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THREE DIMENSIONAL MODELLING OF THE PEACH IN Maple∗

Stanislav Bartoň

Abstract

Linearized Gauss-Newton iteration method is used to determine main axes of the
three-dimensional ellipsoid approximating a peach. Three independent photos dis-
playing the peach as ground, side, and front view are used as data sources. System
Maple 11 was used as a computer environment. A practical example is presented in
order to demonstrate the usage of all required commands. The quality of approxima-
tion is evaluated as a final part of the paper.

1. Introduction

The knowledge of the object’s shape is usually one of the critical parameters
for evaluating its mechanical properties. Concerning peaches, the proportions are
significant e.g. for storage processing, deep freezing namely. Since only undamaged
and healthy fruits can be processed, it is important to determine maximum levels of
mechanical loading, thus to determine the modulus of elasticity [1]. The modulus of
elasticity can be determined by many nondestructive methods. One of them is based
on measuring of the acoustic wave propagation [2].

The most precise method of the object dimensions measuring is 3D scanning [3],
but this method is very expensive, demands a lot of time and manual work, and finally
produces huge amount of data. Digging the main shape parameters represents rather
complicated problem. This article shows the procedure of the approximation of the
peach shape by triaxial ellipsoid and using of three digital photos. These photos
must be taken in mutually perpendicular orientations, see Figure 1.

 = Peach stipes

YZXZXY

Fig. 1: Basic peach photos.

∗This research has been supported by the Grant Agency of the Czech Academy of Sciences under
Contract No. IAA201990701, Behaviour of selected agricultural products under impact loading.
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There are many computer codes intended for the extraction of pixels coordinates
from the objects perimeter. The approach described in [4] was used in this paper.
Coordinates of the perimeter’s pixels were saved in three independent files. Used
algorithm reduces the number of pixels and orders them in such way, that result-
ing polygon approximates the perimeter with the accuracy better than ±1 pixel.
This method reduces the number of pixels from thousands into hundreds of polygon
vertices without loss of accuracy.

2. Coordinate system

Let us assume that a peach will be approximated by a triaxial ellipsoid with the
axis A, B, and C in the spherical coordinate system. If the peach is properly oriented,
see Figure 1, photos can be interpreted as equatorial cross section - XY , and cut
along 0◦ meridian cross section - XZ and 90◦ meridian - Y Z. The cross section curves
may be approximated by mutually dependent ellipses. Their semiaxes will be A, B
for XY , A, C for XZ and B, C for Y Z. It must be assumed that these ellipses will
have different centers and may be rotated by a small angle around different centers.
The following description will be used: [Ax,Ay] = temporary unknown center of the
ellipse approximating the XY cut, Ra - rotation angle of the approximating ellipse
around center. Variables [Bx, Bz], Rb, [Cy, Cz] and Rc have the same meaning
for cross sections XZ and Y Z. Parametric shape will be used to describe all three
ellipses. The first ellipse will be described by the function [A cos(fa), B sin(fa)],
the second one by [A cos(fb), C sin(fb)] and the third one by [B cos(fc), C sin(fc)],
where fa, fb, fc are mutually independent parameters, −π ≤ fa, fb, fc ≤ π. [X, Y ],
[Y, Z] and [Y, Z] are coordinates of the polygon vertices, saved in three different files.
Using these variables we can determine the difference between coordinates of the
general vertex point and the nearest corresponding point on the ellipse. We shall
use the least squares method (LSQ) to compute all unknown variables which will
minimize Qxy + Qxz + Qyz, where:

Qxy = ΣNxy
i=1 (A cos(fai)− (Xi − Ax) cos(Ra)− (Yi − Ay) sin(Ra))2

+ (B sin(fai) + (Xi − Ax) sin(Ra)− (Yi − Ay) cos(Ra))2 ,
(1)

[Xi, Yi] are coordinates of the polygon vertices of the XY cut and fai are parameters
of the points laying on the ellipse approximating the polygon. Qxz and Qyz are
defined very similarly.

3. Preparation of the iteration

Equation (1) is non-linear for all unknowns. It means that an iteration method
based on the linearization must be used. One of the best approaches derived by
Newton and improved by Gauss is the well-known Gauss-Newton method. Purpose
of the presented article is not to explain this method, but to show how to use it
on a complicated and large problem. To handle matrices, the Maple library “Lin-
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earAlgebra” is used. The library “plots” simplifies the visualization of results. The
approach presented in this article is as generalization of [5] and [6].

> restart; with(LinearAlgebra): with(plots):

In order to limit the scope, only commands and variables describing the coordinate
difference between a vertex and the corresponding point on the ellipse for XY cross
section will be described. Other Maple commands are very similar.

> xa:=A*cos(fa)-((X-Ax)*cos(Ra)+(Y-Ay)*sin(Ra)):
> ya:=B*sin(fa)+((X-Ax)*sin(Ra)-(Y-Ay)*cos(Ra)):
> # similarly xb, zb, yc, zc

The difference between origin of the series expansion and the actual variable value
will be substituted as a new variable. This variable has D at the beginning of its
name. The value of this variable will represent the correction for the corresponding
variable during the iteration process.

> Dsu:=map(u->u-cat(u||0)=cat(D||u),Var);
> Mxa:=subs(Dsu,Mxa); # similarly Mya, Mxb, Mzb, Myc, Mzc

Mxa := A0 cos(fa0)− (Y −Ay0) sin(Ra0)− (X −Ax0) cos(Ra0) + DA cos(fa0)
−A0 sin(fa0)Dfa + DAx cos(Ra0) + DAy sin(Ra0)
+((X −Ax0) sin(Ra0)− (Y −Ay0) cos(Ra0))DRa

Complications arise with the parameters. For each vertex/point the best possible
initial approximation is needed. If we have N points, we have to find N corresponding
initial parameters. That is why correction for parameters from the Taylor series must
be separated. Now it is possible to create a lists containing terms multiplying the
individual differences.

> JFxa:=select(has,Mxa,Dfa)/Dfa: # similarly JFya ... JFzc
> JXa:=map(u->select(has,Mxa,u)/u,map(u->rhs(u),Dsu[4..-1]));
> # similarly JYa ... JZc

JXa := [cos(fa0), 0, 0 cos(Ra0), 0, 0, 0, 0, (X −Ax0) sin(Ra0)− (Y −Ay0) cos(Ra0), 0, 0]

Finally, separation of free terms is necessary.

> RXa:=remove(has,Mxa,map(u->rhs(u),Dsu)); # similarly RYa .. RZc

RXa := A0 cos(fa0)− (Y −Ay0) sin(Ra0)− (X −Ax0) cos(Ra0)
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4. Initial values iteration

At this point, the files containing coordinates of vertices can be read. The whole
polygon will be moved, so its mass center will be in the center of the coordinate
system. Na, Nb, Nc represents the number of vertices in the individual cross sections
and Ta, Tb, Tc are corresponding centers of their masses.

> read "007a_3.sav": Na:=nops(XYL):
> Ta:=sum(XYL[i],i=1..Na)/Na: XY:=map(u->u-Ta,XYL):
> # similarly 007b.sav --> Nb, Tb, XZ and 007c.sav --> Nc, Tc, YZ;
> ’Na’=Na, ’Nb’=Nb, ’Nc’=Nc, ’Ta’=Ta, ’Tb’=Tb, ’Tc’=Tc;

Na = 92, Nb = 80 Nc = 96,
Ta = [407.744, 331.126], T b = [446.333, 324.705], T c = [400.202, 363.912]

The initial values for axes may be determined as average of maximal diameters
of the individual cross sections and arguments of the vertices in the polar coordinate
system may be used as initial values of parameters. If photos were taken carefully
the initial values for displacements and rotations may be zero.

> A0:=0.5*(max(map(u->u[1],XY)[])+max(map(u->u[1],XZ)[])):
> Fa:=map(u->op(2,polar(u[1]+I*u[2])),XY):
> # similarly XY, YZ --> B0; XZ, YZ --> C0; XZ --> Fb; YZ --> Fc
> Ax0:=0: Ay0:=0: Bx0:=0: Bz0:=0: Cy0:=0: Cz0:=0: Ra0:=0: Rb0:=0: Rc0:=0:

5. Iteration

The most important variable in the iteration process is the Jacobi Matrix J .
This matrix is composed from 24 submatrices, 12 of them are zero matrices, see
construction of the Maple variable J . Its construction shows the Figure 2 and exactly
corresponds with the structure of the command line for the variable J . Non zero
elements are shown as crosses. It can be seen, that the Jacobi matrix is very sparse,
partially filled up columns corespond to corrections of the variables [A, B, C, Ax,
Ay, Bx, Bz, Cy, Cz, Ra, Rb, Rc].

The vector of right sides contains variable R and vector DV is vector of corrections
of initial values of searched variables. The variable eps controls whole iteration, which
runs until eps is less than 10−5. The quadratic norm of the vector of corrections DV
is assigned into eps. To reduce the big steps between corrections, corrections will
be reduced to one half. Because at first few passes through loop corrections the
parameters may be higher than 2π, it is necessary to recompute all parameters into
range < −π, π >. Subsequently, the corrections to all other variables are added.

> eps:=1: while eps>1e-5 do;
> J:=Matrix([[DiagonalMatrix(map(u->subs(fa0=u,JFxa),Fa)),ZeroMatrix(Na,Nb),
> ZeroMatrix(Na,Nc), Matrix(zip((u,v)->subs(fa0=u,X=v[1],Y=v[2],JXa),Fa,XY))],
> [DiagonalMatrix(map(u->subs(fa0=u,JFya),Fa)),ZeroMatrix(Na,Nb),
> ZeroMatrix(Na,Nc),Matrix(zip((u,v)->subs(fa0=u,X=v[1],Y=v[2],JYa),Fa,XY))],
> [ZeroMatrix(Nb,Na),DiagonalMatrix(map(u->subs(fb0=u,JFxb),Fb)),
> ZeroMatrix(Nb,Nc), Matrix(zip((u,v)-subs(fb0=u,X=v[1],Z=v[2],JXb),Fb,XZ))],
> [ZeroMatrix(Nb,Na),DiagonalMatrix(map(u->subs(fb0=u,JFzb),Fb)),
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Fig. 2: Structure of the Jacobi matrix.

> ZeroMatrix(Nb,Nc),Matrix(zip((u,v)->subs(fb0=u,X=v[1],Z=v[2],JZb),Fb,XZ))],
> [ZeroMatrix(Nc,Na),ZeroMatrix(Nc,Nb),DiagonalMatrix(map(u->subs(fc0=u,JFyc),
> Fc)),Matrix(zip((u,v)->subs(fc0=u,Y=v[1],Z=v[2],JYc),Fc,YZ))],
> [ZeroMatrix(Nc,Na),ZeroMatrix(Nc,Nb),DiagonalMatrix(map(u->subs(fc0=u,JFzc),
> Fc)),Matrix(zip((u,v)->subs(fc0=u,Y=v[1],Z=v[2],JZc),Fc,YZ))]]):
> R:=-Vector([zip((u,v)->subs(fa0=u,X=v[1],Y=v[2],RXa),Fa,XY)[],
> zip((u,v)->subs(fa0=u,X=v[1],Y=v[2],RYa),Fa,XY)[],zip((u,v)->subs(fb0=u,
> X=v[1],Z=v[2],RXb),Fb,XZ)[],zip((u,v)->subs(fb0=u,X=v[1],Z=v[2],RZb),
> Fb,XZ)[],zip((u,v)->subs(fc0=u,Y=v[1],Z=v[2],RYc),Fc,YZ)[],
> zip((u,v)->subs(fc0=u,Y=v[1],Z=v[2],RZc),Fc,YZ)[]]):
> DV:=LeastSquares(J,R):eps:=Norm(DV,2):DV:=0.5*DV;
> Fa:=Fa+convert(DV[1..Na],list):Fb:=Fb+convert(DV[1+Na..Na+Nb],list):
> Fc:=Fc+convert(DV[1+Na+Nb..Na+Nb+Nc],list):A0:=A0+DV[Na+Nb+Nc+1];
> B0:=B0+DV[Na+Nb+Nc+2]; C0:=C0+DV[Na+Nb+Nc+3];Ax0:=Ax0+DV[Na+Nb+Nc+4];
> Ay0:=Ay0+DV[Na+Nb+Nc+5]; Bx0:=Bx0+DV[Na+Nb+Nc+6];Bz0:=Bz0+DV[Na+Nb+Nc+7];
> Cy0:=Cy0+DV[Na+Nb+Nc+8]; Cz0:=Cz0+DV[Na+Nb+Nc+9];Ra0:=Ra0+DV[Na+Nb+Nc+10];
> Rb0:=Rb0+DV[Na+Nb+Nc+11]; Rc0:=Rc0+DV[Na+Nb+Nc+12];
> Fa:=map(u->op(2,polar(cos(u)+I*sin(u))),Fa):Fb:=map(u->op(2,polar(cos(u)+
> I*sin(u))),Fb):Fc:=map(u->op(2,polar(cos(u)+I*sin(u))),Fc):
> Ra0:=op(2,polar(cos(Ra0)+I*sin(Ra0))):Rb0:=op(2,polar(cos(Rb0)+I*sin(Rb0))):
> Rc0:=op(2,polar(cos(Rc0)+I*sin(Rc0))):
> end do:

6. Results interpretation

The accuracy of the approximation of individual cross sections can be displayed,
see Figure 3.
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Fig. 3: Accuracy of the individual cross sections.

> Xa:=A0*cos(f); Ya:=B0*sin(f):
> Xra:=cos(Ra0)*Xa-sin(Ra0)*Ya+Ax0: Yra:=sin(Ra0)*Xa+cos(Ra0)*Ya+Ay0:
> # similarly A0,C0,f-->Xb,Zb-->Xrb,Zrb; B0,C0,f-->Yc,Zc-->Yrc,Zrc;
> P1:=plot(XY,style=point,symbol=circle,symbolsize=20,color=black):
> P2:=plot([Xra,Yra,f=0..2*Pi],color=black,thickness=2,thickness=2,linestyle=1):
> # similarly XZ,symbol=cross --> P3, Xrb,Zrb,linestyle=3 --> P4
> # similarly YZ,symbol=box --> P5, Yrc,Zrc,linestyle=4 --> P6
> display({P1,P2,P3,P4,P5,P6});

Correlation between vertex points and corresponding points on the individual ellipses
and the average of the relative displacements can be computed.

> R1:=map(u->sqrt(u[1]^2+u[2]^2),XY):
> R2:=map(u->evalf(subs(f=u,sqrt(Xra^2+Yra^2))),Fa):
> DR:=zip((u,v)->abs(u-v),R1,R2): AR:=zip((u,v)->0.5*(u+v),R1,R2):
> RRa:=zip((u,v)->u/v,DR,AR): MRa:=sum(RRa[i],i=1..Na)/Na:
> CRa:=stats[describe,linearcorrelation](R1,R2):
> # similarly XZ-->R1, Fb-->R2, R1,R2-->Mrb,Crb
> # similarly YZ-->R1, Fc-->R2, R1,R2-->Mrc,Crc
> Correlations:=[CRa,CRb,CRc];
> Mean_relative_displacement:=[MRa,MRb,MRc];
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Correlations := [0.992, 0.948, 0.084]
Mean relative displacements := [0.012, 0.021, 0.021]

We see that mean displacements are close to 2%, the highest individual dis-
placement is lower than 7%, and the correlation coefficient between vertices and
corresponding points on the individual ellipses is higher than 90%. These results
enable to declare the approximation as successfull. Finally, 3D plot showing triaxial
ellipsoid with projections of the cross sections can be displayed, see Figure 3.

> PCH:=plot3d([A0*cos(f)*cos(l),B0*cos(f)*sin(l),C0*sin(f)],
> l=-Pi..Pi,f=-Pi/2..Pi/2,style=wireframe,color=grey):
> Sa:=spacecurve(map(u->[cos(Ra0)*(u[1]-Ax0)+sin(Ra0)*(u[2]-Ay0),
> -sin(Ra0)*(u[1]-Ax0)+cos(Ra0)*(u[2]-Ay0),0],XY),
> color=black,thickness=3,linestyle=1):
> # similarly Bx0,Bz0,Rb0,XZ,linestyle=3 --> Sb
> # similarly Cy0,Cz0,Rc0,YZ,linestyle=4 --> Sc
> display({PCH,Sa,Sb,Sc},scaling=constrained,axes=boxed);
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Fig. 4: 3D Peach approximation.
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7. Conclusions

Regarding above stated high correlation coefficients and relative displacements,
and with the reference to the results shown in Figures 3 and 4, it can be concluded
that presented approach provides excellent results. It means that it can be used
as a tool for the space approximation of simple three-dimensional objects, such as
peaches, apricots, apples, cucumbers, etc.
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