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SOLUTION OF TIME-DEPENDENT CONVECTION-DIFFUSION
EQUATIONS WITH THE AID OF HIGHER ORDER ADAPTIVE

METHODS WITH RESPECT TO SPACE AND TIME∗

Pavel Kůs, Vı́t Doleǰśı

1. Introduction

This work deals with the solution of a scalar nonlinear convection–diffusion equa-
tion which is a model problem for a numerical simulation of viscous compressible
flows. A semi-discretization with respect to the space coordinates, which is carried
out with the aid of the discontinuous Galerkin method, yields a system of ordinary
differential equations (ODE). Our aim is to develop and implement an efficient adap-
tive numerical scheme for the solution of this ODE system. We derive two stable
multi-step methods of the same order of accuracy and from a difference of both ap-
proximate solutions, we estimate a local discretization error with respect to the time.
Then we choose the time step in such a way, that local error is approximately equal
to a given tolerance. Several numerical simulations were carried out to demonstrate
the efficiency of the method.

2. Discontinuous Galerkin method

We consider the following unsteady nonlinear convection–diffusion problem: Find
u : QT → IR such that

∂u

∂t
+

d∑
s=1

∂fs(u)

∂xs

= ε ∆u + g in QT , (1)

u
∣∣
∂Ω×(0,T ) = uD, (2)

u(x, 0) = u0(x), x ∈ Ω. (3)

Similarly as in the finite element method, we introduce a weak solution u of the
problem

d

dt
(u(t), v) + b(u(t), v) + a(u(t), v) = (g(t), v) ∀v ∈ H1

0 (Ω), (4)
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where (·, ·) denotes the L2-scalar product, a(·, ·) is a linear form representing the
diffusive term and b(·, ·) is a nonlinear form representing the convective term. We
also consider appropriate representation of initial and boundary conditions. As in
the classical finite element method we use triangulation of domain Ω and a piecewise
polynomial discontinuous approximation. More general, even non-convex elements
with the hanging nodes are allowed. The approximate solution is sought in a space of
piecewise polynomial but discontinuous functions Sh. In order to replace the inter-
element continuity, we add some stabilization terms into formulation of a discrete
problem. The convective term is approximated with the aid of a numerical flux,
known from the finite volume method. We receive the space semidiscretization

(
∂uh(t)

∂t
, ϕh

)
+ bh(uh(t), ϕh) + ah(uh(t), ϕh) = 0 ∀ϕh ∈ Sh, (5)

where ah(·, ·) and bh(·, ·) are the discrete variants of the forms a(·, ·) and b(·, ·),
respectively. For more details, see [1], [2]. The relation (5) represents a system of
ordinary differential equations, which must be solved by a suitable method.

3. BDF2 method

The system (5) is stiff, so we have to use an implicit method, such as backward
difference formulae (BDF). In contrast to [4] where a combination of explicit and
implicit schemes was employed we introduce two implicit schemes of the same order
of accuracy. Using this pair of methods, we obtain two solutions and from their
difference we estimate the local discretization error.

3.1. Derivation of the method

Now we shall briefly describe derivation of two n-step methods BDF2a and
BDF2b for solution of a system of ordinary differential equations with an unknown
function y : (0, T ) → IRm.

dy(t)

dt
= F (t, y), y(0) = y0 , (6)

where y0 ∈ IRm and F : (0, T ) × IRm → IRm. Let us denote by 0 = t0 < t1 <
t2 < · · · < tr = T the partition of the interval (0, T ), τk ≡ tk − tk−1, k = 1, . . . , r,
θk = τk/τk−1, k = 1, . . . , r. Moreover, let yk denote approximate value of solution
y(tk), k = 0, . . . , r.

First method is derived from the Taylor formula in tk. We express values of
solution in tk−1,. . . ,tk−n. When we neglect higher order terms, we obtain a sys-
tem of n equations with unknown approximate solutions yk,. . . ,yk−n and derivatives
y′(tk),. . . ,y(n)(tk). By eliminating higher order derivatives we obtain method BDF2a :

n∑
i=0

αiyn−i = τkFk (7)
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The second method can be derived similarly from the Taylor formula in tk−1

n∑
i=0

ᾱiȳn−i = τkFk−1. (8)

This method is explicit and therefore not suitable for the solution of stiff problems.
So we define the method BDF2b as a linear combination of schemes (7) and (8) by

n∑
i=0

α̂iŷn−i = γ̂0τkFk + γ̂1τkFk−1. (9)

3.2. Error estimation

From the Taylor formula we also get an estimation of the local discretization error
for the BDF2a and BDF2b methods in the form

ek ≡ y(tk)− yk ≈ f1(τk, . . . , τk−n+1)y
(n+1)(tk), (10)

êk ≡ y(tk)− ŷk ≈ f2(τk, . . . , τk−n+1)y
(n+1)(tk−1).

Now let us assume that yn+1(tk) ≈ yn+1(tk−1). From (10) we eliminate the term
yn+1(·) and after substituton we obtain a computable expression for the local dis-
cretization error depending on both approximate solutions only. Therefore we have

ek ≈ δ(yk − ŷk), (11)

êk ≈ δ̂(yk − ŷk). (12)

We can also combine our two solutions to obtain final solution of a higher order of
accuracy by

y̆k = δ̂yk − δŷk, (13)

whose order of convergence is equal to n + 1. In [3], we computed coefficients for
n = 1, 2, 3 and verified stability of the proposed methods.

4. Full space–time discretization

By a direct application of an implicit method to the semi-discrete problem (5),
we obtain a system of nonlinear algebraic equations at each time step, which is
expensive to solve. Therefore we use a semi–implicit approach, where the linear
terms are treated implicitly, whereas the nonlinear ones explicitly. For the nonlinear
terms we employ an explicit higher order extrapolation. Then we obtain the scheme

1

τk

(
n∑

l=0

αlu
k−l
h , vh

)
+ γ0ah(u

k
h, vh) + γ0bh

(
n∑

l=1

βlu
k−l
h , vh

)

+ γ1ah(u
k−1
h , vh) + γ1bh(u

k−1
h , vh) = 0 ∀ vh ∈ Sh . (14)
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5. Adaptive choice of time step

An important feature of modern numerical algorithms is the adaptivity, i.e., their
ability to estimate the local discretization error during execution and adapt a time
step in such a way, that the local discretization error is under a given tolerance.
Thus, at each time step, we estimate the local discretization error and on the basis
of this estimation we choose the next time step. In order to ensure an efficiency of
the method the local discretization error at each time step should be approximately
equal to the given tolerance TOL. Let us denote by EST the estimate of the local
error. Since the order of convergence of the method is equal to n + 1, we have

EST = Cτn+1
k . (15)

We want to find a time step τ̄k such that

TOL = Cτ̄n+1
k . (16)

Therefore we define the next time step by

τ̄k = τk
n+1

√
TOL

EST
. (17)

If EST is much larger than TOL, we reject the last time step and compute it again
using τ̄k instead of τk. Otherwise we accept the last time step and compute the next
one using τk+1 := τ̄k.

6. Numerical results

6.1. Orders of convergence

We investigate the experimental orders of convergence of the presented numerical
schemes. We carried out numerical experiments for an ordinary differential equation
having the exact solution in the form

y =
eαt − 1

eα − 1
(18)

on interval t ∈ [0, 1] with α = 500. The following table contains the computa-
tional errors for the one, two, and three-step BDF and the corresponding orders of
convergence.

n 10−2 10−3 10−4 10−5 order

1 1.53× 100 2.07× 10−2 2.08× 10−4 2.08× 10−6 1.96
2 1.04× 100 3.20× 10−3 3.45× 10−6 3.47× 10−9 2.84
3 8.06× 10−1 6.31× 10−4 7.65× 10−8 1.23× 10−11 3.64

We observe the order of convergence n+1 since we used a combination of two different
methods of order n. However, this procedure can not be used in case of the scalar
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convection-diffusion equation. Not only we do not obtain more accurate solution,
but combination of two solutions of order n is even worse. So we have to use one of
our two methods of order n.

Further we consider the scalar convection–diffusion equation (1) with the exact
solution

ū = x(1− x)y(1− y)
eαt − 1

eα − 1
(19)

on [0, 1]× [0, 1] and time interval t ∈ [0, 1]. The computational errors and the order
of convergence are shown in the following table.

10−1 5× 10−2 10−2 5× 10−3 order

n = 1 3.18× 10−1 1.48× 10−1 2.74× 10−2 1.34× 10−2 1.05
n = 2 1.14× 10−1 3.49× 10−2 1.42× 10−3 2.63× 10−4 2.02
n = 3 8.15× 10−2 1.05× 10−2 2.58× 10−4 9.31× 10−5 2.28

We observe, that the numerical order of convergence in this case is approximately n
and it corresponds to the expected one. However, for the case n = 3, the order is
2.28 only, which is caused by the fact that the solution depends on both time and
space discretization and its order of convergence is O(hp + τn). Hence, if τn is so
small that hp has nonnegligible influence then further increase of order of accuracy
in time has no effect.

6.2. Efficiency of the adaptive strategy

In this section we compare the efficiency of the methods using a constant and
adaptive time step. We compared how many time steps are needed to obtain solution
with prescribed accuracy.

6.2.1. Ordinary differential equations

First we carried out experiments for the ordinary differential equation with the
exact solution (18). The following table shows the numbers of time steps necessary
to obtain solution with errors 10−2 to 10−6.

10−2 10−3 10−4 10−5 10−6

n = 1 1375 4474 14365 45790 143641
constant n = 2 642 1425 3197 6972 15110

n = 3 410 855 1586 2879 5222

n = 1 34 81 241 965 2520
adaptive n = 2 26 36 65 145 266

n = 3 24 29 43 70 108

We observe that the adaptive method is more effective. The differential equation is
chosen in such a way, that the exact solution is almost constant in the major part of
the interval. However, at the end of the interval the solution grows very steeply. So
the major part of the interval can be done with few steps, which adaptive method
allows. The following figure shows the lengths of time steps with respect to the time.
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We observe that the time step is quite long at the beginning of the interval, while
at the end it is shortening rapidly.

6.2.2. Scalar convection–diffusion equations

Further we consider the scalar equation (1) with the exact solution in the form (19).
The numbers of iterations, which are needed to obtain solution with errors 10−1,
10−2 and 10−3, are in the following table, which verifies the efficiency of the adaptive
strategy.

10−1 10−2 10−3

n = 1 7 98 > 10000
constant n = 2 5 27 > 10000

n = 3 4 18 8973

n = 1 9 29 1335
adaptive n = 2 6 11 650

n = 3 5 9 321
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