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BÉZIER CURVES AND THEIR APPLICATIONS

Vratislava Mošová

1. Shortly about the history of Bézier polynomials

Bézier polynomials came in the center of interest in the eighties when effective
personal computers were developed. They became important tool in computer aided
geometric design (CAGD).

The first who used the new type of construction for curves were Frenchmen Paul
de Faget de Casteljau and Pierre Bézier. They were employees of Paris car companies.
The first one worked for Renault and the second one for Citroën. They found such
constructions of curves and surfaces that are proper for the realization of these objects
on computer.

P. Bézier presented his ”basic curve” as the intersection of two elliptic cylin-
ders situated in the parallelepiped. It has this effect: Affine transformations of the
parallelepiped reflect in affine transformations of the curve.

De Casteljau chose another approach. He formed his curve with respect to the
given control polygon. He left construction of curve through points situated on it
and used the definition of curve through points situated near it. He defined such
a curve by means of Bernstein basis. It gave de Casteljau the possibility to develop
a system which primarily aimed at the ab initio design of curves.

Later it was proved that curves received by Bézier and de Casteljau are identical.
Because P. Bézier, in contrast to de Casteljau, published his results we use the name
”Bézier curve” for it. But the algorithm for construction of these curves got its name
after P. de Casteljau.

2. Bézier polynomials

We will deal with parametric expression of curves now. Planar or space curves
can be represented by a polynomial. For our purposes we consider polynomials that
are generated by the Bernstein basis Bn

0 (x), . . . , Bn
n(x).

Definition 1 The Bernstein polynomial of degree n is given for x ∈ 〈a, b〉 by the
formula

Bn
i (x) =

1

(b− a)n

(
n
i

)
(x− a)i(b− x)n−i, i = 0, . . . , n. (1)

Because Bn
i (x) are invariant to affine transformations we can, without loss of

generality, put t = (x − a)/(b − a) and define Bernstein polynomials on interval
〈0, 1〉.
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Theorem 1 The Bernstein polynomial has for t ∈ 〈0, 1〉 the form

Bn
i (t) =

(
n
i

)
ti(1− t)n−i, i = 0, . . . , n. (2)

Theorem 2 The Bn
i (t), i = 0, . . . , n, are polynomials of degree n that have a zero

in t ∈ 〈0, 1〉.

Bn
i (t) ≥ 0, t ∈ 〈0, 1〉. (3)

n∑
i=0

Bn
i (t) = 1, t ∈ R. (4)

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t), t ∈ R. (5)

(Bn
i (t))′ = n(Bn−1

i−1 (t)−Bn−1
i (t)). (6)

We can define the Bézier curve now.

Definition 2 Let P0, P1, . . . , Pn be points in Rm, m = 2, 3. Then

p(t) =
n∑

i=0

PiB
n
i (t), t ∈ 〈0, 1〉, (7)

is the Bézier polynomial, points P0, . . . , Pn are control points, and the polygon deter-
mined by these points is the control polygon.

We receive properties of the Bézier polynomials from the properties of Bernstein
polynomials given above.

Definition 3 Let Pm
n be the space formed by polynomials

p(x) =
n∑

i=0

aix
i, x ∈ R, a0, . . . , an ∈ Rm.

Theorem 3 Let p(t) be the Bézier polynomial given by the relation (7). Then it
has the following properties:

1. The polynomial p(t) ∈ Pm
n , m = 2, 3.

2. The polynomial p(t) is invariant to affine transformations.

3. At the endpoints,

p(0) = P1, p(1) = Pn. (8)

4. Subpolynomials of the Bézier polynomial defined by the relation
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pk
i (t) =

k∑

l=0

Pi+lB
k
l (t) (9)

satisfy the recursion formula

pk
i (t) = (1− t)pk−1

i (t) + tpk−1
i+1 (t), i = 0, . . . , n− k, k = 1, . . . , n. (10)

5. The derivatives at the endpoints satisfy

p′(t) = n

n−1∑
i=0

(Pi+l − Pi)B
n
i (t). (11)

It means that

p′(0) = n(P1 − P0), p′(1) = n(Pn − Pn−1). (12)

Graph of the Bézier polygon is often referred to as Bézier curve. From the previous
theorems we can see that:
The Bézier curve is contained in the convex hull of control points (see (1), (3), (4)).
The Bézier curve and its Bézier polygon have the same endpoints (see (8)).
The tangent lines to the Bézier curve at the endpoints merge with sides of its Bézier
polygon (see (12)).
The Bézier curve has only one extremum (see (11)).

The most important relation is the recursion formulae (10). It is the core of de
Casteljau algorithm that is used to compute points on the Bézier curve. One point
on Bézier curve of degree n is received by means of successive convex combinations
of control points

P k
i = (1− t)P k−1

i + tP k−1
i+1 , i = k, . . . , n, k = 1, . . . , n,

where P k
i = pk

i (t), t = const.
Because de Casteljau algorithm has the form

P 0
0 = P0

P 0
1 = P1 P 1

0

P 0
2 = P2 P 1

1 P 2
0

. . . . . . . . . . . . . . .
P 0

n = Pn P 1
n−1 P 2

n−2 . . . P n
0

the computation cost for de Casteljau algorithm is of order O(n2).
We demonstrate the basic idea of reconstruction of one point on Bézier curve of
degree 2 now. We can write

176



p(t) = P0(1− t)2 + 2P1(1− t)t + P2t
2

= (1− t) (P0(1− t) + P1t)︸ ︷︷ ︸
P 1

0

+t (P1(1− t)t + P2t)︸ ︷︷ ︸
P 1

1

= (1− t)P 1
0 + tP 1

1︸ ︷︷ ︸
P 2

0

.

If t is constant then P 2
0 represents one point on Bézier curve.

P 0
0 = P0

P 0
1 = P1

P 1
1

P 1
0

P 2
0

P 0
2 = P2

Fig. 1: Construction of one point on Bézier curve.

The Bézier curves gained such popularity thanks to the de Casteljau algorithm.
On the basis of this algorithm, it is possible to realize simply and quickly various
manipulations with Bézier curves.
If we divide the original curve of degree n at the point P n

n we receive two new control
polygons that have vertices P 0

0 , P 1
0 , . . . , P n

0 and P n
0 , P n−1

1 , . . . , P 0
n . These polygons

determine two new curves that have the same degree as the original curve.
We can also connect two Bézier curves in such a way that tangent lines at points
of connection coincide. When p(t) is a Bézier polynomial of degree n and q(t) is
a Bézier polynomial of degree m, and they are governed by points P0, . . . , Pn and
G0, . . . , Gm then

p(1) = g(0) ⇒ Pm = G0,

p′(1) = g′(0) ⇒ n(Pn − Pn−1) = m(G1 −G0) ⇒ G1 =
n

m
(Pn − Pn−1) + Pn.

If we divide the edges of the original polygon of degree n into n + 1 parts and, at
every of the n points, define one new control point
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P 1
i = tiPi−1 + (1− ti)Pi, ti =

i

n + 1
, i = 0, . . . , n− 1,

we obtain a new control polygon with n + 1 vertices and make the degree of Bézier
curve higher.

We can do a lot of generalizations.
If we replace the control points P0, P1, . . . , Pn by points w0P0, w1P1, . . . , wnPn (wi > 0
are weights) and use the homogenous basis then we receive the rational Bézier curve

p(t) =

∑n
i=0 wiPiB

n
i (t)∑n

i=0 wiBn
i (t)

(13)

that is invariant to projective transformations.
We can also form two parametrical objects - Bézier surfaces. Let the mesh in space
be determined by points Pij ∈ R3, i = 0, . . . , n, j = 0, . . . , m. Then we define the
Bézier surface

p(t) =
n∑

i=0

m∑
j=0

PijB
n
i (t)Bn

j (t). (14)

It is possible to adapt the De Casteljau algorithm and use it to receive points on
rational Bézier curve or on Bézier surface.

3. Applications of Bézier polynomials

The Bézier polynomials in connection with the de Casteljau algorithm are prede-
termined to serve for computer graphic, because they give us possibility to visualize
and manipulate geometrical objects on computer effectively and rapidly. But they
have their drawbacks. They are not a universal tool. The Bézier polynomials (1)
can’t model conic curves and surfaces. It is possible to use the rational Bézier poly-
nomials (13) for this purpose. Problems appeared when it was necessary to apply
software for the realization of rational Bézier polynomials together with software
for the realization of splines on computer. This problem was solved after de Boor’s
discovery of recursive representation of B-splines. Non-uniform rational B-splines
(NURBS) were created as a generalization of B-splines and rational Bézier polyno-
mials. They allow a unified geometrical representation because conic or spline curves
and spaces can be expressed in the form of piecewise rational polynomials. This is the
reason why NURBS form standard equipment of contemporary graphical systems.

In the end we note that Bézier polynomials and their generalizations are also
useful for solving differential equations. The rational Bézier polynomials were used
for the description of geometrical configuration and for approximation of velocity
and preasure functions in the modelling of dynamic behaviour of the rigid rotating
shaft in real liquid (see [5]).
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