain in R2 with a smooth boundary ∂ω. We shall consider
the following model problem:

−∆u + cu = f in ω, (2)

u = g on ∂ω, (3)

where f, g are sufficiently smooth functions defined on ω, ∂ω, respectively, and c ≥ 0
is a given constant. We imbed ω in a larger rectangular domain Ω so that ω ⊂ Ω
and denote by ∂Ω the boundary of Ω. On Ω, we shall solve (2), (3) by means of

∗This work was supported by grant HPRNT-CT-2002-00286 and MSM 272400019.

131



the fictitious domain method with the boundary Lagrange multipliers; see [4]. We
replace (2), (3) by the following saddle-point problem :

Find (u, λ) ∈ H1
per(Ω)×H−1/2(∂ω) such that

aΩ(u, v) =
∫

Ω
f̃v dx + 〈λ, v〉 ∀v ∈ H1

per(Ω),

〈µ, u− g〉 = 0 ∀µ ∈ H−1/2(∂ω),





(4)

where H1
per(Ω) denotes the subset of functions from H1(Ω) that are periodic on

the opposite sides of the rectangle ∂Ω, H−1/2(∂ω) is dual to H1/2(∂ω) with the
duality pairing denoted by 〈·, ·〉, f̃ ∈ L2(Ω) extends f from ω onto Ω and aΩ(v, w) =∫
Ω(∇v · ∇w + cvw) dx.

It is well-known that (4) has a unique solution (u, λ) and that the restriction of u
on ω is a solution to a weak formulation of (2), (3); see [4].

We introduce H1
per(Ω) because we discretize (4) by the periodized orthogonal

compactly supported wavelets of the tensor product type; see [3]. After discretiza-
tion, we obtain the saddle-point linear system (1). The diagonal block A is singular
if c = 0 and non-singular if c > 0. Since we use the tensor product basis functions
on the rectangular domain Ω, we can represent A using the Kronecker product as

A = Ax ⊗ Iy + Ix ⊗Ay, (5)

where Ix, Iy and Ax, Ay are of the order nx, ny, respectively, and n = nxny. Here,
Ax, Ay are circulant matrices because of the presence of the periodic boundary
condition on ∂Ω. For more details about A and B, we refer to [6]

3. Algorithm

Let us consider an n× l matrix N whose columns span the null-space of A and
denote by A† a generalized inverse to A. The first component u of the solution to (1)
is given by

u = A†(f −B>λ) + Nα, (6)

where α ∈ Rl. Inserting (6) into the second equation in (1) and using the orthogo-
nality f −B>λ⊥KerA, we obtain

(
C D>

D 0

) (
λ
α

)
=

(
p
q

)
, (7)

where C = BA†B>, p = BA†f − g, D = −N>B>, q = −N>f . Assume that C is
positive definite. Then we can eliminate λ from (7) so that

λ = C−1(p−D>α), (8)

and
Eα = r, (9)

where E = DC−1D> is positive definite and r = DC−1p− q.

132



Algorithm 2.1 (General Scheme)

Step 1.a: Assembly D = −N>B>.
Step 1.b: Assembly p = BA†f − g.
Step 1.c: Assembly q = −N>f .
Step 1.d: Solve the linear systems CX = D> by the conjugate gradients.
Step 1.e: Solve the linear system Cx = p by the conjugate gradients.
Step 1.f: Assembly E = DX.
Step 1.g: Assembly r = Dx− q.
Step 1.h: Solve the linear system Eα = r.
Step 2: Assembly λ = x−Xα.
Step 3: Assembly u = A†(f −B>λ) + Nα.

Computational costs are determined above all by the steps 1.a, 1.d and 1.e. Let us
point out that C is not assembled. The matrix-vector products Cµ in the conjugate
gradients iterations are computed by succesively evaluating the term B(A†(B>µ)).
Assuming that the conjugate gradients terminate after m iterations and denoting
by nA† the number of floating point operations (flops) involved by the matrix-vector
products A†v and N>v, the computational costs of the algorithm are O((l+2)mnA†)
flops.

4. Fast implementation

We can utilize properties of circulant matrices and the Kronecker product in order
to obtain a fast implementation of Algorithm 2.1.

A matrix Ax is called circulant if each column is a cyclic shift of the column
above to the bottom, i.e. if ax = (a1, . . . , anx)

> is the first column of Ax then the
j-th column aj

x, 2 ≤ j ≤ nx, is given by aj
x = (anx−j+2, . . . , anx , a1, . . . , anx−j+1)

>. It
is well-known that the spectral decompositon of Ax can be expressed by the discrete
Fourier transform (DFT) matrix Fx so that

Ax = F−1
x ΛxFx, (10)

where Λx = diag(âx) and âx = Fxax; see [5]. In other words, the eigenvalues of Ax

are entries of the DFT of ax and the corresponding eigenvectors are columns of F−1
x .

If nx is a power of two, then the matrix-vector products A†
xvx can be evaluated by

O(nx log2 nx) flops so that

A†
xvx := ifft(Λ†

xfft(vx)),

where fft and ifft denote the fast Fourier transform and its inverse, respectively.
Moreover, the nx × lx matrix Nx whose columns span the null-space of Ax can be
identified with the columns of F−1

x corresponding to the positions of vanishing entries
of âx. To this end, we introduce the operation ind âx

,

αx ∈ Rlx ⇐⇒ vαx := ind âx
(αx) ∈ Rnx ,

133



so that the entries of αx are put in vαx onto the positions of zeros in âx and the
remaining entries of vαx vanish. Let us denote by ind−1

âx
the reverse operation to

ind âx
. It is easy to verify that

Nxαx := F−1
x ind âx

(αx), (11)

N>
x vx := ind−1

âx
(F−1

x vx), (12)

so that the matrix-vector products Nxαx and N>
x vx can be evaluated again by

O(nx log2 nx) flops.
Let us return to A of the form (5). Substituting (10) and the analogous formula

for Ay, we obtain after simple manipulations

A = F−1ΛF,

where F = Fx ⊗ Fy, Λ = Λx ⊗ Iy + Ix ⊗ Λy with Λx = diag(âx), Λy = diag(ây)
and âx = Fxax, ây = Fyay, respectively. Since F is the 2D DFT matrix and Λ is
diagonal, the matrix-vector products A†v can be evaluated by O(n log2 n) flops so
that

A†v := ifft2d(Λ†fft2d(v)),

where fft2d and ifft2d denote the 2D FFT and its inverse, respectively. Moreover,
since N = Nx⊗Ny, formulas analogous to (11), (12) are valid and the matrix-vector
products Nα and N>v can be performed again by means of O(n log2 n) flops.

Theorem 4.1 [7] Algorithm 2.1 for solving (1) with A singular of the form (5)
and with B sparse requires O((l + 2)mn log2 n) flops.

Theorem 4.2 Algorithm 2.1 for solving (1) with A singular of the form (5) and
with B sparse requires a memory space for (at most) 3n+km floating point numbers,
where k denotes the maximal number of non-vanishing entries in rows of B.

Proof. Memory requirements are determined by f , B, u and by the diagonal of Λ†

(it keeps information of A). Since we assume n À m À l, the memory requirements
of the other matrices and vectors are not significant. Moreover, these matrices and
vectors can be stored in the memory reserved for u because u is computed in the
last step of the algorithm. 2

5. Numerical experiments

Let us consider the problem (4) with ω = {(x, y) ∈ R2 : (x/0.2)2 +(y/0.3)2 ≤ 1},
f(x, y) = 1 on 〈−0.5, 0.5〉 × 〈−0.5, 0.5〉 and f(x, y) = 0 elsewhere, g ≡ 0 and Ω =
〈−1, 1〉 × 〈−1, 1〉.

Numerical experiments are performed by Matlab 6 on Pentium(R)4, 3GHz with
512MB RAM; see Tab. 1. If c = 0, then A is singular with the defect l = 1 so that
two runs of the conjugate gradient method in Algorithm 2.1 are computed. The
relative tolerance terminating the conjugate gradient method is 10−4 in all cases.

134



c = 1 c = 0
n m time CG steps time CG steps

1024 64 0.03 13 0.06 10+16
2048 88 0.05 17 0.08 14+21
4096 128 0.06 17 0.13 13+21
8192 180 0.17 23 0.30 20+29
16384 256 0.28 21 0.48 18+25
32768 360 0.67 27 1.20 25+33
65536 512 2.27 27 5.58 25+33
131072 716 7.22 35 15.17 33+43
262144 1024 14.72 34 29.33 29+38
524288 1432 35.70 45 73.41 43+53
1048576 2048 65.56 41 133.75 38+49
2097152 2868 173.53 54 347.41 50+62
4194304 4096 337.95 48 655.00 42+57

Tab. 1: CPU time (in seconds) and the conjugate gradients steps.

References

[1] M. Fortin, R. Glowinski: Augmented Lagrangian methods: Applications to
the numerical solution of boundary-value problems. Amsterdam, North-Holland
1983.

[2] F. Brezzi, M. Fortin: Mixed and hybrid finite element methods. Berlin, Springer-
Verlag 1991.

[3] I. Daubechies: Ten lectures on wavelets. Philadelphia, SIAM 1992.

[4] R. Glowinski, T. Pan, J. Periaux: A fictitious domain method for Dirichlet
problem and applications. Comput. Meth. Appl. Mech. Eng. 111, 1994, 283–
303.

[5] G.H. Golub, C.F. Van Loan: Matrix computations, third edition. The Johns
Hopkins Universtiy Press, Baltimore, 1996.

[6] R. Kučera: Wavelet solution of elliptic PDEs. In: S. Bialas (Ed.), Matematyka
v Naukach Technicznych i Przyrodniczych, Krakow, AGH 2000, 55–62.

[7] R. Kučera: Complexity of an algorithm for solving saddle-point systems with
singular blocks arising in wavelet-Galerkin discretizations. Accepted in Appl.
Math., 2004.

135


