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NUMERICAL ANALYSIS OF MATHEMATICAL MODEL OF HEAT
AND MOISTURE TRANSPORT IN CONCRETE AT HIGH

TEMPERATURES∗

Michal Beneš, Petr Mayer

Abstract

In this paper, we present a nonlinear mathematical model for numerical analysis
of the behaviour of concrete subject to transient heating according to the standard
ISO fire curve. This example allows us to analyse and better understand physical
phenomena taking place in heated concrete (thermal spalling).

1. Balance equations of mathematical model

The behaviour of concrete at high temperature is dependent on its composite
structure, on the physical and chemical composition of the cement paste, which is
a highly porous, hygroscopic material. In the whole temperature range, the gas phase
is a mixture of dry air and water vapour. Therefore, the moist concrete is modelled
as a multiphase material.

The global multiphase system is treated within the framework of averaging the-
ories starting from microscopic level and applying mass, area and volume averaging
operators to the local form of governing equations.

The mathematical model consists of the following balance equations for the
α-phase, in particular w, resp. g, resp. ga, resp. gw denotes the liquid phase,
resp. the gas phase, resp. the dry air, resp. water vapour,

Dα

Dt
(ηαρα) + (ηαρα)∇ · vα = êα

β , α, β = w, gw, ga, α 6= β, (1)

(ρC)
∂T

∂t
+ (ρCv)∇ · T −∇ · (λ∇T ) = −ṁphase∆hphase + ṁdehydr∆hdehydr, (2)

where ηα is the volume fraction of phase α,

ηw = φSw, ηg = φSg, Sw + Sg = 1,

where Sw, resp. Sg denotes the degree of water saturation, resp. the degree of gas sat-
uration, φ is the porosity, ρα and vα denote the averaged density and mass-averaged
velocity of the α-phase. The mass source term êα

β on the right-hand side represents

∗This research has been supported by Ministry of Education, Youth and Sports of the Czech
Republic, No. 1M6840770001 within the frame of research centre CIDEAS and VZ 03 CEZ MSM
6840770003.
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exchange of mass with interfaces separating individual phases (phase changes), as
well as the terms on the right hand side of (2) represent the energy required for
evaporation of liquid water and the energy required for release of bound water by
dehydration. The convection term (ρCv)∇ · T in equation (2) is ignored provided
that the transfer of energy by convection is included in the empirical relationship for
the thermal conductivity λ = λ(T ).

2. Boundary and initial conditions

The model consisted of a rectangular section of the concrete wall, 0.1 m thickness,
exposed to transient heating from one side according to the standard ISO FIRE curve

T∞(t) = TISO−FIRE(t) = 345 log(8t + 1) + 293.15, [t] = min. (3)

In the case of heat transfer through the boundary at normal temperatures, the
boundary conditions correspond to the Newton’s law of cooling (Neuman’s condi-
tions)

−(ρwvl∆hphase − λ∇T ).n = 0, (4)

−(ρgwvg + ρwvl + ρgv
d
gw).n = 0. (5)

On the part of the boundary, where the high temperature is analyse, the radiative
boundary conditions

(ρwvl∆hphase − λ∇T ).n = αc(T − T∞) + eσ(T 4 − T 4
∞), (6)

(ρgwvg + ρwvl + ρgv
d
gw).n = βc(ρgw − ρgw∞), (7)

are of importance, where the terms on the right hand side of (6) represent the heat
energy dissipated by convection and radiation to the surrounding medium, and the
term on the ride hand side of (7) is the substance dissipated into the surrounding
medium.

The initial conditions for concrete were set as follows: the uniform temperature
T = 293.15 K, the uniform gas pressure 101325 Pa and the uniform capillary pressure
97.3 MPa, according to ρgw and ρga.

3. Thermodynamic approach, constitutive relationships and material data

Dry air, water vapour and their mixture are assumed to behave as perfect gases,
therefore Dalton’s law and the Clapeyron equation are assumed as state equations.
Water vapour pressure, pgw is obtained from the Kelvin equation. As the constitutive
equations for fluid phases (capillary water, gas phase) the multiphase Darcy’s law
has been applied.

Mathematical model of multiphase flow and heat transfer in concrete contains
a several parameters and coefficients describing the properties of concrete and fluids:
porosity φ = φ(T ), saturation S = S(pc), solid phase density ρ = ρ(T ), absolute
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permeability K = K(pg, T ), relative permeability of gas phase Krg = Krg(pc, T ),
relative permeability of liquid phase Krw = Krw(pc, T ), gas-phase dynamic viscosity
µg = µg(pg, pc, T ), liquid phase dynamic viscosity µw = µw(T ), thermal capacity of
the system ρCp(T ), thermal conductivity of the system λ(T ), enthalpy of vaporisation
∆hvap(T ). Formulas are given in detail in [3].

The relationship between capillary pressure and saturation in multiphase flow
problems demonstrates memory effects and hysteresis. Differential equations with
hysteresis have been the subject of studies, from the mathematical point of view,
since 1960s. Hassanizadeh and Gray employ conservation laws for mass, momentum
and energy, and the second law of thermodynamics in order to develop constitutive
equations which describe two-phase flow in a porous medium (see [1], [2]). The
following combination of terms contributes to the entropy production Λ:

TΛ = . . .− φṠw(pg − pw − pc) + . . . ≥ 0.

For a linear theory, Hassanizadeh and Gray have suggested the relationship

pg − pw − pc(S) + τ(S)Ṡ = 0,

where pw, resp. pg, designate the water, resp. the gas, pressure.
Under equilibrium condition without dynamic effects in the capillary relation the

following definition of the capillary pressure can be used

pc = pg − pw, Sw = Sw(pc). (8)

In some particular cases, it is possible to use relation (8) even if the material system
demonstrates hysteresis. For instance, in slow processes with monotonically decreas-
ing (or increasing) saturation. Equation (8) is usually determined from experiments.
In the literature several approximations of the relationship (8) have been suggested.
In the present model the relationship

Sw(pc) = Sw
r + (Sw

s − Sw
r )

[
1 +

(
pc

pc
b

)n]−m

(9)

is employed. In (9) pc
b denotes the air entry value, also referred to as bubbling

pressure, which can be viewed as a characteristic pressure that has to be reached
before the air actually enters the pores; m and n are empirical constants to fit the
curves to experimental data.

A further step of this research is the influence of the dynamic or non-equilibrium
effects and hysteresis, e.g. Ṡ 6= 0, to hydro-thermal behavior of rapidly heated
concrete.

4. Numerical algorithm

The space discretization of the energy conservation equation (2) is carried out
by means of the finite element method (h = 0.001 m), we obtain the finite element
model in the form

C(T)Ṫ−K(T)T = f(T, ρgw, ρga). (10)
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Time discretization of (10) is accomplished through an implicit difference scheme
compared with T (∆t = 1 s)

[C(Tn+1) + ∆tK(Tn+1)]Tn+1 = C(Tn+1)Tn + f(Tn+1, ρgw(n), ρga(n)). (11)

The Newton-Raphson method is applied to the nonlinear system (11) in the following
iteration procedure: Let us denote

Φ(T
(l)
n+1) =

[
Cij(T

(l)
n+1) + ∆tKij(T

(l)
n+1)

]
Tn+1−Cij(T

(l)
n+1)Tn+fi(T

(l)
n+1, ρgw(n), ρga(n)),

then the solution at the end of the (l + 1)st iteration is then given by

T
(l+1)
n+1 = T

(l)
n+1 − J−1

Φ (T
(l)
n+1)Φ(T

(l)
n+1), (12)

where JΦ is the (three-diagonal) Jacobi matrix.
Now we modify the dry air conservation equation and the water species conser-

vation equation to the form

φ
∂

∂t
[(1− S)ρga] + (1− S)ρga

∂φhydr

∂t
+∇.(ρgavg) +∇.(ρgv

d
ga) = 0, (13)

φ
∂

∂t
[(1− S)ρgw] + (1− S)ρgw

∂φhydr

∂t
+∇.(ρgwvg) +∇.(ρgv

d
ga) =

−φ
∂

∂t
(Sρw)− Sρw

∂φhydr

∂t
−∇.(ρwvl)− ∂

∂t
(∆mhydr) (14)

with regard to Dalton’s law and Clapeyron equations of state of perfect gases ρg =
ρgw + ρga to the form

φ
∂

∂t
[(1− S)ρga]+(1−S)ρga

∂φhydr

∂t
+∇.(φ(1−S)ρgavg)+∇.(φ(1−S)ρgv

d
ga) = 0, (15)

φ
∂

∂t
[(1− S)ρg + Sρw] + [(1− S)ρg + Sρw]

∂φhydr

∂t
+

+∇.(φ [(1− S)ρg + Sρw]vg) +∇.(φSρw(vw − vg)) = − ∂

∂t
(∆mhydr). (16)

Now we introduce the substitution X = (1 − S)ρg + Sρw, Y = (1 − S)ρga to (15)
and (16)

φ
∂Y

∂t
+ Y

∂φhydr

∂t
+∇.(φYvg) +∇.(φ(1− S)ρgv

d
ga) = 0, (17)

φ
∂X

∂t
+ X

∂φhydr

∂t
+∇.(φXvg) +∇.(φSρw(vw − vg)) = − ∂

∂t
(∆mhydr). (18)

After discretization of the latter equaitons we get

Xj
i .

[
φj

i −∆t1
Ah

ρs

(T n
i − T n−1

i )

∆t
+ ∆t1

φj
i (vg)

j−1
i

h

]
=
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= φj
iX

j−1
i + ∆t1

Xj
i−1(vg)

j−1
i−1φj

i−1

h
−∆t1Ah

T n
i − T n−1

i

∆t
−

−∆t1
φj

iS
j−1
i (ρw)j

i (vw − vg)
j−1
i − φj

i−1S
j−1
i−1 (ρw)j

i−1(vw − vg)
j−1
i−1

h
, (19)

Y j
i .

[
φj

i −∆t1
Ah

ρs

(T n
i − T n−1

i )

∆t
+ ∆t1

φj
i (vg)

j−1
i

h

]
= φj

iY
j−1
i + ∆t1

Y j
i−1(vg)

j−1
i−1φj

i−1

h
+

+∆t1
φj

i (1− Sj−1
i )(ρg)

j
i (v

d
ga)

j−1
i − φj

i−1(1− Sj−1
i−1 )(ρg)

j
i−1(v

d
ga)

j−1
i−1

h
, (20)

where

Xj
i = (1− Sj

i )(ρg)
j
i + Sj

i (ρw)j
i ,

Y j
i = (1− Sj

i )(ρga)
j
i .

Since ρg = ρgw + ρga, then

Xj
i = (1− Sj

i )(ρgw)j
i + Sj

i (ρw)j
i + Y j

i . (21)

Let us denote F((ρgw)j
i ) = (1− Sj

i )(ρgw)j
i + Sj

i (ρw)j
i −Xj

i + Y j
i , where

[
S((pc)

j
i )

]j

i
=

[
1 +

(
(pc)

j
i

pc
b

)n]−m

,
[
pc((ρgw)j

i )
]j

i
= −(ρw)j

i

RT j
i

Mw

ln

[
T j

i R

(pgws)j
i

(ρgw)j
i

]
.

For given Xj
i , Y j

i from (19) and (20), we find a solution (ρgw)j
i of the nonlinear

equation (21) written in the form

F((ρgw)j
i ) = 0, (22)

with Newton’s iteration procedure; the solution at the rst iteration is given by

{
(ρgw)j

i

}r
=

{
(ρgw)j

i

}r−1 −
F ′

({
(ρgw)j

i

}r−1
)

F
({

(ρgw)j
i

}r−1
) , (23)

where

F ′
({

(ρgw)j
i

}r−1
)

= 1− S
(
pc

(
(ρgw)j

i

))
+

∂S

∂pc

.p′c
(
(ρgw)j

i

)
((ρw)j

i − (ρgw)j
i ),

∂S

∂pc

(pc) = −mn

pc
b

(
pc

pc
b

)n−1 [
1 +

(
pc

pc
b

)n]−m−1

, p′c (ρgw) = − TRρw

Mwρgw

.

From boundary conditions (4) and (5) we get

ρgw(vg + vd
gw − βc) + ρgav

d
gw = −ρwvl − βcρgw∞, (24)
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patm = pg = pga + pgw =
TR

Ma

ρga +
TR

Mw

ρgw, (25)

where ρgw(0) and ρga(0) are the solutions of (24) and (25) and finally

Xj
0 = (1− Sj

0)(ρgw(0) + ρga(0)) + Sj
0(ρw)j

0, (26)

Y j
0 = (1− Sj

0)ρga(0). (27)

Analogously, for the boundary conditions (6) and (7), we get

Xj
l = (1− Sj

l )(ρgw(l) + ρga(l)) + Sj
l (ρw)j

l , (28)

Y j
l = (1− Sj

l )ρga(l). (29)

5. Numerical results

Numerical algorithm was implemented in the model by coding in FORTRAN.
Following figures show developments of temperature, saturation and water vapour
pressure. An increase of temperature and capillary pressure and corresponding de-
crease of saturation are observed only in the confined layer in the range 50 mm from
the heated surface. The swift evaporation of water inside the wall implies the rapid
desaturation in the zone of increased vapour pressure. Analysis of these results al-
lows for better understanding of hygro-thermal behaviour of concrete elements near
the heated boundary.

6. Thermal spalling

In 1996 the fire with temperatures up to 700 ◦C occurred in the transport Tunnel
connecting England and France, as in the similar case in 1999 in St. Gotthard tunnel,

Fig. 1: Temperature distributions.
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Fig. 2: Saturation distributions.

Fig. 3: Vapour pressure distributions.

the fire destroyed the concrete structure by thermal spalling over a length of a few
hundred meters.

An interesting phenomenon, very specific for heated concrete, is the so-called
thermal spalling, which can sometimes be explosive. Its physical causes are still not
fully understood. Two main phenomena are generally considered to explain this
transient thermal behavior of High Performance Concrete (see [4], [5], [6]):

• generation of internal vapor pressures, which exceed the local tensile strength
of the material,

• thermo-mechanical stresses associated with thermal gradients increased by the
local consumption of energy associated with vaporization and dehydration.
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Fig. 4: Thermal Spalling Hypothesis.
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