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ANALYSIS OF INCOMPRESSIBLE FLOW
THROUGH A CASCADE OF PROFILES ∗

Tomáš Neustupa

Abstract

The paper deals with analysis of mathematical model of incompressible viscous
nonstationary flow through a plane cascade of profiles. We formulate the nonstation-
ary problem and construct a solution by means of semidiscretization in time (Rothe’s
method).

1. Introduction

The concept “cascade of profiles” represents a 2D model of a 3D blade machine
(compressor, pump, turbine). The model is considered in a domain which is bounded
in the direction of the x1–axis and unbounded but periodic in the direction of the
x2–axis. Due to the periodicity we can restrict our considerations only to one period Ω
and obtain a solution which can be periodically extended to the whole unbounded
domain.

Fig. 1: Domain Ω.

2. Formulation of the problem

The classical formulation of the problem consists of the Navier-Stokes equations

∂u

∂t
− ν ∆u + (u · ∇)u − ∇p = f in QT = Ω× (0, T ), (1)
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the continuity equation
div u = 0 in QT , (2)

the initial condition
u(x, 0) = u0(x) in Ω, (3)

the boundary conditions

u |Γi
= g, u |Γw = 0, (4)

−ν
∂u

∂n
+ pn− 1

2
(u · n)− u = h, [x1, x2] ∈ Γo , t ∈ (0, T ), (5)

and of the conditions of periodicity in the x2–direction

u(x1, x2 + τ, t) = u(x1, x2, t), (6)

∂u

∂n
(x1, x2 + τ, t) = −∂u

∂n
(x1, x2, t), (7)

p(x1, x2 + τ, t) = p(x1, x2, t), (8)

for x = (x1, x2) ∈ Γ− , t ∈ (0, T ). Here u = (u1, u2) denotes the velocity, f = (f1, f2)
denotes the external force, p is the pressure, ν > 0 is the constant viscosity and
∇ =

(
∂/∂x1, ∂/∂x2

)
.

Theorem. Let u, p be a classical solution of the problem in Ω × [0, T ]. If we
extend u and p from Ω onto the whole cascade of profiles as functions periodic in x2

with period τ , then we obtain a classical solution in the whole unbounded domain.

The main difficulties: The problem is nonstationary. The Dirichlet boundary condi-
tion on ∂Ω is nonhomogeneous. The outlet boundary condition on Γo is nonlinear.
The boundary conditions on Γ− and Γ+ are periodic.

3. Function spaces

H1(Ω) is a classical Sobolev space,
X = {v ∈ C∞(Ω)2; v = 0 on Γi ∪ Γw, v(x1, x2 + τ) = v(x1, x2) ∀ (x1, x2) ∈ Γ−},
V = {v ∈ X ; div v = 0 in Ω}, X is the closure of X in H1(Ω)2,
V is the closure of V in H1(Ω)2, H is the closure of V in L2(Ω)2.
The spaces X and V can be characterized as
X = {v ∈ H1(Ω)2; v = 0 in Γi ∪ Γw, v(x1, x2 + τ) = v(x1, x2) for (x1, x2) ∈ Γ−},
V = {v ∈ X; div v = 0 in Ω}.
Space V is equipped with the norm

|||v||| =
(∫

Ω

2∑

i,j=1

∂vi

∂xj

∂vi

∂xj

dx
)1/2

, (9)

which is equivalent with the norm ‖ · ‖H1(Ω).
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4. Weak formulation

Using Green’s theorem and the classical formulation of the problem, we can
formally derive the following integral identity:

(
∂u

∂t
,v) + a(u,v) = (f ,v) + b(h,v), (10)

where

(
∂u

∂t
,v) =

∫

Ω

∂u

∂t
v dx,

a1(u,v) = ν
∫

Ω

2∑

i,j=1

∂ui

∂xj

∂vi

∂xj

dx,

a2(u,v,w) =
∫

Ω

2∑

i,j=1

uj
∂vi

∂xj

wi dx,

a3(u,v,w) =
∫

Γo

1

2
(u · n)− v ·w dS,

a(u,v) = a1(u,v) + a2(u,u,v) + a3(u,u,v),

(f ,v) =
∫

Ω
f · v dx,

b(h,v) = −
∫

Γo

h · v dS.

We look for a function u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) satisfying (10) with f ∈
L2(0, T ; V ∗) for each function v ∈ V , the initial condition, the boundary conditions
on Γi, Γw and the condition of periodicity on Γ−. This u is called the weak solution.

5. Existence of a weak solution

The weak solution is constructed by means of the semidiscretization in time (the
Rothe method, see [2]). This method transforms the nonstationary problem into
a sequence of stationary problems.

For arbitrary n ∈ IN we put θ = θn = T/n and we consider the partition of the
interval [0, T ] defined by the points tk = kθ, k = 0, 1, . . . , n. We search for a sequence
of stationary solutions of the modified stationary problems u0, u1, . . . , un on the
time levels tk (k = 1, . . . , n) in the form

uk = g∗ + zk, (11)

where g∗ is the extension of the function g from Γi onto domain Ω fulfilling

‖g∗‖H1(Ω)2 ≤ c3 ‖g‖H1/2(∂Ω)2 ≤ c4 ‖g‖Hs(Γi)2 ,
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more details can be found in [1]. We assume that g∗ ∈ W 1,∞(Ω) and put u0 = u0

(∈ H). The solutions of the stationary problems satisfy: uk ∈ H1(Ω)2 have the
form (11) with, zk ∈ V and

(
uk − uk−1

θ
, v

)
+ a(uk,v) = < fk,v > ∀v ∈ V (12)

where

fk =
1

θ

∫ tk

tk−1

f(t) dt ∈ V ∗, k = 1, . . . , n.

It can be proven that there exist solutions of this modified stationary problems by
the technique similar to [1].

6. Construction of a weak solution of the nonstationary problem

Let u0, u1, . . . , un be a sequence of solutions of the modified stationary prob-
lems on the time levels t0, t1, . . . , tn. Using this sequence, we construct the time–
dependent functions:

uθ : [0, T ] −→ V

wθ : [0, T ] −→ H (13)

uθ(0) = u1, uθ(t) = uk for t ∈ (tk−1, tk] k = 1, . . . , n,

wθ is continuous on [0, T ], linear on each [tk−1, tk] (k = 1, . . . , n) and wθ(tk) = uk for
k = 0, 1, . . . , n, wθ : [0, T ] −→ H because u0 = u0 ∈ H. However wθ : [θ, T ] −→ V .
We denote by w̃θ the function wθ extended from [θ, T ] onto the whole time interval
[0, T ] by the equality w̃θ = u1 on [0, θ].

We can deduce from the form of the modified stationary problem and from the
properties of the bilinear form a(u,v) that

uθ, wθ is bounded in L∞(0, T ; H)

uθ, w̃θ is bounded in L2(0, T ; V ) (14)

dwθ

dt
is bounded in L1(0, T ; V ∗)

(uθ −wθ) −→ 0 in L2(0, T ; H) for θ → 0 + .

It is possible to prove that dwθ/dt is bounded in the space L1(0, T ; V ∗). (The bound-
edness in L2(0, T ; V ∗) is open.) Nevertheless, we can derive the strong convergence
in L2(0, T ; H) by means of the generalization of the Lions–Temam theorem on the
compact imbedding (see [3]).

Since the sequences are bounded, we can choose subsequences (which we denote
in the same way) such that

uθ −→ u weakly in L2(0, T ; V )
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uθ −→ u weakly − ∗ in L∞(0, T ; H)

wθ −→ u weakly − ∗ in L∞(0, T ; H)

dwθ

dt
−→ du

dt
weakly in L1(0, T ; V ∗)

wθ −→ u weakly in L2(ε, T ; V ), ∀ε > 0

The weak–* convergence of a sequence in L∞(0, T ; H) means its convergence as
a sequence of continuous linear functionals on L1(0, T ; H).

Now it is already possible to prove that

wτ −→ u strongly in L2(0, T ; H),

and that u is a sought weak solution.
This theory will be the basis for the derivation of a numerical solution of our

problem. This detailed analysis will be a subject of a paper in preparation.
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