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NUMERICAL INTEGRATION IN THE DISCONTINUOUS
GALERKIN METHOD FOR ELLIPTIC PROBLEMS∗

Aleš Prachař, Karel Najzar

1. Introduction

The use of numerical integration is considered as one of variational crimes often
committed in practical applications of the finite element method. In the theoretical
study of the Discontinuous Galerkin method exact integration is almost exclusively
considered. We refer to one of exceptions, [5], where the effect of numerical in-
tegration applied to the evaluation of nonlinear convective terms is studied while
the diffusion term is set in such a way that application of appropriate quadrature
formulae yields exact integration.

The aim of this paper is to study various aspects of the use of numerical integra-
tion for the evaluation of integrals appearing in Discontinuous Galerkin formulations
of a linear elliptic (diffusion) problem. Our aim is to obtain sufficient conditions
on quadrature formulae which ensure that there exists a unique solution of the cor-
responding discrete problem. Moreover, we shall study how the use of numerical
integration impacts error estimates.

Let us consider simple model problem

−∇ · (A(x)∇u) = f in Ω, (1)

u = gD on ΓD, (2)

(A(x)∇u) · n = gN on ΓN . (3)

We assume that Ω ⊂ R2 is a bounded polygonal domain with a Lipschitz-continuous
boundary ∂Ω divided into two disjoint parts ΓD and ΓN such that ∂Ω = ΓD ∪ ΓN ,
where meas1(ΓD) 6= 0.

We assume that functions f , gD and gN are sufficiently regular. Further, let there
exists a constant K > 0 such that the matrix A ∈ [W 1,∞(Ω)]2×2 satisfies

ξT A(x)ξ ≥ K ξT · ξ ∀ ξ ∈ R2, a. e. on Ω. (4)

∗The research of A. Prachař was a part of the research project MSM 0001066902 financed by the
Ministry of Education of the Czech Republic. The research of K. Najzar was a part of the research
project MSM 0021620839 financed by the Ministry of Education of the Czech Republic and was
partly supported by the project No. 201/04/1503 of the Grant Agency of the Czech Republic.
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2. Discontinuous Galerkin formulation

Let Th be a conforming triangulation of Ω. We shall denote individual triangles
of Th by T and put hT = diam(T ). For the theoretical study it is convenient to
consider that a family of triangulations {Th}h>0 of a domain Ω is regular, see [4].

Let Eh stand for the set of all edges of Th. These edges represent the interfaces
between pairs of adjacent elements, or sides of triangles lying on the boundary of the
domain Ω. Let us distinguish sets of internal edges (EI

h), Dirichlet edges (ED
h ) and

Neumann edges (EN
h ). The length of the edge S ∈ Eh will be denoted by |S|.

Let us define the space Vh = {v ∈ L2(Ω) ; v|T ∈ Pp(T ) ∀T ∈ Th} , where Pp(T )
is the space of polynomials of degree at most p ≥ 1 on T .

For S ∈ EI
h let us denote by T1 and T2 the two triangles sharing the edge S. Then

we define the average on the side S by {u} = 1
2
((u|T1)|S + (u|T2)|S) and {u} = u|S

for S ∈ ED
h . The jump on S ∈ EI

h is defined by [[u]] = (u|T1)|S − (u|T2)|S and again
[[u]] = u|S for S ∈ ED

h . Orientation of the vector n is in accord with the orientation
of the jump.

For the Discontinuous Galerkin formulation let us introduce bilinear forms
a+, a− : Vh × Vh → R,

a±(u, v) =
∑
T∈Th

∫

T

(A∇u) · ∇v dx−
∑

S∈EI
h∪ED

h

∫

S

{A∇u} · n[[v]] ds

±
∑

S∈EI
h∪ED

h

∫

S

{A∇v} · n[[u]] ds +
∑

S∈EI
h∪ED

h

σS

|S|
∫

S

[[u]][[v]] ds (5)

and linear functionals L+, L− : Vh → R by

L±(v) =

∫

Ω

fv dx +
∑

S∈EN
h

∫

S

gNv ds +
∑

S∈ED
h

∫

S

gD

[
σS

|S|v ± (A∇v) · n
]

ds, (6)

where σS ∈ R, S ∈ EI
h∪ED

h , is a chosen penalty parameter. The bilinear form a+(·, ·)
introduces the Nonsymmetric Interior Penalty Galerkin (NIPG) variant (cf. [8])
while the bilinear form a−(·, ·) is symmetric for symmetric matrix A. Therefore,
we shall speak of the Symmetric Interior Penalty Galerkin (SIPG) variant (cf. [1]).
Our discrete Discontinuous Galerkin formulation then becomes:

find uh ∈ Vh such that a±(uh, v) = L±(v) ∀v ∈ Vh. (7)

It is well-known that there exists a unique solution of (7) if certain properties
of penalty parameters are satisfied, see, e. g., [2]. Moreover, if the weak solution u
of (1)–(3) satisfies u ∈ Hp+1(Ω), we are able to show that

|||u−uh|||2 :=
∑
T∈Th

|u−uh|21,2,T +
∑

S∈EI
h∪ED

h

1

|S|‖[[u−uh]]‖2
0,2,T ≤ C

∑
T∈Th

h2p
T |u|2p+1,2,T (8)

with the constant C > 0 independent of u and h.
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3. Problem with numerical integration

The core of this paper is to explain what happens if all the terms in (5) and (6) are
evaluated with the aid of appropriately chosen quadrature formulae. For ϕ ∈ C0(T ),
T ∈ Th and ψ ∈ C0(S), S ∈ Eh, we use approximations

∫

T

ϕ(x) dx ≈
nT∑
α=1

ωT
αϕ(xT

α),

∫

S

ψ ds ≈
nS∑

α=1

νS
αψ(xS

α), (9)

where ωT
α , νS

α > 0 are integration weights and xT
α ∈ T, xS

α ∈ S are integration points.
Let us denote by a±h (·, ·) the result of application of numerical integration to the
bilinear form a±(·, ·) and similarly for the right-hand side. Related problem

find ũh ∈ Vh such that a±h (ũh, v) = L±h (v) ∀v ∈ Vh (10)

makes sense assuming that all the integrands have their point values well-defined
which requires higher regularity of data. The most important step in the verification
of assumptions of the Lax–Milgram lemma is the proof of uniform Vh-ellipticity.

Lemma 1 Let the quadrature formula for the integration of the first term of (5) be
exact for polynomials from P2p−2(T ) and/or let the set of quadrature points {xT

α}nT
α=1

contain a Pp−1(T )-unisolvent subset. Let us assume that the quadrature formula
for the penalty term is exact for polynomials of degree ≤ 2p and/or let the set of
quadrature points {xS

α}nS
α=1 contain a Pp(S)-unisolvent subset. If penalty parameters

σS are sufficiently large, there exists a constant ĉ > 0 independent of h such that

ĉ|||v|||2 ≤ a±h (v, v) for all v ∈ Vh.

Proof: According to Theorem 4.1.2 in [4] there exists a constant c1 > 0 such that

K|v|21,2,T ≤ Kc1

∑nT

α=1
ωT

α

∑2

i=1
|∂iv(xT

α)|2 ≤ c1

∑nT

α=1
ωT

α

∑2

i,j=1
(aij∂jv∂iv)(xT

α).

Similar technique is used to show that if the set of quadrature points {xS
α}nS

α=1 contains
a Pp(Ŝ)-unisolvent subset then ‖[[v]]‖2

0,2,S ≤ c2

∑nS

α=1 νS
α [[v(xS

α)]]2 with some c2 > 0.
For the NIPG variant the proof is finished, because other terms disappear if the
same quadrature formula is used for their evaluation. The requirement σS > 0 is
necessary. In the case of the SIPG formulation we take into account the inequality

∑nS

α=1
νS

α [{A∇v} · n[[v]]](xS
α) ≤ c3|S|−1/2‖[[v]]‖0,2,S

∑
T :S⊂∂T

|v|1,2,T ,

where c3 > 0 depends on p, shape regularity, properties of weights of quadrature
formulae and properties of the matrix A. By the Young’s inequality we find that

a−h (v, v) ≥
∑
T∈Th

K

(
1

c1

− 1

δ

)
|v|21,2,T +

∑

S∈EI
h∪ED

h

1

|S|‖[[v]]‖2
0,2,S

(
σS

c2

− 6δc2
3

K

)
.

For δ > c1 and σS > 6δc2c
2
3/K round brackets are positive. ¤
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Since a±h (·, ·) is a continuous bilinear form and L±h (·) is a continuous linear func-
tional on the space Vh we find by the Lax–Milgram lemma that:

Theorem 2 There exists a unique solution of discrete problem (10).

4. Errors of quadrature formulae

The next step is to express the error induced by the use of numerical integration.
We shall denote ET and ES error functionals of numerical integration in a similar
way as in [4, 5], i. e., ET (ϕ) =

∫
T

ϕdx−∑nT

α=1 ωT
αϕ(xT

α), etc.

Lemma 3 Let u, v ∈ Pp(T ), a ∈ W l+1,∞(T ) and S ⊂ ∂T . Let the quadrature
formula on the triangle be exact for polynomials of degree ≤ p + l − 2 and let the
(edge) quadrature formula be exact for polynomials of degree ≤ p+ l−1. Then there
exists a constant C > 0 independent of h such that

|ET (a∂ju∂iv)| ≤ Chl
T‖a‖l,∞,T‖∂ju‖p−1,2,T‖∂iv‖0,2,T , 1 ≤ i, j ≤ 2, (11)∣∣∣ES(a∂juv)

∣∣∣ ≤ Chl
T‖a‖l,∞,S‖∂ju‖p−1,2,T |S|−1/2‖v‖0,2,S, 1 ≤ i, j ≤ 2, (12)

|ES(a∂jvu)| ≤ Chl
T‖a‖l+1,∞,T‖∂jv‖0,2,T‖u‖p,2,T , 1 ≤ i, j ≤ 2. (13)

Proof: Estimate (11) follows as in [4]. Other two terms are also estimated with
the aid of suitable transformation to the reference edge, the Bramble-Hilbert lemma
(cf. [4]) and also the estimate

|v|j,r,S ≤ c|S|1/r|T |−1/s|v|j,s,T , 1 ≤ r, s ≤ +∞ (14)

for all v ∈ Pp(T ), S ⊂ ∂T and j ≤ p, see proof of Lemma 1 in [7]. ¤
Let us now move our attention to the error arising from the integration of terms

on the right-hand side. Let us focus on boundary conditions.

Lemma 4 Let gN ∈ Hp+1(ΓN) and gD ∈ Hp+1(ΓD). Let the (edge) quadrature
formula be exact for polynomials of degree ≤ 2p. Then there exists a constant C > 0
such that

|ES(gNv)| ≤ C|S|p+1/2|gN |p+1,2,S‖v‖0,2,T ,
σS

|S| |ES(gDv)| ≤ CσS|S|p+1/2|gD|p+1,2,S|S|−1/2‖[[v]]‖0,2,S.

If the (edge) quadrature formula is exact for polynomials of degree ≤ 2p − 1 and
A ∈ [W p+1,∞(S)]2×2 then

|ES((A∇v) · ngD)| ≤ C‖A‖p+1,∞,S|S|p+1/2‖gD‖p+1,2,S|v|1,2,T .

Proof: It is based on results from [5]. ¤
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5. Error estimate for the problem with numerical integration

In order to estimate the impact of the use of numerical integration, let us state
the main idea of the first Strang lemma ([4], Theorem 4.1.1) which says that

ĉ|||ũh − vh|||2 ≤ a±(u− vh, ũh − vh) + {a±(vh, ũh − vh)− a±h (vh, ũh − vh)}
+ {L±h (ũh − vh)− L±(ũh − vh)}, (15)

where ũh is defined by (10), vh is arbitrary element of the space Vh and u is the
weak solution of (1)–(3) and ĉ comes from Lemma 1. Our aim is to estimate two
consistency errors arising as the result of the numerical integration.

Theorem 5 If the quadrature formula on triangles is exact for polynomials of degree
≤ 2p−2, the (edge) integration formula for the second and third term in (5) is exact
for polynomials of degree ≤ 2p − 1 and if the penalty term is integrated exactly,
there exists a constant C > 0 independent of h such that

|a±(vh, ũh − vh)− a±h (vh, ũh − vh)| ≤ C‖A‖p+1,∞,Ω

( ∑
T∈Th

h2p
T ‖vh‖2

p,2,T

)1/2

|||ũh − vh|||,

where ũh, vh ∈ Vh.

Proof: Follows from estimates presented in Lemma 3. ¤

Theorem 6 Let the quadrature formula on triangles be exact for polynomials of
degree ≤ 2p − 2 and let f ∈ W p,r(Ω) with r ≥ 2. Let assumptions of Lemma 4 be
satisfied. There exists a constant C > 0 independent of h such that

|Lh(ũh − vh)− L(ũh − vh)| ≤ Chp‖f‖p,r,Ω|||ũh − vh|||+ Chp+1/2
(
|gN |p+1,2,ΓN

+|gD|p+1,2,ΓD
+ ‖A‖p+1,∞,Ω‖gD‖p+1,2,ΓD

)
|||ũh − vh|||,

for ũh, vh ∈ Vh.

Proof: Is a consequence of Lemma 4, Theorem 4.1.5 in [4] and the Broken Poincaré
inequality, see [3]. We also use |S| ≤ h = maxT∈Th

hT . ¤

Since other terms can be estimated with the aid of the interpolation theory we
are ready to write the main theorem.

Theorem 7 Let all the assumptions of Theorem 5 and Theorem 6 be satisfied and
let the approximate bilinear form a±(·, ·) be uniformly Vh-elliptic. Then there exists
a constant C > 0 independent of h such that

|||u− ũh||| ≤ Chp(|u|p+1,2,Ω + ‖A‖p+1,∞,Ω‖u‖p+1,2,Ω + ‖f‖p,r,Ω)

+Chp+1/2
(
|gN |p+1,2,ΓN

+ |gD|p+1,2,ΓD
+ ‖A‖p+1,∞,Ω‖gD‖p+1,2,ΓD

)
,

where ũh is defined in (10) and u ∈ Hp+1(Ω) is the weak solution of (1)–(3).
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6. Conclusion

In this paper the effect of numerical integration in the Discontinuous Galerkin for-
mulations for linear elliptic problem was studied. Sufficient conditions which ensure
that the discrete problem is uniquely solvable were found. Moreover, if quadrature
formulae of a certain precision are used then the order of accuracy (compared with
the case without numerical integration) is not decreased.

If we compare these results with the conforming finite element method (see,
e. g., [4]), we find that higher regularity of the matrix A is needed for the proof of error
estimate. Theorem 5 has again a simple interpretation: The order of convergence is
not decreased if the integration formulae yield exact integration of the bilinear form
in the case that A is a constant matrix (cf. Remark 4.1.8 in [4]).

Let us also note that numerical results (not reported here) illustrate reasonable
degree of agreement with presented theoretical results.
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[6] A. Prachař: On discontinuous Galerkin method and semiregular family of tri-
angulations. Appl. Math. 51, 2006, 605–618.
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