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ON SOME A POSTERIORI ERROR ESTIMATION RESULTS
FOR THE METHOD OF LINES∗

Karel Segeth, Pavel Šoĺın

Abstract

The paper is an attempt to present an (incomplete) historical survey of some basic
results of residual type estimation procedures from the beginning of their development
through contemporary results to future prospects. Recently we witness a rapidly
increasing use of the hp-FEM which is due to the well-established theory. However,
the conventional a posteriori error estimates (in the form of a single number per
element) are not enough here, more complex estimates are needed, and this can be
the way to obtain them.

1. Introduction

In the 1990’s, the subject of a posteriori error estimation with the finite element
method and adaptive solution procedures started its very rapid development. Many
results for the solution of linear and nonlinear elliptic partial differential equations
were reached and first results for the solution of nonlinear parabolic partial differen-
tial equations were published. A pioneering paper in this field was [2].

We present some basic results from this time period and continue to contempo-
rary results and future prospects of this approach. A rich contemporary source of
knowledge is the book [3].

Recently, we witness a rapidly increasing use of the hp-FEM. We are concerned
with this subject in the conclusion of this paper. We also refer to some published
numerical results and their accuracy.

We introduce a nonlinear parabolic model problem and its finite element solution
in Sections 2 and 3 while in Section 4 we are concerned with a posteriori error
estimation. We quote some adaptive grid refinement procedures and speak about
further prospects in Section 5.

We apologize to all colleagues whose names and contributions to the subject were
not, for the lack of space, mentioned in this paper.

2. Model problem

We introduce a nonlinear parabolic model problem. For the sake of brevity,
we consider only one equation with a scalar solution u and a single 1D space vari-
able x. All the results can be generalized to a system of parabolic equations and
a d-dimensional space variable.

∗This work was supported by Grant 201/04/1503 of the Czech Science Foundation and by
Institutional Research Plan AV0Z10190503 of the Academy of Sciences of the Czech Republic.
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Let us consider the problem

∂u

∂t
(x, t)− ∂

∂x

(
a(u)

∂u

∂x
(x, t)

)
+ f(u) = 0 for 0 < x < 1, 0 < t ≤ T (1)

with the boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T, (2)

and the initial condition

u(x, 0) = u0(x), 0 < x < 1, (3)

where u0 is a given function.
Let us assume

0 < µ ≤ a(s) ≤ M, s ∈ R,

|a(r)− a(s)| ≤ L|r − s|,
|f(r)− f(s)| ≤ L|r − s|, r, s ∈ R,

where µ, M , and L are positive constants. We need some more assumptions for some
of the proofs, see [9].

In the standard way we introduce the weak solution u(x, t) ∈ H1([0, T ], H1
0 (0, 1))

of the model problem by the identity

(∂u

∂t
, v

)
+

(
a(u)

∂u

∂x
,
∂v

∂x

)
+ (f(u), v) = 0 (4)

to be satisfied for t ∈ (0, T ] by all test functions v ∈ H1
0 (0, 1) and the identity

(
a(u0)

∂u

∂x
,
∂v

∂x

)
=

(
a(u0)

∂u0

∂x
,
∂v

∂x

)
(5)

to be satisfied for t = 0 also by all test functions v ∈ H1
0 (0, 1). This latter identity

corresponds to the initial condition. Some other weak formulations of the initial
condition are also possible. We use the symbol (·, ·) for the usual L2(0, 1) inner
product and ‖ · ‖1 for the H1(0, 1) norm.

3. Semidiscrete approximate solution

To define the finite element solution of the problem (1) to (3), we start with the
space discretization (semidiscretization). We choose a partition

0 = x0 < x1 < · · · < xN−1 < xN = 1 (6)

of the space interval [0, 1] and further put

hj = xj − xj−1, j = 1, . . . , N, and h = max
j=1,...,N

hj.

230



We use the notation

(v, w)j =

∫ xj

xj−1

v(x)w(x) dx

for the inner product restricted to the interval [xj−1, xj], and similarly ‖v‖j and ‖v‖1,j

for the restricted L2(0, 1) and H1(0, 1) norms.
On the partition (6), we construct a finite dimensional subspace

SN,p
0 =

{
V | V ∈ H1

0 (0, 1), V (x) =
N−1∑
j=1

Vj1ϕj1(x) +
N∑

j=1

p∑

k=2

Vjkϕjk(x)
}

of the space H1
0 (0, 1).

The functions ϕjk are chosen to form a hierarchic basis. For k = 1, we put

ϕj1(x) = (x− xj−1)/hj, xj−1 ≤ x < xj,

= (xj+1 − x)/hj+1, xj ≤ x ≤ xj+1,

= 0 otherwise.

These functions are the well known hat or chapeau functions. For k > 1, we further
put

ϕjk(x) =

√
2(2k − 1)

hj

∫ x

xj−1

Pk−1(y) dy, xj−1 ≤ x ≤ xj,

= 0 otherwise,

where Pk is a Legendre polynomial transformed from [−1, 1] to [xj−1, xj]. These func-
tions (primitive functions to Legendre polynomials) are called the Lobatto polynomi-
als or bubble functions. The idea of hierarchic basis functions was first introduced in
the book [11].

The principal idea of the method of lines is the space semidiscretization while the
time variable remains continuous. We look for the semidiscrete approximate solution
Ū(x, t) ∈ H1([0, T ], SN,p

0 ) in the form

Ū(x, t) =
N−1∑
j=1

Ūj1(t)ϕj1(x) +
N∑

j=1

p∑

k=2

Ūjk(t)ϕjk(x).

We require that the identities

(∂Ū

∂t
, V

)
+

(
a(Ū)

∂Ū

∂x
,
∂V

∂x

)
+ (f(Ū), V ) = 0, t ∈ (0, T ], V ∈ SN,p

0 , (7)

(
a(u0)

∂Ū

∂x
,
∂V

∂x

)
=

(
a(u0)

∂u0

∂x
,
∂V

∂x

)
, t = 0, V ∈ SN,p

0 , (8)
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that correspond to the identities (4), (5), be satisfied. The basis functions as well
as test functions are thus chosen from the same space SN,p

0 . Note that after sub-
stituting ϕil for the test functions V (x) in (7), we obtain an initial value problem
for a system of ordinary differential equations with the initial condition (8). Other
initial conditions can be employed, too.

The ordinary differential system (7) with the initial condition (8) for the unknown
coefficients Ūjk(t) is then solved by standard numerical software.

4. Analysis of residual a posteriori semidiscrete error indicators

Let us denote the error of the semidiscrete solution Ū(x, t) by

e(x, t) = u(x, t)− Ū(x, t).

We introduce the finite dimensional space

ŜN,p+1
0 =

{
V̂ | V̂ ∈ H1

0 (0, 1), V̂ (x) =
N∑

j=1

V̂jϕj,p+1(x)
}

and approximation of the error

Ē(x, t) =
N∑

j=1

Ēj(t)ϕj,p+1(x).

Note that we look for approximation of the error in the finite element space of
piecewise polynomials of the degree p + 1.

Some results on the semidiscrete error for the case of linear parabolic equations
and systems were given in [1], [7].

Some time later, they were generalized to the nonlinear case. If we subtract the
identities (7), (8) that define the semidiscrete solution Ū from the identities (4), (5)
that define the weak solution u we obtain for Ē(x, t) ∈ H1([0, T ], ŜN,p+1

0 ) the initial
value problem for the system of ordinary differential equations

(∂Ē

∂t
, V̂

)
j
+

(
a(Ū + Ē)

∂Ē

∂x
,
∂V̂

∂x

)
j

(9)

= −(f(Ū + Ē), V̂ )j −
(∂Ū

∂t
, V̂

)
j
−

(
a(Ū + Ē)

∂Ū

∂x
,
∂V̂

∂x

)
j
, t ∈ (0, T ], V̂ ∈ ŜN,p+1

0 ,

with the initial condition

(
a(u0)

∂Ē

∂x
,
∂V̂

∂x

)
j
=

(
a(u0)

∂(u0 − Ū)

∂x
,
∂V̂

∂x

)
j
, t = 0, V̂ ∈ ŜN,p+1

0 . (10)

The quantity Ē defined by (9), (10) is called the nonlinear parabolic error indicator.
Note that (9), (10) is a nonlinear problem for the unknowns Ēj(t). For the practical
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computation, these equations can be added to the system (7), (8) for finding the
semidiscrete solution Ūjk(t). Further, note that the equations of the system (9) are
uncoupled.

There are some simplifications that allow for more efficient computation while,
asymptotically, the error indicator is of the same quality. The linear parabolic error
indicator, and nonlinear and linear elliptic error indicator are defined in an analogous
way. The detailed description can be found in, e.g., [5] or [9]. The following theorem
is proven in [9] for the nonlinear parabolic error indicator.

Theorem. Let the weak solution u(x, t) given by (4), (5) be smooth, let Ū(x, t)
and Ē be given by (7), (8) and (9), (10), respectively. Let ‖e‖1 ≥ Chp. Then

lim
h→0

‖Ē‖1

‖e‖1

= 1.

The quantity ‖Ē‖1/‖e‖1 is called the effectivity index. For the linear parabolic
as well as linear elliptic error indicator (but not for the nonlinear elliptic one), this
theorem is proven in [9], too.

Analysis of the semidiscrete error does not include analysis of the error of solution
of the corresponding system of ordinary differential equations in time. In practice,
this system is solved by standard software that admits the required accuracy to be
given by the user. This required accuracy is then prescribed several orders less than
the total prescribed accuracy of the fully discrete solution. There are several papers
concerned with the analysis of fully discrete error, see, e.g., [5], [12], [13].

5. Space h- and hp-adaptive procedures

Procedures that can adapt the space grid are very often used. They are usually
based on the principle of the equidistribution of error that requires

‖e‖1,i = ‖e‖1,j, i, j = 1, . . . , N.

This requirement is applied to the error indicator Ē,

‖Ē‖1,i = ‖Ē‖1,j, i, j = 1, . . . , N.

Several such procedures have been published, e.g. the dynamic grid adaptation in [1],
grading function grid adaptation in [8], etc. We successfully tested the above intro-
duced error indicators on these procedures.

We witness a rapidly increasing use of the hp-FEM for solving elliptic as well as
parabolic problems. For this adaptive finite element method, however, the conven-
tional error estimates (in the form of a single number per element) are not enough.
There are numerous options how a higher-order element can be refined because of
the interplay between h and p. Thus the estimates of higher-order derivatives of the
error are required. Moreover, these hp-procedures are particularly important if the
space variable is a vector. In these problems, the reference solution usually serves
as the source of the a posteriori error estimation. Both the ideas and computational
procedures of the hp-FEM are presented in, e.g., [4], [6], [10].
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