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THE DISCONTINUOUS GALERKIN METHOD FOR LOW-MACH
FLOWS∗

Václav Kučera

1. Introduction

Our goal is to develop a numerical technique allowing the solution of compress-
ible flow with a wide range of the Mach number. This technique is based on the
discontinuous Galerkin finite element method (DGFEM), which employs piecewise
polynomial approximations without any requirement on the continuity on interfaces
between neighbouring elements. The DGFEM space semidiscretization is combined
with a semi-implicit time discretization (Section 2.) and a special treatment of bound-
ary conditions (Section 3.). In this way we obtain a numerical scheme requiring the
solution of only one linear system on each time level. This scheme is successfully
tested on flows with Mach numbers as low as 10−4. As for the transonic case it is
necessary to avoid the Gibbs phenomenon manifested by spurious overshoots and
undershoots in computed quantities near discontinuities and steep gradients. These
phenomena do not occur in low Mach number regimes, however in the transonic case
they cause instabilities in the semi-implicit solution. Here we present a possibility
how to treat this problem (Section 4.). Section 5. presents computational results for
small Mach numbers as well as transonic flow.

2. Discretization

We discretize the Euler equations in the conservative form:

∂w

∂t
+

2∑
s=1

∂f s(w)

∂xs

= 0 in Ω× (0, T ),

w = (ρ, ρv1, ρv2, e)
T ∈ IR4,

f i(w) = (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (e + p)vi)
T.

(1)

Let Th be a partition of Ω into a finite number of triangles with a numbering I.
Let Γij = ∂Ki ∩ ∂Kj be a common edge of two triangles. The DGFEM uses the
finite element space of discontinuous piecewise polynomial functions.

Sh = Sp,−1(Ω, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th}, (2)
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where Pp(K) is the space of all polynomials on K of degree ≤ p. In the current im-
plementation, P 0, P 1 and P 2 approximations are used along with 5th order Gaussian
quadrature rules on elements and edges.

We multiply (1) by a test function ϕ ∈ [Sh]
4 and integrate over Ki ∈ Th. With

the aid of Green’s theorem and summing over all i ∈ I, we obtain

d

dt

∑
Ki∈Th

∫

Ki

w ·ϕ dx =

=
∑

Ki∈Th

∫

Ki

2∑
s=1

f s(w) · ∂ϕ

∂xs

dx

︸ ︷︷ ︸
T1

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H(w|Γij
,w|Γji

,nij) ·ϕ dS

︸ ︷︷ ︸
T2

.
(3)

In the term T2, we have incorporated an approximation using a numerical flux H,
as known from the finite volume method. The approximate solution is defined as
wh ∈ [Sh]

4 such that (3) holds for all ϕh ∈ [Sh]
4.

Scheme (3) represents a system of ordinary differential equations, which we must
discretize with respect to time. Explicit time discretization is however undesirable
due to a CFL-like condition, which limits the time step proportionally to the Mach
number. A fully implicit scheme presents us with the task of solving a large non-
linear system on each time level. We therefore use the method presented in [4]. A
forward Euler method is used and the nonlinear terms in the scheme are linearized.
The resulting systems are solved using block-Jacobi preconditioned GMRES or the
UMFPACK direct solver.

The term T1 in (3) is linearized using homogeneity of the Euler fluxes:

T1 ≈
∑
i∈I

∫

Ki

2∑
s=1

Df s(w
k
h)

Dw
wk+1

h · ∂ϕh

∂xs

dx. (4)

As for the term T2, the Vijayasundaram numerical flux is chosen, since it is
suitable for linearization. This numerical flux has the form

HV S(wL,wR,n) = P+

(
wL + wR

2
,n

)
wL + P−

(
wL + wR

2
,n

)
wR. (5)

3. Boundary conditions

The choice of appropriate boundary conditions is a delicate problem which plays
a key role in the presented algorithm. Boundary conditions are incorporated into
the DGFEM, as in the finite volume method, via the choice of H(wL,wR,n) or
wR = w|Γji

for boundary edges. In the case of impermeable walls, we prescribe the
no-stick condition v · n. The situation is much more problematic on the inlet and
outlet - standard boundary conditions reflect acoustic effects coming from the inside
of Ω. This behavior is nonphysical and the reflected interfering density and pressure
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waves corrupt the solution in the low-Mach number case. To cure this disease new
characteristic based boundary conditions are derived, which reflect the hyperbolic
character of the Euler equations and are transparent to acoustic phenomena. These
boundary conditions are a key ingredient in low-Mach calculations.

Using the rotational invariance and homogeneity we write the Euler equations in
the nonconservative form

∂q

∂t
+ A1(q)

∂q

∂x̃1

= 0, (6)

where q = Q(n)w and Q(n) is a standard 4 × 4 rotational matrix (see [1]). We
linearize this system around the state qi = Q(n)wi and obtain a linear system. The
goal is to choose the boundary state qj in such a way that this initial-boundary
problem is well posed, i.e. has a unique solution. This linearized system has a
solution which can be written explicitly using the method of characteristics. We
shall take some state q0

j = Q(n)w0
j . The state w0

j is the state vector of the far-field
flow. We calculate the eigenvectors rs, s = 1, . . . , 4 of the matrix A1(qi), arrange
them as columns in the matrix T and calculate T−1 (explicit formulae can be found
in [1]). We calculate

β = T−1qi, α = T−1q0
j . (7)

Now we calculate the state qj according to the presented process:

qj :=
4∑

s=1

γsrs = Tγ, γs =

{
αs, λs ≥ 0,

βs, λs < 0
(8)

and λs, s = 1, . . . , 4 are eigenvalues of A1(qi). Finally the sought boundary state
is wj = Q−1(n)qj. Since we have respected the hyperbolic character of the Euler
equations, these boundary conditions seem to give a natural choice for the boundary
state wj.

4. Shock capturing

Our approach is based on the discontinuity indicator g(i) proposed in [2] defined
by

g(i) =

∫

∂Ki

[ρk
h]

2 dS
/
(hKi

|Ki|3/4), Ki ∈ Th. (9)

We define a discrete shock indicator on the basis of (9):

G(i) =

{
0, g(i) < 1,

1, g(i) ≥ 1.
, Ki ∈ Th.

To the left-hand side of (3) we add the form β(wh,ϕh) defined by

β(w, ϕ) = C
∑
i∈I

hKi
G(i)

∫

Ki

∇w · ∇ϕ dx, (10)
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where C ≈ 1. This artificial term represents a discrete Laplacian with zero Neumann
boundary conditions on each element, thus forcing the solution to a piecewise con-
stant function. The stabilization form β is treated implicitly (with G(i) computed
from wk

h).
This form limits the order of accuracy on each element lying on a discontinuity.

However, it appears that on finely refined grids this is insufficient. Therefore, we
propose to augment the left-hand side of (3) by adding the form J(wh,ϕh) defined
as

J(w, ϕ) = ε
∑
i∈I

∑

j∈s(i)

1

2

(
G(i) + G(j)

) ∫

Γij

[w] · [ϕ] dS, (11)

where ε ≈ 1 and [u]|Γij
= uij − uji is the jump on Γij of a function u ∈ Sh. In this

way we penalize inter-element jumps in the vicinity of the shock wave. This form
can be treated implicitly, similarly as β(w, ϕ).

5. Numerical examples

In this section we present the solution of some test problems in order to demon-
strate the accuracy and robustness of the proposed method. In all examples quadratic
elements (r = 2) were used for obtaining steady state solutions for ”t → ∞”. The
number of time steps necessary to obtain the steady state solution in the following
test cases is approximately 100-200.

1) Irrotational flow past a symmetric Joukowski airfoil First we consider
flow past a symmetric Joukowski profile with zero angle of attack. Using the complex
function method from [3], we can obtain the exact solution of incompressible inviscid
irrotational flow for this test case. We assume that the far field Mach number of
compressible flow M∞ = 0.0001. Figure 1 shows a detail near the profile of the

Fig. 1: Velocity isolines for the approximate solution of compressible flow (left) and for
the exact solution of incompressible flow (right).
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velocity isolines for the approximate solution of compressible flow and for the exact
solution of incompressible flow, respectively. The mesh was formed by 4103 triangular
elements.

2) Irrotational flow past a nonsymmetric Joukowski airfoil The second
example deals with a similar problem to the preceding symmetric case.we present
flow past a nonsymmetric Joukowski profile with zero angle of attack. Again, using
the complex function method we can obtain the exact solution in the case of a non-
symmetric Joukowski profile. The far field Mach number of is again M∞ = 0.0001.
Figure 2 shows a detail near the profile of the velocity isolines for the approximate
solution of compressible flow and for the exact solution of incompressible flow, re-
spectively. Figure 3 shows a comparison of the velocity distribution along the profile
surface for the computed and exact solution. The mesh was formed by 5418 trian-
gular elements.

Fig. 2: Velocity isolines for the approximate solution of compressible flow (left) and for
the exact solution of incompressible flow (right).

Fig. 3: Velocity distribution along the profile surface. ◦◦◦ – exact solution of incompress-
ible flow, —– – approximate solution of compressible flow.
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3) Transonic flow The performance of shock capturing terms from Section 4. is
tested on the GAMM channel with a 10% circular bump and the inlet Mach number
equal to 0.67. In this case a conspicuous shock wave is developed. Figure 4 shows
Mach number isolines and entropy isolines computed by the presented scheme. One
can see that this scheme yields the entropy production on the shock wave only,
which is correct from the physical point of view. The stabilization parameters in
were chosen ν1 = ν2 = 0.2. The mesh was formed by 7753 triangular elements.

Fig. 4: GAMM channel transonic flow, Mach number (top) and entropy (bottom) isolines.
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