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ALTERNATING ITERATIVE SCHEME FOR THE SOLUTION
OF BLOCK-STRUCTURED SYSTEMS ∗

Jan Š́ıpek, Jan Źıtko

Abstract

We consider the solution of linear system with a block-structured matrix of saddle
point type. The solution technique is based on the idea of the classical alternating-
direction implicit iterative method where symmetric-antisymmetric splitting of the
coefficient matrix is used. To find an optimal parameter for solving the system with
a symmetric matrix, the polynomial filters are considered. The CGW method is used
for systems with skew-symmetric matrix. The numerical tests compare the results
obtained by using alternating iteration and GMRES and point out advantages of
alternative iterations for larger systems.

1. Introduction

We consider solution of linear system of equations with the following block struc-
ture [

A BT

−B C

]

︸ ︷︷ ︸
A

[
u
p

]

︸ ︷︷ ︸
x

=

[
f
−g

]
,

︸ ︷︷ ︸
b

(1)

where A ∈ Rn×n, B ∈ Rm×n, C ∈ Rm×m, f ∈ Rn, g ∈ Rm, and m < n. Moreover,
we assume that rank(B) = m and N(A) ∩ N(B) = {0}. Systems of the form (1)
arise in a number of scientific and engineering applications. There are obtained
by calculation of the minimum of a functional with m linear constrains or by the
discretization of Navier-Stokes equations using the finite element or finite volume
method; see References [1, 2, 14, 15]. In some special cases the system (1) has more
interesting properties such as A is symmetric positive definite (SPD) or C = 0.

In our further investigation, we will assume that the matrix A is non-symmetric
with a positive definite symmetric part 1

2
(A + AT ). In such a case we refer matrix A

as positive real. Define

G :=
1

2
(A+AT ), S :=

1

2
(A−AT ) (2)

and similarly

G =
1

2
(A + AT ), S =

1

2
(A− AT ). (3)

∗This work was supported by Grant Agency of the Czech Republic under Grant No. 201/04/1503
and under Grant MSM113200007.
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It was proved (see [7]) that if G is positive semidefinite, rank(B) = m and N(G) ∩
N(B) = {0}, then A is nonsingular, semipositive real and positive semistable (i.e.
the eigenvalues of A have nonnegative real part). A number of methods have been
proposed for the solution of (1) in the literature. Let us mention [12], [7], [2], [16],
[10], [3], [18], [19], [20]. Very interesting technique based on an idea of the classic
alternating direction implicit method described in Reference [13] appears in the last
years.

Let α ∈ R be a positive number. Write

A = (G + αI) + (S − αI) = (G − αI) + (S + αI)

where I is identity matrix in R(n+m)×(n+m). Let us mention that

G + αI =

[
G + αIn 0

0 C + αIm

]
, S + αI =

[
S + αIn BT

−B αIm

]
. (4)

According to the technique formulated for example in [13, 7], we write the fol-
lowing algorithm:

Algorithm 1: ADI method

Input: x0 = [u0, p0]T : an initial approximation.
Output: The solution x of (1)

For k = 0 till convergence do

(G + αI)xk+ 1
2 = (αI − S)xk + b, (G)

(S + αI)xk+1 = (αI − G)xk+ 1
2 + b. (S)

end do

The matrix-vector multiplication on the right-hand side of (G) and (S) is evaluated
only once for k = 0. The right-hand side of each following “half-iteration” yields the
left-hand side of previously executed one, after an easy manipulation.

Putting
fk

1 = αuk − Suk + f −BT pk, gk
1 = αpk − g + Buk,

we can see, that the first part of our algorithm involve the solution of two linear
systems of the form

(G + αIn)uk+ 1
2 = fk

1 , (C + αIm)pk+ 1
2 = gk

1 (5)

with positive definite matrices. Let us remark that the problems with C = 0 are very
often solved and in this case only one equation with positive definite matrix G+αIn

is solved. When solving the linear system (5) with conjugate gradient method, the
smallest eigenvalues slow down the convergence. The same phenomenon has been ob-
served by solving nonsymmetric systems using GMRES method and preconditioning
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technique removing the small eigenvalues from the spectrum was studied by many
authors. The situation in symmetric positive definite case is much more easier be-
cause the matrix is diagonalizable with real positive eigenvalues. This is the reason
for splitting the coefficient matrix A into symmetric and skew-symmetric part and
solve more systems of linear algebraic equations. For removing small eigenvalues, an
invariant subspace associated with these ones is usually constructed. We have pro-
posed the method of polynomial filters modified for symmetric systems. The authors
[Giraud, Ruiz, Touhami, Arioli] proposed an algorithm which combine Chebyshev it-
eration with a block Lanczos procedure to accurately compute an orthonormal basis
for the invariant subspace associated with the small eigenvalues of the matrix A. It
uses Chebyshev polynomials to damp eigencomponents associated with the largest
eigenvalues in the spectral decomposition of the considered vector. Both approaches
for an efficient solving of symmetric system have the common idea to enforce con-
jugate gradient to work in the orthogonal complement of some invariant subspace
associated with the smallest eigenvalues.

The second system in (S), rewritten according (4) as

lcl(αIn + S)uk+1 + BT pk+1 = fk
2 (6)

−Buk+1 + αpk+1 = gk
2 , (7)

where
fk

2 = (αIn −G)uk+ 1
2 + f, gk

2 = (αIm − C)pk+ 1
2 − g,

can be solved in various ways. The CGW method is often recommended for the
solution of (6); see Reference [22]. An alternative approach [7] is to eliminate uk+1

from the second equation using the first, which is useful for symmetric matrix A or
to eliminate pk+1 from the first equation using the second, which seems to be more
useful for non-symmetric case. The first reduction described, leads on solution of
following equation

[B(In + αS)−1BT + αIm]pk+1 = B(In + αS)−1fk
2 + gk

2 . (8)

From (8) we get the solution vector pk+1. Vector uk+1 is defined by

uk+1 = (αIn + S)−1(fk
2 −BT pk+1).

If S = 0, then the system (8) degenerates to

(BBT + α2Im)pk+1 = Bfk
2 + αgk

2 (9)

and uk+1 = 1
α
(fk

2 − BT pk+1). Relation (8) is far to complicated in non-symmetric
case and numerically too expensive. Hence, let us try to express pk+1:

pk+1 =
1

α
(Buk+1 + gk

2) (10)

and substitute to the first equation, from which we get uk+1. Therefore we have
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((αIn + S) +
1

α
BT B)uk+1 = fk

2 −
1

α
BT gk

2 . (11)

The aim of this paper is to compare several of these techniques in terms of numerical
efficiency and to show the advantages of the alternating iterations.

The outline of this paper is as follows. In Section 2 the convergence and estimation
of an optimal shift parameter is discussed. We devote Section 3 and 4 to application
of polynomial filters for symmetric case. Various filtering techniques are shown for
the construction of an invariant subspace. In Section 5 the CGW method is studied.
In Section 6 the numerical results are shown. The comparison of alternating-iteration
method with Krylov subspace methods is presented.

2. Convergence and estimation of optimal parameter α

We are looking for such α, that the method introduced, converge optimally. From
(G) and (S) we become the following one step iterative method of the form

xk+1 = (S + αI)−1(G − αI)(G + αI)−1(S − αI)xk + c(α).

Using the relation A = G + S we define following

M = (2α)−1(αI + G)(αI + S),
N = (2α)−1(αI − G)(αI − S),
W = I − AM−1 = NM−1 = (αI − G)(αI − S)(αI + S)−1(αI + G)−1.

For the iteration {xk} defined by Algorithm 1 satisfies equation

Mxk+1 = Nxk + b.

Residual vectors of xk+1 can be expressed as

rk+1 = (I − AM−1)rk = Wrk

and

rk+1 ⊥
(
I − rT

kWrk

rT
kWTWrk

W
)
rk

def
= wk.

The goal is to find such α that fulfills the following

arg
α>0

min ‖Wrk‖/‖rk‖.

In other words we are looking for such α that the angle between vectors rk and wk

is minimal. However, such formulated task leads on solution of nonlinear problem.
Hence a uniform estimate for the equation ‖Wrk‖/‖rk‖ is applied, i.e. α∗ (optimal α)
is computed from the relation

α∗ = arg
α>0

min ‖(αI − G)(G + αI)−1‖. (12)
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Let us remark, that the matrix (αI − S)(αI + S)−1 is orthonormal ((⇐ S is skew-
symmetric) and can be therefore omitted in the norm in (12).

We continue to explore the expression (12): Under the assumption that G is
positive definite, C is symmetric positive semidefinite and B has maximum rank, it
was shown in [7] that

α∗ = arg
α>0

min max
λ∈{λ1,λ2,...,λn}
λ∈[λmin,λmax]

∣∣∣∣
α− λ

α + λ

∣∣∣∣, (13)

where
λmin := λ1 ≤ λ2 ≤ . . . ≤ λn = : λmax

are eigenvalues of the matrix G. The solution (13) yields

α∗ =
√

λminλmax.

Moreover for the condition number of the matrix we have the estimate

κ(G + α∗I) ≤ 1 +
√

κ(G).

where G is the first diagonal block of matrix G.
In the following will be shortly shown, how the relation (13) was developed and

why the eigenvalues of matrix C disappeared.
Let

Z = (αI − G)(αI + G)−1(αI − S)(αI + S)−1.

and
ν1 ≤ ν2 ≤ . . . ≤ νm

be the eigenvalues of the matrix C. Because matrix G is symmetric, and matrix
(αI−S)(αI+S)−1 is orthonormal, there exists an orthonormal matrix P such, that

PTZP = PT (αI − G)(αI + G)−1P︸ ︷︷ ︸2
4 D1 0

0 D2

3
5 =: D

Q︸︷︷︸
PT (αI−S)(αI+S)−1P

, (14)

where

Q :=

[
Q11 Q12

Q21 Q22

]

is orthonormal and

D1 = diag

(
α− λ1

α + λ1

, . . .
α− λn

α + λn

)
, %(D1) < 1

and analogically with D2, where we formally substitute νi for λi, i = 1, . . . , m. It
holds %(D2) ≤ 1. We try to show, that %(QD) < 1.
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Let (λ, [x1, x2]
T ) be an eigenpair of QD, that means

[
Q11D1 Q12D2

Q21D1 Q22D2

] [
x1

x2

]
= λ

[
x1

x2

]
if x1=0

=

[
Q12D2x2

Q22D2x2

]
if x1=0

=

[
0

λx2

]
.

It remains to show that for all eigenvalues λ the corresponding subvector x1 is not
a nullvector. From the last equation we immediately obtain

|λ|2 = ‖D1x1‖2 + ‖D2x2‖2 ≤ %(D1)
2‖x1‖2 + %(D1)

2‖x2‖2 < ‖x‖2 = 1. (15)

In the rest of our proof we will show that the matrix Q12 has maximum rank. If
we denote

(αI − S)(αI + S)−1 =

[
U11 U12

U21 U22

]
,

︸ ︷︷ ︸
U

than
U12 = −2α(αI + S)BT [αIm + B(αIm + S)−1BT ]−1. (16)

Using (4) we evaluate Q from (14):

Q =

[
P11 0
0 P22

]T

︸ ︷︷ ︸
PT

[
U11 U12

U21 U22

]

︸ ︷︷ ︸
U

[
P11 0
0 P22

]

︸ ︷︷ ︸
P

=

[
P T

11U11P11 P T
11U12P22

P T
22U21P11 P T

22U22P22

]
.

Hence

Q12 = P T
11U12P22 = −2αP T

11(αI + S)BT [αIm + B(αIm + S)−1BT ]−1

︸ ︷︷ ︸
E

P22

where we have substituted from (16). Matrices P11 and P22 are orthonormal, the
matrix E is nonsingular and B has maximal column rank, hence the matrix Q12 has
maximum rank.

3. Polynomial filters

Assume that the eigenvalues of the matrix G are ordered according to

0 < λ1 ≤ λ2 ≤ . . . ≤ λn.

Let k << n be a positive integer. We want to find the eigenvalues included in the
set σw = {λ1, . . . , λk} and σu = {λn−k+1, . . . , λn} respectively.
Lanczos process starting with the vector v1 gives the factorization

GVm = VmTm + fmeT
m, (17)

where Vm = {v1, v2, . . . , vm} ∈ Rn×m, fm ∈ Rn, Tm ∈ Rm×m, V T
m Vm = Im, V T

m fm = 0.
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We will consider two ways for estimating the eigenvalues in σw or σu. Either for
larger m to calculate the smallest and largest eigenvalues of the tridiagonal matrix
Tm or for small m repeat the procedure based on the single-shift QR iterations
to obtain more detail information about spectrum of the matrix G . The second
procedure is analogous to the updating the Arnoldi factorization via QR-iteration
(see References [24], [11])and we describe it shortly. Let µ1, µ2,. . . , µm−k be positive
real numbers. From (17) we successively obtain

(G− µ1I)Vm − Vm(Tm − µ1I) = fmeT
m, (18)

(G− µ1I)Vm − VmQ(1)R(1) = fmeT
m, (19)

(G− µ1I)(VmQ(1))− (VmQ(1))(R(1)Q(1)) = fmeT
mQ(1), (20)

G (VmQ(1))︸ ︷︷ ︸
V

(1)
m

− (VmQ(1))︸ ︷︷ ︸
V

(1)
m

(R(1)Q(1) + µ1I)︸ ︷︷ ︸
T

(1)
m

= fmeT
mQ(1). (21)

Analogical application of the next shifts µ2, µ3, . . . , µm−k gives

GV (m−k)
m = V (m−k)

m T (m−k)
m + fmeT

mQ, (22)

where

Q = Q(1)Q(2) . . . Q(m−k), T (m−k)
m = QT TmQ and

V (m−k)
m ; = (v

(m−k)
1 , v

(m−k)
2 , . . . , v(m−k)

m ) = VmQ,

The matrix T
(m−k)
m has the form

T (m−k)
m =

(
T

(m−k)
k tkeke

T
1

tke1e
T
k T̂m−k

)
,

and if we split V
(m−k)
m = (V

(m−k)
k , Ṽ

(m−k)
m−k ) then

GV
(m−k)
k = V

(m−k)
k T

(m−k)
k + f

(m−k)
k︸ ︷︷ ︸

tk+1,kv
(m−k)
k+1 +fmeT

mQeT
k

eT
k (23)

where V T
k f

(m−k)
k = 0 and the matrices T

(m−k)
m and T

(m−k)
k are tridiagonal positive

definite because G is positive definite. The equalities (18)-(21) yield the formula

vm−k
1 = νΠm−k

j=1 (A− µjI)v1
def
= ψ(A)v1 (24)

The equation (23) gives Lanczos process with starting vector V
(m−k)
k e1. Let

0 < θ1 ≤ θ2 ≤ . . . ≤ θm (25)

be the eigenvalues of the matrix Tm. Now it is natural to put the following question.
How to choose the shifts µj or alternatively a polynomial ψ such that ‖fm−k

k ‖ is
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“small”, because if it would be in ideal case ‖fm−k
k ‖ = 0 then the columns of the

matrix V m−k
k form an invariant subspace of the matrix G. Let tol is a small positive

number (for example tol = 10−2). This will be discussed in the section concerning
with numerical results. Let v1 be the vector defined in (17). The polynomial ψ having
the property that the Lanczos process starting with the initial vector ψ(G)v1 gives
‖fm−k

k ‖ ≤ tol will be called polynomial filter. If the polynomial ψ is constructed
iteratively then all polynomial approximations will be called filters.

However we want to get eigenspace corresponding to the smallest or largest eigen-
values of G. Let us think the smallest eigenvalues. The algorithm for largest eigen-
values can be implemented equally. By analogy to the [24] paper let us consider the
following iterative process.

Algorithm 2: Construction of an invariant subspace
Input: G,m, k, tol, max− maximal number of iterations
Output: matrices Vk and a tridiagonal matrix Tk fulfilling the relations

‖GVk − VkTk‖ ≤ tol, V T
k Vk = I

Step 1 Carry out the Lanczos process (17), cycle := 1
Step 2 Calculate the eigenvalues θj, j = 1, 2, . . . ,m of Tm

Step 3 Substitute µj := θm−j for j = 1, 2, . . . , k and apply these shifts to
obtain (22) and (23).

Step 4 If ‖fm−k
k ‖ < tol or cycle > max then STOP else

perform the next m − k steps of the the Lanczos process starting
from (23). The resulting tridiagonal matrix is denoted again Tm.
Put cycle = cycle + 1, go to Step 2.

end.

The convergence is studied in [24]. Let us assume that the process converges, i.e.

‖f (m−k)
k ‖ < tol after performing a finite number of steps.

We have

AVk
.
= VkTk

and span{Vk} approximate eigenspace corresponding to the k eigenvalues of λ1,

λ2,. . .λk G. (See Reference [24].) If {θ(k)
j , y

(k)
j }k

j=1 are eigenpairs of Tk, and

xj = Vky
(k)
j , j = 1, 2, . . . , k the Ritz vectors

then the easy manipulation shows that the pairs (θ
(k)
j , xj) approximate the eigenpairs

of G and, moreover, the eigenpairs (λj, uj), where the matrix U = (u1, u2, . . . , un)
transforms G to the Jordan canonical form Λ =diag (λ1, λ2, . . . , λn). It is an in-
teresting property proved by [24] that the k smallest Ritz eigenvalues (i.e. smallest
eigenvalues of the matrix Tm) approximate successively (λ1, λ2, . . . , λk). (See Refer-
ence [24])
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4. The Chebyshev filtering technique

Let
G = UΛUT = U1Λ1U

T
1 + U2Λ2U

T
2 (26)

where Λ1 = diag(λ1, λ2, . . . , λk) and Λ2 = diag(λk+1, λ2, . . . , λn be the eigendecom-
position of the symmetric and positive definite matrix G. Let v1 be a starting vector
for Lanczos process and ψ an arbitrary polynomial. From (26)it follows that

ψ(G)v1 = U1ψ(Λ1)U
T
1 v1 + U2ψ(Λ2)U

T
2 v1 (27)

We want to find ψ which sets off the first term on the right hand-side (27) and
damps the second one. The min-max property of Chebyshev polynomials leads
us to the idea to seek a polynomial ψ between them. Generally, the Chebyshev
polynomials Tm of degree m are defined for all complex numbers by the formula
Tm(z) = cosh(m× cosh−1(z)) as an analytical function (see Reference [25]). But all
eigenvalues of G are real and hence real version of these polynomials will be sufficient
for our further investigations. For the interval [−1, 1] the polynomials Tm reduce to
very easy form Tm(z) = cos(m × cos−1(z)). The practical algorithms utilize often
the recurrence formulas

T0(z) = 1, T1(z) = z and Ts+1(z) = 2zTs(z)− Ts−1(z) for all integer s ≥ 1.

We want theoretically “annihilate” the norm of the matrix ψ(Λ2). for the approx-
imation of the smallest interval containing diagonal elements of Λ2 we apply again
Lanczos process and Ritz values. Let m and k has the same meaning as in the
formulas (17) and (22). Let γ and δ be a positive numbers. The transformation

z 7→ ϑ(λ) :=
δ + γ − 2λ

δ − γ
(28)

maps the interval [γ, δ] onto [−1, 1] and ϑ(0) = δ+γ
δ−γ

=: q. Hence assuming the matrix

G possesses the unwanted (the largest or smallest) eigenvalues in the interval [γ, δ],
the polynomial ψ,

ψ(λ) =
Tm−k(ϑ(λ))

Tm−k(q)

normed that ‖ψ(G)v1‖ = 1 appears to be a good polynomial filter. Let us remark
that an analogous technique was used in the papers [Arioli, Ruiz atd.] where the
Chebyshev damping with the block Lanczos method is effectively used for solving
large linear systems with a symmetric and positive definite matrix. Now the question
appears how numerically perform this damping of eigenvalues lying in [γ, δ] and how
to apply the product ψ(A)v1. The process is very similar to the Algorithm 1 and we
underline here only the differences. Denote t = m − k and carry out the Lanczos
process (17), i.e. the Step 1 in Algorithm 1 and we calculate all eigenvalues of Tm,
see Step 2.
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We put γ ∈ (0, θ1] and δ ∈ [θkθk+1)) if small eigenvalues are damped, i.e. the
invariant subspace for t largest eigenvalues of G is calculated or we substitute γ ∈
(θk−1θk] and δ ∈ [θm, χ) for some χ > θm in the opposite case. Let us still remark
that the linear mapping

λ 7→ η(θ) := δ + (1− θ)(γ − δ)/2 (29)

transforms the interval [−1, 1] onto [γ, δ] and to the roots of Tm in [−1, 1] correspond
the numbers µ1, µ2, . . .µr, where r = k or r = t dependent if the invariant subspace
for t largest eigenvalues of G is calculated or conversely. Hence for the shifts we take
the numbers µj

µj = η(cos

(
2j − 1

2t
π

)
) for j = 1, 2, . . . r.

The Step 4 stays only instead of m− k must be substituted k if largest eigenvalues
are calculated.

5. Solution of systems with skew-symmetric matrix

In this section we deal with systems of the form

(αI + S)xk+1 = (αI − G)xk+ 1
2 + b, and

((αIn +
1

α
BT B)

︸ ︷︷ ︸
Q

+ S)uk+1 = fk
2 −

1

α
BT gk

2 .

The matrices of both systems have the form: “a SPD matrix + an skew-symmetric
one” and therefore without any loss of generality we will consider only the second
equation, we leave out the upper index k and denote the-right hand side by fr, i.e.
we mean the system

(Q + S)u = fr. (30)

Let us mention that Q is symmetric and positive definite and S is skew-symmetric
matrix. The acceleration procedure for the CGW iterative method, formulated by
Concus, Golub and Widlund, is recommended (see References [22], [7]). It accelerates
the iterative process

ui+1 = (I −Q−1(Q + S))︸ ︷︷ ︸
−Q−1S=T

ui + Q−1b

︸ ︷︷ ︸
ui+1=Tui+c where c=Q−1b.

Let us shortly present following iteration formulas:

ui+1 = ωi+1(Tui + c) + (1− ωi+1)u
i−1,

ωi+1 =

(
1− (Qδi)T δi

(Qδi−1)T δi−1

1

ω1

)−1

ω1 = 1.

where
δi = Tui + c− ui.
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Let us remark, that the last formulas may be fast obtained by rewriting of the
three-term recurrence formula for the preconditioned CG applied in symmetric case.

6. Numerical results

In this section, we compare some Krylov subspace methods with the alternating
iteration method described in this paper. We show, that this method is faster for
larger systems of the considered structure.

As it was shown, one of our main goals is to find an optimal parameter α∗ to
gain fast convergence of Algorithm 1. Therefore we have to calculate the smallest
and largest eigenvalue of matrix G. We test the Lanczos method and the method
described in Algorithm 2. In the second case we obtain more than one of the small-
est or largest eigenvalues and this fact gives an information, which is used by the
construction of a good preconditioner for the system (G).

For the solution of the symmetric part in Algorithm 1 we use preconditioned CG
method. The preconditioning matrix M was constructed according to the algorithm
presented in [23], where M was constructed analogously to the paper [11]. This
preconditioner is very efficient in the case of matrices having very small eigenvalues.
The first example will be academic.

Example. Let A ∈ R100×100 be symmetric positive definite matrix with eigenvalues
0.009887, 0.01803, 0.03207. The other ones lie in interval [3.254, 100.7]. Hence our
matrix A has three very small eigenvalues. We use the Algorithm 2 with parameters
s = 8, t = 3 and after 29 iterations we get the three smallest eigenvalues of A with
precision 10−14 and the corresponding eigenvectors. If we solve linear system Az = e
using preconditioned CG method (for the construction of preconditioner were used
polynomial filters). The residual norm is less then 10−4 after 140 iterations. Classical
CG-method or CG-method preconditioned with incomplete Cholesky stagnates.

6.1. Test cases

Our concern is to solve large linear systems occurring in fluid dynamics, mostly
constructed by finite element or finite volume method.

Let us consider a flow in the unit square domain Ω described by the following
equations

−µ4 u1 + {v1.(u1)x + v2.(u1)y}+ px = 0 in Ω

−µ4 u2 + {v1.(u2)x + v2(u2)y}+ py = 0 in Ω

(u1)x + (u2)y = 0 in Ω

u1 = 1 on Γ1

u1 = 0 on Γ \ Γ1

u2 = 0 on Γ

where Γ is the boundary of the unit square and Γ1 his part with y = 1. The func-
tions u1 and u2 are the velocity components in x and y directions and p is the
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Name Size Parameters
Nr. of unknowns Nr. of non-zero el.

Stokes 1 759 3764 h = 0.1, ν = 10−1

Stokes 2 3119 15924 h = 0.05, ν = 10−1

Stokes 3 7079 36484 h = 0.033, ν = 10−1

Stokes 4 1263 65444 h = 0.025, ν = 10−1

Stokes 5 19799 102804 h = 0.02, ν = 10−1

Stokes 6 28559 148564 h = 0.0167, ν = 10−1

Stokes 7 38919 202724 h = 0.0143, ν = 10−1

Stokes 8 50879 265284 h = 0.0125, ν = 10−1

Stokes 9 64439 336244 h = 0.0111, ν = 10−1

Stokes 10 79599 415604 h = 0.01, ν = 10−1

Tab. 1: Set of test matrices.

pressure. The resulting linear system for the discrete solution, putting u = [u1, u2]
T ,

has the form (1) with C = 0 and A symmetric and positive definite.

6.2. Estimation of optimal parameter

We want to find an optimal parameter α∗ =
√

λminλmax for the matrices defined
in Table 1. We compare the Lanczos method with the Algorithm 2. In Table 2 the
following notation is used:

• εmin = |λ(comp)
min (G)− λmin(G)|, where λ

(comp)
min is computed and λmin is the exact

smallest eigenvalue of G.

• εmax = |λ(comp)
max (G)−λmax(G)|, where λ

(comp)
max is computed and λmax is the exact

largest eigenvalue of G.

• fl. = number of floating-point operations.

• s = number of Lanczos steps.

• sopt = number of steps necessary to to obtain results comparable with Algo-
rithm 2.

• m, k = constants defined in Algorithm 2.

We show the results obtained using Laczos method for s = 10 and sopt in the first
two columns. We choose constant s, such that the computation costs are similar to
Algorithm 2. The last two columns represents the Algorithm 2. In column 3 and 4
different variants of shifts are used according to the text in Section 3.

Table 2 illustrates, that for smaller problems the Lanczos method gives similar
results as Algorithm 2. But when the size of the problem grows Algorithm 2 appears
to be more efficient.
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Matrix Lanczos Chebyshev Sorensen
s = 10 s = opt m = 5, k = 3 m = 5, k = 3

Stokes 1 εmin = 10−3 sopt = 60 εmin = 10−5 εmin = 10−5

εmax = 10−2 εmax = 10−4 εmax = 10−5

fl.= 186742 fl.= 1164243 fl.= 152433 fl.= 156476
Stokes 2 εmin = 10−1 sopt = 65 εmin = 10−5 εmin = 10−5

εmax = 10−1 εmax = 10−5 εmax = 10−5

fl.= 0.8× 106 fl.= 1.9× 107 fl.= 8.86× 106 fl.= 8.87× 106

Stokes 3 εmin = 10−1 sopt = 68 εmin = 10−5 εmin = 10−6

εmax = 10−1 εmax = 10−4 εmax = 10−6

fl.= 1.8× 106 fl.= 2.4× 107 fl.= 8.91× 106 fl.= 8.93× 106

Stokes 4 εmin = 10−1 sopt = 74 εmin = 10−5 εmin = 10−7

εmax = 10−1 εmax = 10−5 εmax = 10−5

fl.= 3.2× 106 fl.= 7.4× 107 fl.= 9.67× 106 fl.= 9.98× 106

Stokes 5 εmin = 10−1 sopt = 74 εmin = 10−6 εmin = 10−5

εmax = 10−1 εmax = 10−6 εmax = 10−5

fl.= 5.0× 106 fl.= 8.4× 107 fl.= 1.02× 107 fl.= 1.02× 107

Stokes 6 εmin = 10−1 sopt = 76 εmin = 10−5 εmin = 10−5

εmax = 10−1 εmax = 10−5 εmax = 10−5

fl.= 7.2× 106 fl.= 1.2× 108 fl.= 1.11× 107 fl.= 1.12× 107

Stokes 7 εmin = 10−1 sopt = 78 εmin = 10−5 εmin = 10−5

εmax = 10−1 εmax = 10−5 εmax = 10−5

fl.= 9.8× 106 fl.= 1.6× 108 fl.= 1.32× 107 fl.= 1.35× 107

Stokes 8 εmin = 10−1 sopt = 76 εmin = 10−5 εmin = 10−5

εmax = 10−1 εmax = 10−5 εmax = 10−5

fl.= 1.3× 107 fl.= 2.2× 108 fl.= 1.43× 107 fl.= 1.44× 107

Stokes 9 εmin = 10−1 sopt = 84 εmin = 10−5 εmin = 10−5

εmax = 10−1 εmax = 10−5 εmax = 10−5

fl.= 1.6× 107 fl.= 2.6× 108 fl.= 1.56× 107 fl.= 1.57× 107

Stokes 10 εmin = 10−1 sopt = 89 εmin = 10−5 εmin = 10−5

εmax = 10−1 εmax = 10−5 εmax = 10−5

fl.= 1.9× 107 fl.= 2.9× 108 fl.= 1.65× 107 fl.= 1.66× 107

Tab. 2: Estimation of optimal parameter α∗.

6.3. Methods comparison

In this subsection we compare GMRES, GMRES(20), MINRES and ADI methods
for the solution of our test cases. In the following table we compare the floating-
point operations necessary to get the solution with residual norm less than 10−6.
The parameter α used in algorithm 1 was computed by Algorithm 2. The symbol ∗
means, that no results has been obtained in real time.
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Matrix GMRES GMRES(20) MINRES ADI
Stokes 1 1.1× 106 0.5× 106 0.7× 106 2.1× 106

Stokes 2 4.2× 106 1.2× 106 1.1× 106 3.2× 106

Stokes 3 8.4× 106 2.1× 106 1.9× 106 4.4× 106

Stokes 4 * 3.3× 106 3.5× 106 5.1× 106

Stokes 5 * 6.1× 106 5.6× 106 7.3× 106

Stokes 6 * 7.4× 106 6.3× 106 7.6× 106

Stokes 7 * 8.2× 106 * 8.3× 106

Stokes 8 * 9.3× 106 * 8.9× 106

Stokes 9 * 1.6× 107 * 1.2× 106

Stokes 10 * 2.8× 107 * 2.1× 106

Tab. 3: Methods comparison.

We can see from Table 3, that the ADI method is more efficient if the size of
the solved problem grows. Beginning with Stokes 7 the ADI method is better than
GMRES(20).
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