
PANM 13

Jaroslav Mlýnek
The application of the thermal balance method for computation of warming in electric machines

In: Jan Chleboun and Karel Segeth and Tomáš Vejchodský (eds.): Programs and Algorithms of Numerical
Mathematics, Proceedings of Seminar. Prague, May 28-31, 2006. Institute of Mathematics AS CR, Prague, 2006.
pp. 196–201.

Persistent URL: http://dml.cz/dmlcz/702837

Terms of use:
© Institute of Mathematics AS CR, 2006

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702837
http://dml.cz


THE APPLICATION OF THE THERMAL BALANCE METHOD
FOR COMPUTATION OF WARMING IN ELECTRIC MACHINES∗

Jaroslav Mlýnek

Abstract
The paper describes the procedure of the thermal balance method implementation

for the computation of warming in electrical machines. Our effort will be focused on
the temperature distribution in transformer screening under a stationary load. Since
the three-dimensional problem is axially symmetric, it will be reduced by means of
the cylindrical coordinates to an elliptic partial differential equation of second order
with the Newton boundary conditions on a rectangular domain. Results of numerical
tests are presented as well.

1. Introduction

Heat energy is being accumulated in an electrical machine during its operation.
Thus, the temperature increase in its different parts depends on the accumulated
heat energy. The electrical machine operating temperature is an important feature of
a proper functioning and lifespan. The highest (and often also the lowest) operating
temperature is prescribed for most of machine components.

These requirements could be reached by limiting the ambient temperature, at
which the machine works in and by preventing machine parts warming over specified
allowable limits. One of the most effective approaches for solving these problems is
the description of spreading heat in electrical machines by means of a mathematical
model, which is subsequently investigated. At present, mathematical models are of-
ten solved by using a variational formulation (see e.g. [3] and [4]). A one-dimensional
problem of heat conduction is solved in [5]. This contribution is focused on the com-
putation of warming of a transformer container screening at a stationary load by
means of the thermal balance method.

2. Problem definition

Transformer screening is considered in the form of a thin-wall cylinder and the tem-
perature field is supposed to be rotationally symmetric. Therefore, the warming
computation problem can be solved in screening cross section on a two-dimensional
closed domain Ω (R1 ≤ r ≤ R2, Z1 ≤ z ≤ Z2, see Fig. 1).

The temperature field is described by the elliptic partial differential equation
of second order (see [3, p. 221])
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Fig. 1: Cross section of the transformer screening.

with the Newton boundary conditions

λr
∂ϑ(r, z)

∂r
+ αL,P (ϑ(r, z)− u(z)) = 0 (2)

on vertical parts of boundary of Ω and

λz
∂ϑ(r, z)

∂z
+ αH,D (ϑ(r, z)− u(z)) = 0 (3)

on horizontal parts for appropriate values of r and z. Real values λr and λz stand for
heat conductivities of the material in the r-axis and z-axis directions, respectively;
the true solution ϑ(r, z) denotes screening temperature rise with respect to the sur-
rounding oil temperature. The function u(z) in expressions (2) and (3) allows to
respect the variable temperature of oil in the vicinity of screening in the z-axis direc-
tion. It is given by the formula u(z) = Cz, where C is constant. In expression (1),
the function q(r, z) represents the volume density of losses, which is expressed by the
following relation:

q(r, z) = δ2(z)ρ(1 + αT ϑ(r, z)), (4)

where δ(z) denotes the density of eddy currents, ρ is the specific resistance of the ma-
terial used for screening, and αT is the factor for the dependence of a specific resis-
tance on temperature. In boundary conditions (2) and (3), the constants αL, αP ,
αH , and αD stand for the heat transfer coefficients on the left, right, upper, and
lower parts of the rectangular domain Ω, respectively.

3. Solving the problem by means of the thermal balance method

Equation (1) can be transformed to a self-adjoint form and after the substitution
of the function q(z) from expression (4), the basic equation will be obtained. It
describes warming in the cross section Ω of transformer screening:
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with boundary conditions (2) and (3).
In the domain Ω, a regular rectangular mesh will be constructed with increments

hr =
R2 −R1

m
and hz =

Z2 − Z1

n

in the r-axis and z-axis directions, respectively, where m and n denotes the number
of segments, to which the region is divided in the r-axis and z-axis directions, respec-
tively. Let us denote rk = R1 + khr, zs = Z1 + shz, and ϑk,s = ϑ(rk, zs) the warming
at the node [rk, zs], where k ∈ {0, 1, ..., m}, s ∈ {0, 1, ..., n}.

Let the point [rk, zs] be an internal node in the domain Ω (see Fig. 2). Then
equation (5) can be approximated at this node using the following balance of heat:
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hr = −rkδ
2(zs)ρ(1 + αT ϑk,s)hrhz. (6)

The left-hand side of equation (6) describes the approximate quantity of heat sup-
plied from or delivered to surrounding mesh nodes, the right-hand side expresses
approximate waste heat arising in the element that pertains to the node [rk, zs].

Fig. 2: The neighborhood of the point [rk, zs].

Fig. 2 shows four parts (I, II, III, and IV) of a square neighborhood of a node
[rk, zs]. Clearly, if the node lies on the boundary of Ω or at the corner then the
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neighborhood consists of two or one part, only. For the boundary nodes, boundary
conditions (2) or (3) will be used to determine the thermal balances. For instance, as
long as the neighborhood of the boundary point [rk, zs] consists of parts III and IV
only, we obtain by means of thermal balances the following equation:
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2
. (7)

Let us set h = max(hr, hz). Then we make the O(h2)-order error by approximat-
ing equation (5) in the internal node [rk, zs], since central differences are used. In
boundary nodes we make the O(h)-order error in the approximation (see [2, p. 277]),
because the difference

λzrk
ϑk,s+1 − ϑk,s

hz

,

for example, is substituted in equation (7) by the expression

−αHrk(ϑk,s − u(zs))

from relation (3). This low accuracy is quite sufficient in our case, since all physical
constants suffer from large uncertainties. By equations of type (6) and (7) in all
mesh points, we obtain a system of linear algebraic equations with a band symmetric
and positive definite matrix (for practically used values of physical quantities from
equations (1), (2), and (3)). The Choleski decomposition algorithm (see [1]) was
used to solve the associated system.

4. One-dimensional problem of heat conduction

For a one-dimensional heat conduction, an analytical solution can be determined
and compared with an approximate solution obtained by means of the thermal bal-
ance method. Let us examine the case, when a one-dimensional heat conduction is
considered in the r-axis direction. The heat transfer coefficient is nonzero only on
the vertical part of the boundary of Ω (i.e. αL = 0, αP 6= 0), the current density δ
is constant, and αT = 0. Then, equation (1) attains a simple form:
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where q = δ2ρ.
For the solution ϑ of problem (8) in the interior point r we have:
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The temperature at boundary nodes is given by:

ϑR1 = X
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where
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The proof of relations (9)–(11) is based on the transformation of equation (8) to
the form

∂

∂r

(
r
∂ϑ

∂r

)
= −qr

λr

,

repeatedly using the integration with respect to r and applying the conditions αP 6= 0
and αL = 0.

Table 1 lists approximate values of temperature rise computed numerically by
means of the thermal balance method and the values obtained through analytical
formulae (9)–(11) for the following input values: q = 105 W/m3, R1 = 1m, R2 =
1.1m, αP = 50 W/m2K, αL = αH = αD = 0, and λr = 1 W/mK.

hr[m] ϑR1 [K] ϑr[K] ϑR[K]
R1 = 1[m] r = 1.05[m] R2 = 1.1[m]

approx. exact approx. exact approx. exact
0.05 673.33

675.37
551.37

552.41
190.91

190.880.025 674.88 552.15 190.91
0.0167 675.17 552.29 190.91

Tab. 1: One-dimensional heat transfer, the comparison of the exact and approximate
values of warming.

5. Numerical example

By means of the above mentioned thermal balance method, the real-live problem
was solved that involved finding the warming in aluminium transformer screening
with the following input parameters: R1 = 0.86m, R2 = 0.868m, Z1 = 0.8864m,
Z2 = 2.51m, λr = λz = 220W/mK, ρ = 0.3 × 10−7Ωm, αL = αP = αH =
αD = 50W/m2K, αT = 0.00409K−1, C = 10K/m (C is the costant appearing
in the definition of the function u(z) in expressions (2) and (3) in Section 2). The
domain Ω is divided into 2 segments (hr = 0.4 × 10−2 m) in the r-axis direction
and subsequently to 16, 32 and 64 segments (hz = 0.10148m, hz = 0.050738m,
hz = 0.025369m) in the z-axis direction. The current density δ(z) is given by means
of 19 values between 0.2498× 105 Am−2 and 0.3508× 107 Am−2, the current density
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R1 = 0.86 r = 0.864 R2 = 0.868
[m] [m] [m]

Z2 = 2.51 [m]
hz = 0.101480 [m] 35.790 35.795 35.790
hz = 0.050738 [m] 30.908 30.911 30.908
hz = 0.025369 [m] 29.444 29.446 29.444

z = 1.6982 [m]
hz = 0.101480 [m] 19.481 19.482 19.481
hz = 0.050738 [m] 19.467 19.468 19.467
hz = 0.025369 [m] 19.466 19.467 19.466

Z1 = 0.8864 [m]
hz = 0.101480 [m] 12.607 12.609 12.607
hz = 0.050738 [m] 12.764 12.765 12.764
hz = 0.025369 [m] 12.809 12.811 12.809

Tab. 2: The screening temperature rise (in K) for selected nodes at hr = 0.004 [m].

at the other node points is computed by means of linear interpolation. Table 2 lists
approximate values of temperature rise ϑk,s (at chosen nodes) computed numerically
using the thermal balance method.

6. Conclusion

The problem (1)–(3) for specific values of transformer screening was solved by
means of the above mentioned thermal balance method. The described method
of solving is relatively simple, but still allows to obtain an approximate solution,
which is sufficiently exact in technical practice. In numerical calculations of warming
in transformer screening, the domain Ω was divided only to 2 segments in the r-
axis direction (in view of the thin-wall cylindrical area of screening). The value
of the increment hz = 0.05m in the z-axis direction was sufficient. The described
procedure can be used for the examination of transformer parts at various load levels
during the development of transformer designs.
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