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NUMERICAL SIMULATION OF INTERACTION OF FLUIDS
AND SOLID BODIES∗

Lenka Dubcová, Miloslav Feistauer, Petr Sváček

1. Introduction

In this work we focus on the numerical simulation of an aeroelastic problem.
We consider two–dimensional viscous incompressible flow around an airfoil with two
degrees of freedom. It means that the airfoil can oscillate in the vertical direction
and rotate around an elastic axis.

The mathematical model of flow is represented by the Navier–Stokes equations
and the continuity equation. The initial condition and mixed boundary conditions
are added to this system. The numerical simulation consists of the finite element
solution of the Navier–Stokes equations coupled with the system of the ordinary
differential equations, which describes the airfoil motion.

Since the computational domain is time dependent and the grid is moving, we
use the Arbitrary-Lagrangian-Eulerian (ALE) formulation of the Navier–Stokes equa-
tions [7]. High Reynolds numbers (105–106) require the application of a turbulent
model.

2. Formulation of the problem

We assume that (0, T ) is a time interval and by Ωt we denote a computational
domain occupied by the fluid at time t. The boundary ∂Ωt consists of disjoint parts
ΓD, ΓO, ΓWt , where ΓD represents the inlet and inpermeable fixed walls, ΓO the outlet
and ΓWt is the boundary of the airfoil at time t. The fluid flow is characterised by
the velocity u = u(x, t) = (u1(x, t), u2(x, t)) and the kinematic pressure p = p(x, t).
By ρ we denote the fluid density. The ALE method is based on the ALE mapping
of the reference domain Ωref = Ω0 onto the current domain Ωt:

At : Ωref 7→ Ωt, X 7→ x(X, t) = At(X) . (1)

By w we denote the domain velocity: w = ∂
∂t

x(X, t). In the domain Ωt we consider
the Navier–Stokes system written in the following ALE form
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DA

Dt
u + [(u−w) · ∇] u +∇p− ν∆u = 0 in Ωt, (2)

div u = 0 in Ωt, (3)

equipped with the initial condition

u(x, 0) = u0, x ∈ Ω0, (4)

and the boundary conditions

a) u|ΓD
= uD, b) u|ΓWt

= ũΓ = w|ΓWt
, (5)

c)− (p− pref ) n + ν
∂u

∂n
= 0 on ΓO.

The vertical displacement H and rotation α of the airfoil are described by the
system [7]

mḦ + Sαα̈ cos α + kHHH + dHHḢ − Sαα̇2 sin α = −L(t),

SαḦ cos α + Iαα̈ + kααα + dααα̇ = M(t), (6)

where m denotes the mass of the airfoil, Sα, Iα are the static moment and the
inertia moment around the elastic axis, kHH , kαα denote the bending stiffness and
the torsional stiffness, dHH , dαα are the structural dampings. The aerodynamic lift
force L(t) and the aerodynamic torsional moment M(t) are define by the relations

L = −
∫

ΓWt

2∑

j=1

τ2jnjdS, M = −
∫

ΓWt

2∑

i,j=1

τijnjr
ort
i dS, (7)

τij = ρ

[
−pδij + ν

(
∂ui

∂xj

+
∂uj

∂xi

)]
, rort

1 = −(x2 − xEO2), rort
2 = x1 − xEO1.

These relations determine the interaction between the moving fluid and the airfoil.

3. Discrete problem

Time discretization. We consider a partition 0 = t0 < t1 < · · · < T, tk = kτ .
On each time level we approximate the solution u(tn) ≈ un and p(tn) ≈ pn and use
the second order two step scheme to approximate the ALE derivative. The unknown
functions un+1 : Ωtn+1 7→ IR2 and pn+1: Ωtn+1 7→ IR satisfy the system

3un+1 − 4ûn + ûn−1

2τ
+

(
(un+1 −wn+1) · ∇

)
un+1 +∇pn+1 − ν∆un+1 = 0,

div un+1 = 0, (8)
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and the boundary conditions (5). The function ûj denotes the velocity at time tj
transformed to the domain Ωtn+1 .

Space discretization. System (8) is discretized by the finite element metod,
based on the weak formulation of our problem: on each time level we want to find
the weak solution U = (u, p) = (un+1, pn+1) ∈ W ×Q, which satisfies

a(U,U, V ) = f(V ), for all V = (v, q) ∈ X ×Q, (9)

and u fulfills the boundary conditions (5), a)–b). Here

W = (H1(Ω))2, X = {v ∈ W ; v|ΓD∪ΓWt
= 0}, Q = L2(Ω), (10)

a(U∗, U, V ) =
3

2τ
(u,v)Ω + ν (∇u,∇v)Ω + (((u∗ −wn+1) · ∇)u, v)Ω

− (p,∇ · v)Ω + (∇ · u, q)Ω,

f(V ) =
1

2τ
(4ûn − ûn−1, v)Ω −

∫

ΓO

prefv · n dS,

U = (u, p), V = (v, q), U∗ = (u∗, p).

(The symbol (·, ·) denotes the L2(Ω)-scalar product.) In order to apply the finite el-
ement method, we approximate the spaces W,X, Q by finite dimensional subspaces
Wh, Xh, Qh, which are defined on a triangulation Th, and we want to find the ap-
proximate solution Uh = (uh, ph) ∈ Wh ×Qh such that

a(Uh, Uh, Vh) = f(Vh) ∀Vh ∈ Xh ×Qh, (11)

and uh satisfies an approximation of conditions (5), a)–b). In our computations we
use

Qh = {q ∈ Q ∩ C(Ω̄); q|K ∈ P 1(K),∀K ∈ Th},
Wh = {v ∈ W ∩ (C(Ω̄))2; v|K ∈ (P 2(K))2,∀K ∈ Th}, Xh = Wh ∩X.

The couple (Xh, Qh) satisfies the Babuška-Brezzi condition. Because the Reynolds
numbers are high, we use a suitable stabilization of the FEM. Here we apply the
approach proposed by Lube in [4]. (For more details, see [7].) The solution of the
nonlinear discrete problem is realized by the Oseen iterations.

4. Modelling of turbulence

The flow with a sufficiently small Reynolds number Re is laminar, but if Re
increases, the flow loses its stability and becomes turbulent. We apply the alge-
braic turbulent model [5], which is based on the Reynolds averaging leading to the
Reynolds averaged Navier-Stokes equations

div u = 0, (12)

∂ui

∂t
+ (u · ∇) ui +

∂p

∂xi

− ν∆ui −
2∑

j=1

∂Rji

∂xj

= 0, i = 1, 2, (13)
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for averaged quantities u, p + p′. The components Rji = −u′iu
′
j, i, j = 1, 2, of the

Reynolds stress tensor are expressed by Boussinesq’s hypothesis in the form

Rij = νT

(∂ui

∂xj

+
∂uj

∂xi

)
, (14)

(see, e.g. [3]). Here νT is called the turbulent viscosity. It depends on the coordinates,
velocity and other variables. To compute νT we use two algebraic models designed
by Baldwin-Lomax and Rostand [5].

System (12), (13) and (14) is again rewritten in the ALE form and discretized sim-
ilarly as in Section 3 with the only difference in the definition of the form a(U∗, U, V ).
The details are contained in [2].

5. Numerical results

5.1. Flow along a flat plate

In order to validate the proposed technique, we compare our numerical results of
the simulation of flow along a flat plate with the theory of turbulent flow [6], using
the Baldwin-Lomax model and the Rostand model. Let us define the function Y +

and u+

Y +(Y ) =
uτY

ν
, u+ =

U∞
uτ

,

where Y is the distance from the plate, U∞ is the far field velocity and uτ is the
wall-shear velocity.

Figure 1 (left) shows the comparison of the numerical results with theory. Fig-
ure 1 (right) shows the comparison of theoretical dependence of the friction coeffi-
cient Cf on the local Reynolds number Rex = U∞ x1/ν with our computations. The
agreement of the computation with theory is very good.
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Fig. 1: The function u+ in dependence on Y + (left); The friction coefficient (right).
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5.2. Flow along the airfoil NACA 0012

Now let us consider flow past the airfoil NACA 0012, which oscillates around the
elastic axis (25% of the length of the airfoil) with prescribed frequence f = 30 Hz
and total amplitude α∗ = 5◦. We compute the pressure coefficient

Cp =
P

1
2
ρU2∞

,

and evaluate Cpmean , the time mean value of Cp(t) and the so-called real and imaginary
components of the amplitudes C ′

p and C ′′
p from the relation

Cp(t) = Cpmean + C ′
p sin(ωt) + C ′′

p cos(ωt).

In Figures 2 and 3, there is the comparison of the numerical results with experi-
ments [1]. Although the algebraic model of turbulence is very simple, it gives good
results.

Finally, the coupled problem of flow induced airfoil vibrations is solved using the
finite element method for the flow problem, combined with the Runge-Kutta method
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Fig. 2: The mean value of Cp(t).
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Fig. 4: Flow induced airfoil vibrations for U∞ = 40m/s

for system (6) transformed to a first order system. In Figure 4, the displacement
H and rotation angle α are plotted in dependence on time for the far field velocity
U∞ = 40m/s. In this case the vibrations are not damped and we get the regime
called flutter.
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