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NUMERICAL MODELLING OF RIVER FLOW (NUMERICAL
SCHEMES FOR ONE TYPE OF NONCONSERVATIVE SYSTEMS)∗

Marek Brandner, Jǐŕı Egermaier, Hana Kopincová

Abstract

In this paper we propose a new numerical scheme to simulate the river flow in the
presence of a variable bottom surface. We use the finite volume method, our approach
is based on the technique described by D. L. George for shallow water equations. The
main goal is to construct the scheme, which is well balanced, i.e. maintains not only
some special steady states but all steady states which can occur. Furthermore this
should preserve nonnegativity of some quantities, which are essentially nonnegative
from their physical fundamental, for example the cross section or depth. Our scheme
can be extended to the second order accuracy.

1. Introduction

We are interested in solving the problem describing the fluid flow through the
channel with the general cross-section area

at + qx = 0, (1)

qt +

(
q2

a
+ gI1

)

x

= −gaBx + gI2,

where a = a(x, t) is the unknown cross-section area, q = q(x, t) is the unknown
discharge, B = B(x) is the function of elevation of the bottom, g is the gravitational
constant and

I1 =

∫ h(x)

0

[h(x)− η]σ(x, η)dη, (2)

I2 =

∫ h(x)

0

(h− η)

[
∂σ

∂x

]
dη, (3)

where η is the depth integration variable, h is the water depth and σ(x, η) is the
width of the cross-section at the depth η.

The special case are the equations reflecting the fluid flow through the varying
rectangular channel

at + qx = 0, (4)

qt +

(
q2

a
+

qa2

2l

)

x

=
ga2

2l2
lx − gabx,

∗This work was supported by the Research Plan MSM 4977751301 and by Moravian-Silesian
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or the system with constant rectangular channel

ht + (hu)x = 0, (5)

(hu)t +

(
hu2 +

1

2
gh2

)

x

= −ghBx,

where h(x, t) is the water depth and u(x, t) is the horizontal velocity.

All of the presented systems can be briefly written in the matrix form

qt + [f(q)]x = ψ(q, x), (6)

where q(x, t) is the vector of conserved quantities, f(q) is the flux function and
ψ(q, x) is the source term.

There are many numerical schemes for solving (6) with different properties and
possibilities of failing. For example central, upwind or central-upwind schemes. The
main requirements on the numerical schemes are the consistency (in the finite volume
meaning: consistency with flux function), the conservativity (if there is possibility to
rewrite the problem to the conservative form it is required to have conservative nu-
merical scheme), positive semidefiniteness, i.e. the schemes preserve nonnegativity of
some quantities, which are essentially nonnegative from their physical fundamental,
and the well-balancing, i.e. the schemes maintain some or all steady states which can
occur. The next properties are the order of the schemes, stability and the conver-
gence. There are, of course, related conditions to provide mentioned requirements,
for example so called CFL (Courant-Friedrichs-Levy) stability condition.

2. Augmented formulations

There are several ways how to formulate the fluid flow problems. Homogeneous,
autonomous, conservative formulation, which is used for standard cases, like Euler
equations or fluid flow through the channel with constant cross-section and flat bot-
tom have the form

qt + [f(q)]x = 0, x ∈ R, t ∈ (0, T ), (7)

q(x, 0) = q0(x), x ∈ R,

where q = q(x, t) : R×〈0, T ) → Rm, q0 = q0(x) : R → Rm, f = f(q) : Rm → Rm.
This formulation corresponds to (6) with zero right hand side.

The homogeneous, nonautonomous, conservative case

qt + [f(q,w(x))]x = 0, x ∈ R, t ∈ (0, T ), (8)

q(x, 0) = q0(x), x ∈ R,

where w = w(x) : R → Rs is a given function.
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The system (8) can be rewritten to the homogeneous, autonomous, conservative
formulation (we add the equation wt = 0)

q̃t + [f̃(q̃)]x = 0, x ∈ R, t ∈ (0, T ), (9)

q̃(x, 0) = q̃0(x), x ∈ R,

where q̃ = [q, w̃]T , f̃(q̃) = [f(q, w̃),0]T and q̃0(x) = [q0(x),w(x)]T .
Now we consider the system in the form (nonhomogeneous, autonomous case)

qt + [f(q,w(x))]x = B(q,w(x))wx, x ∈ R, t ∈ (0, T ), (10)

q(x, 0) = q0(x), x ∈ R,

where B = B(q,w) is the matrix function of the type m× s.
In the case of the river flow (4) this augmented formulation has following form

q = [a, q]T , w(x) = [l(x), b(x)]T ,

f(q,w) = [q, q2

a
+ ga2

2l
]T ,

B(q,w(x)) =

[
0 0

ga2

2l2
−ga

]
.

We can rewrite the previous system to the augmented, homogeneous, autonomous,
quasilinear formulation

q̃t + C(q̃)q̃x = 0, x ∈ R, t ∈ (0, T ), (11)

q̃(x, 0) = q̃0(x), x ∈ R,

where

C(q̃) =

[
fq fw −B(q, w̃)
0 0

]
,

The following relation holds fx = fqqx + fwwx.
The next extension can be done by adding another equation in the form

[f(q)]t + fq[f(q,w(x))]x − fqB(q,w(x))wx = 0.

The previous relation provides some theoretical insight into how the flux behaves.
The overdetermined system has now the form

q̂t + D̂(q̂)q̂x = 0, x ∈ R, t ∈ (0, T ), (12)

q̂(x, 0) = q̂0(x), x ∈ R,

where q̂ = [q, w̃, f̂ ]T ,

D̂(q̂) =




fq fw −B(q, w̃) 0
0 0 0
0 −fqB(q, w̃) fq


 ,
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where q̂(x) = [q0(x),w(x), f(q0(x),w(x))]T . The advantage of this formulation is
in the conversion of the nonhomogeneous systems to the homogeneous one. For our
model of the river flow the matrix has the form

D̂(q̂) =




0 1 0 0 0 0
−q2

a2 + ga
l

2q
a

−ga2

l2
ga 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 −ga2

2l2
ga 0 1

0 0 −gqa
l2

2gq −q2

a2 + ga
l

2q
a




,

where q̂ = [a, q, l, b, q, q2

a
+ ga2

2l
]. The second and fifth equations have the same un-

known quantity, so the fifth equation can be rejected.
Now we can formulate new problem in the form

q̌t + Ď(q̌)q̌x = 0, x ∈ R, t ∈ (0, T ),
q̌(x, 0) = q̌0(x), x ∈ R,

(13)

where for our model of the river flow the matrix has the form

Ď(q̌) =




0 1 0 0 0
−q2

a2 + ga
l

2q
a

−ga2

l2
ga 0

0 0 0 0 0
0 0 0 0 0

0 −q2

a2 + ga
l

−gqa
l2

2gg 2q
a




, (14)

and q̌ = [a, q, l, b, q2

a
+ ga2

2l
]T .

3. Finite volume methods

The finite volume methods are suitable for solving conservation laws, because the
numerical solution is modified only by the intercell fluxes. These methods are based
on the integral formulation of the problem. They use approximation of the integral
averages of the unknown function instead of the approximations of the unknown
functions. And the consistency of these methods is related to the flux function.
See [6].

We define the following discretisation of the volume and time

xj = j∆x, j ∈ Z, ∆x > 0, tn = n∆t, n ∈ N0, ∆t > 0,
xj+1/2 = xj + ∆x/2, tn+1/2 = tn + ∆t/2.

We denote the conserved quantities at time tn and point xj: qn
j = q(xj, tn) and

qj(t) = q(xj, t) and its approximations: Qn
j = Q(xj, tn) ≈ qn

j , and Qj(t) =
Q(xj, t) ≈ qj(t). The finite volumes mean the sets (xj−1/2, xj+1/2)× (tn, tn+1).
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We denote the integral averages of the conserved quantities over the finite volume

Q̄n
j ≈ q̄n

j =
1

∆x

xj+1/2∫

xj−1/2

q(x, tn) dx, (15)

and the average flux along x = xj+1/2

F̄
n+1/2
j+1/2 ≈ f̄

n+1/2
j+1/2 =

1

∆t

tn+1∫

tn

f(q(xj+1/2, t)) dt. (16)

Fully discrete conservative method can be written as relation between approximations
of the flux averages and approximations of the integral averages of the conserved
quantities

Q̄n+1
j = Q̄n

j −
∆t

∆x
(F̄

n+1/2
j+1/2 − F̄

n+1/2
j−1/2 ). (17)

Sometimes it is useful to consider the discretisation in two steps. First step is
discretisation only in the space (interval (xj−1/2, xj+1/2))

Q̄j = Q̄j(t) ≈ q̄j = q̄j(t) =
1

∆x

xj+1/2∫

xj−1/2

q(x, t) dx. (18)

This leads to the system of the ordinary differential equations in the time

d

dt
Q̄j = − 1

∆x
[Fj+1/2 − Fj−1/2]. (19)

4. Steady states

The steady states mean that the unknown quantities do not change in the time,
i.e. qt = 0 and the flux function must balance the right hand side [f(q)]x = ψ(q, x).
For the augmented systems this means that, for example D(q̂)q̂x = 0.

Some schemes are constructed to preserve some special steady states like so called
rest at lake, i.e. there is no motion and the free surface height is constant:

q(x, t) = 0, h(x, t) + b(x) = const. (20)

This steady state has following form for our model (4)

q(x, t) = 0,

(
q2

a
+

ga2

2l

)

x

− ga2

2l2
lx + gabx = 0. (21)

Under the assumption a = hl the mentioned relations can be rewritten into the form

ghl(h + b)x = 0.
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For general steady states the following equalities hold

qx = 0,

(
q2

a
+

ga2

2l

)

x

=
ga2

2l2
lx − gabx, (22)

the left term in the second equality we can rewrite as

(
q2

a
+

ga2

2l

)

x

=
(
−u2 +

ga

l

)
ax − ga2

2l2
lx, (23)

and together we have (
−u2 +

ga

l

)
ax =

ga2

l
lx − gabx. (24)

From (24) we obtain the following relation for general steady states (the Bernoulli
equation) (

1

2
u2 + gb +

ga

l

)

x

= 0. (25)

For numerical methods it is important to choose such approximation which con-
served these steady states. The equation (25) means that the term 1

2
u2 + gb + ga

l

is constant for differentiable steady states. Therefore following property has to be
satisfied (

1

2
u2 + gb +

ga

l

)

j

=

(
1

2
u2 + gb +

ga

l

)

j+1

. (26)

We rearrange (26) and we can express the discrete relation analogous to the smooth

one φx =
(−u2 + ga

l

)
ax − ga2

2l2
lx

∆Φ =

(
−|ULUR|+ g

ĀL̄

LLLR

)
∆A− g

2

Ã2

LLLR

∆L, (27)

where XL = X̄j, XR = X̄j+1, ∆X = XR − XL, X represents U , L and A, L̄ =
(LL + LR)/2, Ā = (AL + AR)/2, Ã2 = (A2

L + A2
R)/2. The details can be found in [1].

5. Central methods

The central methods are universal schemes for solving hyperbolic partial differ-
ential equation, see [5]. In these schemes there is not necessary to construct the
characteristic decomposition of the flux f nor to compute the approximation of the
Jacobian matrix. These schemes are Riemann problem free. They are robust but
they are characterized by large numerical diffusion.

One example is the first-order Lax-Friedrichs scheme

Q̄n+1
j =

1

2
(Q̄n

j−1 + Q̄n
j+1)−

∆t

2∆x
[f(Q̄n

j+1)− f(Q̄n
j−1)], (28)
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where the flux function for the conservative form can be written in the form

F
n+1/2
j+1/2 =

1

2
[f(Q̄n

j ) + f(Q̄n
j+1)]−

∆x

2∆t
(Q̄n

j+1 − Q̄n
j ). (29)

For our model describing fluid flow through the constant rectangular channel

ht + qx = 0,

qt +
(

q2

h
+ 1

2
gh2

)
x

= −ghbx.

We substitute y = h + b and then we can write

yt + qx = 0,

qt +
(

q2

y−b
+ 1

2
g(y − b)2

)
x

= −g(y − b)bx.
(30)

The special steady state “rest at lake” means y(x, t) = const and q(x, t) = 0.

The flux function and discretisation of the right hand side are in the form

F n,1
j+1/2 = 1

2
(Q̄n

j + Q̄n
j+1)− ∆x

2∆t
(Ȳ n

j+1 − Ȳ n
j ),

F n,2
j+1/2 = 1

2

[
(Q̄n

j )2

Ȳ n
j −B̄j

+
(Q̄n

j+1)
2

Ȳ n
j+1−B̄j+1

+ 1
2
g(Ȳ n

j − B̄j)+

+ 1
2
g(Ȳ n

j+1 − B̄j+1)
]− ∆x

2∆t
(Q̄n

j+1 − Q̄n
j ),

S1,n
j = 0,

Sn,2
j = − g

4∆x
(B̄j+1 − B̄j)

(Ȳ n
j+1 − B̄j+1 + Ȳ n

j − B̄j + Ȳ n
j − B̄j + Ȳ n

j−1 − B̄j−1).

This scheme preserves only special steady state “rest at lake”. But in general these
methods are not suitable for computation steady states [7]. One of their big disad-
vantages is the relatively large numerical dissipation.

The next type of the central method is for example Rusanovov scheme in semi-
discrete form

d
dt
Q̄j = − 1

2∆x
[f(Q̄j+1)− f(Q̄j−1)] + 1

2∆x
[âj+1/2(Q̄j+1 − Q̄j)−

−âj−1/2(Q̄j − Q̄j−1)],
(31)

where
âj+1/2 = max

p
{max{λp

j , λ
p
j+1}}.

This scheme can be written in the conservative form (19) where the numerical fluxes
have the form

Fj+1/2 =
1

2
[f(Q̄j) + f(Q̄j+1)]− 1

2
|âj+1/2|(Q̄j+1 − Q̄j).

And as will be mentioned in the next section, this scheme can be rewritten in the
fluctuation form.
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6. Upwind methods

6.1. Scalar case

In this subsection we consider the equation

qt + aqx = 0, x ∈ R, t ∈ (0, T ), a ∈ R, (32)

q(x, 0) = q0(x), x ∈ R.

This advection equation has known solution q(x, t) = q0(x − at). Usually the REA
algorithm (reconstruct-evolve-average) is used for the solution. This algorithm is
based on the piecewise polynomial reconstruction of the solution from the quantities
Q̄j(t). This reconstruction we denote Q̂j(x, t) for x ∈ (xj−1/2, xj+1/2). This recon-
struction is considered to be the initial condition for solving sets of the Riemann
problems (in this case we can use the form of the solution).

Using the forward differences for time discretisation in the semidiscrete scheme (19)
the numerical flux has the form

Fj+1/2 =
1

2
a(Q−

j+1/2 + Q+
j+1/2)−

1

2
|a|(Q+

j+1/2 −Q−
j+1/2), (33)

where
Q+

j+1/2 = Q̂j+1(xj+1/2+, t), Q−
j+1/2 = Q̂j(xj+1/2−, t).

This scheme can be rewritten into so called fluctuation form

dQ̄j

dt
=
−1

∆x
(a−∆Qj+1/2 + a∆Qj + a+∆Qj−1/2), (34)

where fluctuations are defined

a∆Qj = a(Q−
j+1/2 −Q+

j−1/2),

a−∆Qj+1/2 = a−(Q+
j+1/2 −Q−

j+1/2),

a+∆Qj−1/2 = a+(Q+
j−1/2 −Q−

j−1/2),

where a+ = max{a, 0}, a− = min{a, 0}.
For simple piecewise constant reconstruction Q+

j+1/2 = Q̄j+1, Q−
j+1/2 = Q̄j we

obtain for a > 0
d

dt
Q̄j = − a

∆x
(Q̄j − Q̄j−1), (35)

and for a < 0
d

dt
Q̄j = − a

∆x
(Q̄j+1 − Q̄j). (36)

6.2. Linear systems

Now we consider linear system

qt + Aqx = 0, x ∈ R, t ∈ (0, T ), (37)

q(x, 0) = q0(x), x ∈ R,
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where A is real matrix m × m. We suppose that the matrix A has distinct real
eigenvalues and is diagonalisable i.e. exists regular matrix R such that Λ = R−1AR,
where Λ is diagonal matrix. So we can rewrite (37) to the form

γt + Λγx = 0, (38)

where γ(x, t) = R−1q(x, t). The system (38) represents m advection equations which
can be solved analogously as in the scalar case.

After rewriting the system (37) to conservation form, where f(q) = Aq, and
solving sets of the generalized Riemann problems we get the numerical fluxes in the
form

Fj+1/2 =
1

2
A(Q−

j+1/2 + Q+
j+1/2)−

1

2
|A|(Q+

j+1/2 −Q−
j−1/2), (39)

and in analogy to the previous section we can write the conservative scheme in the
fluctuation form

dQ̄j

dt
=
−1

∆x
(A−∆Qj+1/2 + A∆Qj + A+∆Qj−1/2), (40)

where
A∆Qj = A(Q−

j+1/2 −Q+
j−1/2),

A−∆Qj+1/2 =
m∑

p=1

λ−,p∆γp
j+1/2r

p,

A+∆Qj−1/2 =
m∑

p=1

λ+,p∆γp
j−1/2r

p,

∆Qj+1/2 =
m∑

p=1

∆γp
j+1/2r

p,

∆Qj = Q−
j+1/2 −Q+

j−1/2,

A+ = RΛ+R−1, A− = RΛ−R−1, Λ+ = diag(max{λp, 0}), Λ− = diag(min{λp, 0}),
|Λ| = diag(|λp|), ∆γj+1/2 = R−1

j+1/2∆Qj+1/2.

6.3. Nonlinear systems

Now we consider nonlinear system

qt + [f(q)]x = 0, x ∈ R, t ∈ (0, T ), (41)

q(x, 0) = q0(x), x ∈ R.

The fluctuation form of the conservative scheme is as follows

dQ̄j

dt
=
−1

∆x
[A−(∆Qj+1/2) + A(∆Qj) + A+(∆Qj−1/2)], (42)

A(∆Qj) = f(Q−
j+1/2)− f(Q+

j−1/2),

A−(∆Qj+1/2) = F−j+1/2 − f(Q−
j+1/2),

A+(∆Qj−1/2) = f(Q+
j−1/2)− F+

j−1/2.
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This scheme can be written in the form
d

dt
Q̄j = − 1

∆x
[F−j+1/2 − F+

j−1/2]. (43)

The fluctuations have following property based on the Rankine-Hugoniot condi-
tion for the discontinuities

f(Q+
j+1/2)− f(Q−

j+1/2) = A+(∆Qj+1/2) + A−(∆Qj+1/2), (44)

this leads to F−j+1/2 = F+
j+1/2 ∀j ∈ Z.

It is difficult to solve nonlinear Riemann problems to take exact solution. It is
efficient to use some approximate Riemann solvers such as HLL or Roe’s solvers.
Details can be found in [3] and [4].

6.3.1. Roe’s solver

This approximate Riemann solver is based on the approximation of the nonlinear
system qt + [f(q)]x ≡ qt + A(q)qx = 0, where A(q) is the Jacobian matrix, by the
linear system qt +Aj+1/2qx = 0, where Aj+1/2 is the Roe-averaged Jacobian matrix,
which is defined by suitable combination of A(Qj) and A(Qj+1).

We define intercell numerical fluxes

Fj+1/2 =
1

2
[f(Q̄j) + f(Q̄j+1)]− 1

2
|Aj+1/2|(Q̄j+1 − Q̄j), (45)

and intercell fluctuations in the scheme (42) by

A−(∆Qj+1/2) =
m∑

p=1

λ−,p
j+1/2r

p
j+1/2∆γp

j+1/2,

A+(∆Qj+1/2) =
m∑

p=1

λ+,p
j+1/2r

p
j+1/2∆γp

j+1/2,
(46)

where rp
j+1/2 are eigenvectors of the Roe matrix Aj+1/2, λp

j+1/2 are eigenvalues called

Roe’s speeds and ∆γj+1/2 = R−1
j+1/2∆Qj+1/2.

6.3.2. HLL solver

This solver does not use the explicit linearization of the Jacobian matrix, but the
solution is constructed by the consideration of two discontinuities, propagating at
speeds s1 and s2. The middle state Q̄j+1/2 is determined by conservation law

f(Q̄j+1)− f(Q̄j) = s2
j+1/2(Q̄j+1 − Q̄j+1/2) + s1

j+1/2(Q̄j+1/2 − Q̄j), (47)

Q̄j+1/2 =
f(Q̄j+1)− f(Q̄j)− s2

j+1/2Q̄j+1 + s1
j+1/2Q̄j

s1
j+1/2 − s2

j+1/2

. (48)

When the special choice of the characteristic speeds called Einfeld speeds is used,
the solver is called HLLE. The Einfeld speeds are defined by

s1
j+1/2 = min

p
{min{λp

j , λ
p
j+1/2}}, s2

j+1/2 = max
p
{max{λp

j+1, λ
p
j+1/2}}, (49)

where λp
j are eigenvalues of the matrix Aj = f ′(Q̄j).

32



6.4. Augmented systems

Consider the model for river flow through the varying rectangular channel (4) as
was presented in Section 1 and its augmented formulation (13) and (14) presented
in Section 2. The eigencomponents for the matrix Ď are

λ1 = 0, λ2 = 0, λ3 = 2u, λ4 = u +

√
ga

l
, λ5 = u−

√
ga

l
,

and
r1 = [− ga

λ4λ5
, 0, 0,−1, ga]T , r2 = [− ga2

l2λ4λ5
, 0, 1, 0, ga2

2l2
]T ,

r3 = [0, 0, 0, 0, 1]T , r4 = [1, λ4, 0, 0, λ
2
4]

T ,

r5 = [1, λ5, 0, 0, λ
2
5]

T .

We realize the decomposition for the augmented quasilinear formulation i.e. for
the system of five equations with Einfeld speeds

s1 = 0, s2 = 0, s3 = s4 + s5,

s4 = min
p
{min{λp

L, λp
LR}}, s5 = max

p
{max{λp

R, λp
LR}},

and approximation of the eigenvectors of the matrix Ď

r1 ≈ [ gĀ
gs4s5

, 0, 0,−1, gĀds4s5

gs4s5
]T ,

r2 ≈ [ gĀ2

LLLR gs4s5
, 0, 1, 0, gĀ2 ds4s5

LLLR gs4s5
− gÃ2

2LLLR
]T ,

r3 ≈ [0, 0, 0, 0, 1]T ,

r4 ≈ [1, s4, 0, 0, s
2
4]

T ,

r5 ≈ [1, s5, 0, 0, s
2
5]

T ,

where s̃4s5 = −Ū2 + gĀL̄
LLLR

, ŝ4s5 = −|ULUR|+ gĀL̄
LLLR

, λp
L and λp

R are eigenvalues of the

Jacobian matrix for the left end right values and λp
LR are eigenvalues of the Roe’s

matrix.
The decomposition of the augmented system has the following form




∆A
∆Q
∆L
∆B
∆Φ




=
5∑

p=1

γpr
p.

We have five linearly independent eigenvectors. The approximation is chosen to be
able to prove the consistency and provide the stability of the algorithm. In some spe-
cial cases this scheme is conservative and we can prove the positive semidefiniteness,
but only under the additional assumptions.
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The basic version of the numerical scheme is in the form

dQ̄j

dt
= − 1

∆x
[A−(∆Qj+1/2) + A+(∆Qj−1/2)], (50)

where fluctuations are defined by

A−(∆Qj+1/2) =
m∑

p=1

sp,n
j+1/2

<0

γp
j+1/2r

p
j+1/2,

A+(∆Qj+1/2) =
m∑

p=1

sp,n
j+1/2

>0

γp
j+1/2r

p
j+1/2.

7. Central-upwind method

Now we introduce so called central-upwind scheme. These schemes combine ad-
vantages of the upwind schemes i.e. lower numerical diffusion and usability for the
steady states with advantages of the central schemes i.e. positive semidefiniteness.
These schemes are Riemann solver free. This scheme can be found in [2]

One simple method in the conservative form (19) has the numerical flux in the
form

Fj+1/2 =
a+

j+1/2f(Qj)− a−j+1/2f(Qj+1)

a+
j+1/2 − a−j+1/2

+
a+

j+1/2a
−
j+1/2

a+
j+1/2 − a−j+1/2

[Qj+1 −Qj] , (51)

where

a+
j+1/2 = max {λN (f ′(Qj)) , λN (f ′(Qj+1)) , 0} ,

a−j+1/2 = min {λ1 (f ′(Qj)) , λ1 (f ′(Qj+1)) , 0} ,

represent maximal speeds of the propagation of the waves in the points xj+1/2 and
we suppose λ1 < λ2, . . . , λN .

8. Decomposition of the flux function

Described schemes can be represented and understood by the same way. The
amount of information about the structure of the solution of the Riemann problem
included into schemes causes the differences between schemes. This information is
employed in decomposition of the difference of the flux function.
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Central schemes for example Lax-Friedrichs scheme are based on the following
decomposition

f(Q+
j+1/2)−f(Q−

j+1/2) = s1(Q+
j+1/2−Q∗

j+1/2)+s2(Q∗
j+1/2−Q−

j+1/2) =
2∑

p=1

Zp
j+1/2, (52)

where s1 = ∆x
∆t

and s2 = −∆x
∆t

. Next we define fluctuations

A−(∆Qj+1/2) =
2∑

p=1

sp<0

Zp
j+1/2,

A+(∆Qj+1/2) =
2∑

p=1

sp>0

Zp
j+1/2.

(53)

We can use the relation (42) and we can derive the scheme in the conservative form.
These schemes are not suitable for the semidiscrete formulation because of the infinite
speed (∆t → 0) of the propagating discontinuities which is typical for the parabolic
type of the equations.

The semidiscrete central methods suitable for the semidiscrete formulation use
estimate of upper bound of maximal speed of the propagating discontinuities. They
are based on the following decomposition

f(Q+
j+1/2)−f(Q−

j+1/2) = sj+1/2(Q
+
j+1/2−Q∗

j+1/2)−sj+1/2(Q
∗
j+1/2−Q−

j+1/2) =
2∑

p=1

Zp
j+1/2,

(54)
where

sj+1/2 = max
p
{max{|λp(Q−

j+1/2)|, |λp(Q+
j+1/2)|}}.

We define

A−(∆Qj+1/2) =
2∑

p=1

sp
j+1/2

<0

Zp
j+1/2,

A+(∆Qj+1/2) =
2∑

p=1

sp
j+1/2

>0

Zp
j+1/2.

(55)

The central-upwind methods can be identified with HLL solver. The decomposi-
tion has the form
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f(Q̄j+1)− f(Q̄j) = s2
j+1/2(Q̄j+1 − Q̄j+1/2) + s1

j+1/2(Q̄j+1/2 − Q̄j) =
2∑

p=1

Zp
j+1/2, (56)

where s1
j+1/2 = a+

j+1/2 and s1
j+1/2 = a−j+1/2. And we define

A−(∆Qj+1/2) =
2∑

p=1

sp
j+1/2

<0

Zp
j+1/2,

A+(∆Qj+1/2) =
2∑

p=1

sp
j+1/2

>0

Zp
j+1/2.

(57)

All described schemes can be understood in the same way.

9. Conclusion

We presented various numerical schemes for solving fluid flow problems with
various properties. We show that all described schemes can be understood in the
same way.
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