
PANM 14

Jiří Hozman; Vít Dolejší
Analysis of the discontinuous Galerkin finite element method applied to a scalar nonlinear
convection-diffusion equation

In: Jan Chleboun and Petr Přikryl and Karel Segeth and Tomáš Vejchodský (eds.): Programs and Algorithms of
Numerical Mathematics, Proceedings of Seminar. Dolní Maxov, June 1-6, 2008. Institute of Mathematics AS CR,
Prague, 2008. pp. 97–102.

Persistent URL: http://dml.cz/dmlcz/702862

Terms of use:
© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702862
http://dml.cz


ANALYSIS OF THE DISCONTINUOUS GALERKIN FINITE
ELEMENT METHOD APPLIED TO A SCALAR NONLINEAR

CONVECTION-DIFFUSION EQUATION∗

Jǐŕı Hozman, Vı́t Doleǰśı

Abstract

We deal with a scalar nonstationary convection-diffusion equation with nonlinear
convective as well as diffusive terms which represents a model problem for the solu-
tion of the system of the compressible Navier-Stokes equations describing a motion
of viscous compressible fluids. We present a discretization of this model equation by
the discontinuous Galerkin finite element method. Moreover, under some assump-
tions on the nonlinear terms, domain partitions and the regularity of the exact so-
lution, we introduce a priori error estimates in the L∞(0, T ; L2(Ω))-norm and in the
L2(0, T ;H1(Ω))-seminorm. A sketch of the proof is presented.

1. Introduction

Our goal is to develop a sufficiently robust, accurate and efficient numerical
method for the solution of the system of the compressible Navier-Stokes equations
describing a motion of viscous compressible fluids. Due to the lack of the theory con-
cerning an existence of the solution of the Navier-Stokes equations we consider the
model problem represented by a nonstationary two-dimensional convection-diffusion
equation with nonlinear convection as well as diffusion.

Among a wide class of numerical methods, the discontinuous Galerkin finite
element method (DGFEM) seems to be a promising technique for the solution of
convection-diffusion problems. DGFEM is based on a piecewise polynomial but dis-
continuous approximation, for a survey, see, e.g., [2], [3]. Within this paper we deal
with the space semidiscretization of the model problem with the aid of the three vari-
ants of DGFEM. Namely nonsymmetric (NIPG), symmetric (SIPG) and incomplete
interior penalty Galerkin (IIPG) techniques, see [1].

This article represents a generalization of research papers [5], [6], [7], and [8],
where the linear diffusion term was considered. Moreover, let us cite works [4], [9],
and [10], where simpler forms of nonlinear diffusion were analysed.

∗This work is a part of the research project MSM 0021620839 financed by the Ministry of
Education of the Czech Republic and it was partly supported by Grant No. 316/2006/B-MAT/MFF
of the Grant Agency of the Charles University Prague.
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2. Problem formulation

We consider the following unsteady nonlinear convection-diffusion problem. Let
Ω ⊂ IR2 be a bounded polygonal domain and T > 0. We seek a function u : QT → IR,
QT = Ω× (0, T ), such that

(a)
∂u

∂t
+

2∑

s=1

∂fs(u)

∂xs

= div(IK(u)∇u) + g in QT , (1)

(b) u|∂Ω×(0,T ) = uD, (2)

(c) u(x, 0) = u0(x), x ∈ Ω, (3)

where g : QT → IR, uD : ∂Ω × (0, T ) → IR, u0 : Ω → IR are given functions,
f1, f2 ∈ C1(IR) represent convective terms and the matrix IK(u) ∈ IR2,2 plays a role
of nonlinear anisotropic diffusive coefficients. If IK(u) = εII, where ε is a positive
constant and II ∈ IR2,2 the unit matrix, then problem (1) reduces to the equation
considered in [5], [6], [7], [8]. For simplicity we prescribe the Dirichlet condition
on the whole boundary but it is also possible to consider mixed Dirichlet-Neumann
boundary conditions.

Formally, we introduce a weak solution u of the problem (1) by

d

dt
(u(t), v) + b(u(t), v) + a(u(t), v) = (g(t), v) ∀ v ∈ H1

0 (Ω), a.e. t ∈ (0, T ), (4)

where u(t) denotes the function on Ω such that u(t)(x) = u(x, t), x ∈ Ω. Further,
(·, ·) denotes the L2-scalar product, a(·, ·) and b(·, ·) are nonlinear forms represent-
ing the diffusive and convective terms, respectively. We also consider appropriate
representation of initial and boundary conditions. For details see [4], [7].

3. Discretization

Let Th (h > 0) be a family of the partitions of the domain Ω ⊂ IR2 into triangular
elements. We do not require the conformity of the mesh, i.e., the so-called hanging
nodes are allowed. However, more general elements (even non-convex) can be con-
sidered within the frame of DGFEM, see [7]. By Fh we denote the smallest possible
set of all edges of all elements K ∈ Th. Furthermore, let F I

h and FD
h represent the in-

terior and the boundary edges of Th, respectively. Obviously Fh = F I
h ∪FD

h . Finally,
for each Γ ∈ Fh we define a unit normal vector ~nΓ. We assume that ~nΓ, Γ ⊂ ∂Ω has
the same orientation as the outer normal of ∂Ω. For ~nΓ, Γ ∈ FI the orientation is
arbitrary but fixed for each edge.

The approximate solution is sought in a space of piecewise polynomial but dis-
continuous functions

Shp ≡ Shp (Ω, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th}, (5)

where Pp(K) denotes the space of all polynomials on K of degree ≤ p, K ∈ Th.
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For each Γ ∈ F I
h there exist two elements KL, KR ∈ Th such that Γ ⊂ KL ∩KR.

We use a convention that KR lies in the direction of ~nΓ and KL in the opposite
direction of ~nΓ. For v ∈ Shp, by

v|(L)
Γ = trace of v|KL

on Γ, v|(R)
Γ = trace of v|KR

on Γ (6)

we denote the traces of v on edge Γ, which are different in general. Additionally,

[v]Γ = v|(L)
Γ − v|(R)

Γ , 〈v〉Γ =
1

2

(
v|(L)

Γ + v|(R)
Γ

)
, (7)

denotes the jump and the mean value of function v over the edge Γ, respectively.
For Γ ⊂ ∂Ω there exists an element KL ∈ Th such that Γ ⊂ KL ∩ ∂Ω. Then for
v ∈ Shp, we put: v|(L)

Γ = trace of v|KL
on Γ, 〈v〉Γ = [v]Γ = v|(L)

Γ . In case that
[·]Γ and 〈 · 〉Γ are arguments of

∫
Γ . . . dS, Γ ∈ Fh we omit the subscript Γ and write

simply [·] and 〈 · 〉, respectively.
Similarly as in [5], it is possible to derive the space semi-discretization of (1).

A particular attention should be paid to the nonlinear diffusive term. In order to
replace the interelement continuity, we add some stabilization and penalty terms into
formulation of the discrete problem. The convective term is approximated with the
aid of a numerical flux H(·, ·, ·), known from the finite volume method.

Therefore, we say that uh ∈ C1(0, T ; Shp) is the semi-discrete solution of (1) if
(uh(0), vh) = (u0, vh) ∀vh ∈ Shp and

(
∂uh(t)

∂t
, vh

)
+ bh(uh(t), vh) + aΘ

h (uh(t), vh) + αJσ
h (uh(t), vh) = `Θ

h (uh(t), vh) (t) (8)

∀ vh ∈ Shp, ∀ t ∈ (0, T ),

where

aΘ
h (u, v) =

∑

K∈Th

∫

K
IK(u)∇u · ∇v dx− ∑

Γ∈Fh

∫

Γ
〈IK(u)∇u · ~n〉[v] dS

+ Θ
∑

Γ∈Fh

∫

Γ
〈IK(u)∇v · ~n〉[u] dS, (9)

bh(u, v) = − ∑

K∈Th

∫

K

2∑

s=1

fs(u)
∂v

∂xs

dx +
∑

Γ∈Fh

∫

Γ
H(u|(L)

Γ , u|(R)
Γ , ~nΓ) [v]dS, (10)

Jσ
h (u, v) =

∑

Γ∈Fh

∫

Γ
σ[u] [v] dS, (11)

`Θ
h (u, v)(t) =

∫

Ω
g(t) v dx +

∑

Γ∈FD
h

∫

Γ

(
Θ IK(u)∇v · ~n uD(t) + σ uD(t) v

)
dS. (12)

Nonlinear forms aΘ
h (·, ·) and bh(·, ·) are the discrete variants of the forms a(·, ·) and

b(·, ·), respectively. According to value of parameter Θ, we speak of SIPG (Θ = −1),
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IIPG (Θ = 0) or NIPG (Θ = 1) variants of DGFEM. Penalty terms are represented
by Jσ

h and the penalty parameter function σ in (11) is defined as σ|Γ = CW · |Γ|−1,
Γ ∈ Fh, where CW ≥ 0 is a suitable constant depending on the used variant of the
scheme and on the degree of polynomial approximation. The value of multiplicative
constant α before the penalty form Jσ

h will be specified in Section 4, assumption (14).
The problem (8) exhibits a system of ordinary differential equations for uh(t)

which has to be discretized by a suitable ODE method.
If the numerical flux H is consistent with the convective fluxes f1, f2 (i.e.,

H(u, u, ~n) = f1(u)n1 + f2(u)n2 ∀u ∈ IR ∀~n = (n1, n2)) then we find that the suffi-
ciently regular exact solution u satisfies

(
∂u(t)

∂t
, vh

)
+ bh(u(t), vh) + aΘ

h (u(t), vh) + αJσ
h (u(t), vh) = `Θ

h (u(t), vh) (t) (13)

∀ vh ∈ Shp ∀ t ∈ (0, T ),

4. Error analysis

To carry out the error analysis we need to specify the additional assumptions
on mesh, nonlinear diffusion term and regularity of the solution u of the continuous
problem. Therefore, we assume that:

(A1) The matrix IK(v) = {kij(v)}2
i,j=1, kij(v) : IR → IR, appearing in the diffusion

terms satisfies

(a) ‖IK(v)‖∞ ≤ CU < ∞ ∀ v ∈ IR,

(b) ‖IK(v1)− IK(v2)‖∞ ≤ CL|v1 − v2| ∀ v1, v2 ∈ IR, (14)

(c) ξT IK(v)ξ ≥ α‖ξ‖2, α > 0, ∀ v ∈ IR, ∀ ξ ∈ IR2,

where ‖ · ‖∞ represents the l∞-matrix norm, i.e., ‖IK‖∞ = max
1≤i≤n

∑n
j=1 |kij|.

(A2) The weak solution u is sufficiently regular, namely

(a) u ∈ L2(0, T ; Hp+1(Ω)),
∂u

∂t
∈ L2(0, T ; Hp(Ω)), p ≥ 1 (15)

(b) ‖∇u(t)‖L∞(Ω) ≤ CD for a.a. t ∈ (0, T ),

where p ≥ 1 denotes the given degree of the polynomial approximation.

(A3) The triangulations Th, h ∈ (0, h0) are locally quasi-uniform and shape-regular
(for detailed definitions see [4]).

Now, we are ready to formulate the main result of this paper.
Theorem Let assumptions (A1) be satisfied, let u be the exact solution of the

continuous problem satisfying (A2). Let Th, h ∈ (0, h0) be a family of triangulations
satisfying (A3) and let the numerical flux H from (10) be consistent, conservative
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and Lipschitz continuous. Let uh ∈ Shp be the solution of the discrete problem given
by (8). Then the discretization error eh = uh − u satisfies

max
t∈[0,T ]

‖eh(t)‖2
L2(Ω) +

α

2

∫ T

0
|||eh(ϑ)|||2dϑ ≤ Ch2p, (16)

where |||v|||2 :=
∑

K∈Th
|v|2H1(K) + Jσ

h (v, v) and C > 0 is a constant independent of h.

Sketch of the proof : Let u ∈ Hp+1(Ω, Th) be the solution of the continuous
problem. For v ∈ L2(Ω) we denote by Πhv the L2-projection of v on Shp. We
set ξ(t) = uh(t) − Πhu(t) ∈ Shp , η(t) = Πhu(t) − u(t), eh(t) = uh(t) − u(t) =
ξ(t) + η(t) for a.a. t ∈ (0, T ). We subtract (13) from (8), set vh := ξ and add terms
−aΘ

h (Πhu, ξ) + `Θ
h (Πhu, ξ) on both sides of this identity. Then we obtain

(
∂ξ

∂t
, ξ

)
+ aΘ

h (uh(t), ξ)− aΘ
h (Πhu, ξ) + `Θ

h (Πhu, ξ)− `Θ
h (uh, ξ) + αJσ

h (ξ, ξ)︸ ︷︷ ︸
=:χ1

= −
(

∂η

∂t
, ξ

)
+ bh(u, ξ)− bh(uh, ξ)− αJσ

h (η, ξ)

︸ ︷︷ ︸
=:χ2

(17)

+ aΘ
h (u, ξ)− aΘ

h (Πhu, ξ) + `Θ
h (Πhu, ξ)− `Θ

h (u, ξ)︸ ︷︷ ︸
=:χ3

.

With the aid of the multiplicative trace inequality, inverse inequality and approxima-
tion properties of the space Shp, (see [7, Lemmas 4.2–4.4]), we estimate terms χ1, χ2

and χ3:

|χ2| ≤ C
{
hp|∂u/∂t|Hp(Ω)‖ξ‖L2(Ω) + |||ξ|||(hp+1|u|Hp+1(Ω) + αhp|u|Hp+1(Ω) + ‖ξ‖L2(Ω))

}
.

(18)
Analogously as in [9] we derive

|χ3| ≤ C
(
CUhp|u|Hp+1(Ω) + CDCLhp+1|u|Hp+1(Ω)

)
|||ξ|||. (19)

Finally, by a particular choice of the constant CW we obtain

χ1 ≥ α

2
|||ξ|||2 − C

(
CUhp|u|Hp+1(Ω) + CDCL‖ξ‖L2(Ω))

)
|||ξ|||. (20)

In consequence, we use inequalities (18)–(20) in identity (17), apply Young’s
inequality, and integrate from 0 to t, t ∈ [0, T ]. Finally application of the Gronwall’s
lemma leads to desirable error estimate (16).

5. Conclusion

We presented a space semi-discretization of a scalar nonstationary convection-
diffusion equation (with nonlinear convection as well as diffusion) with the aid
of SIPG, IIPG and NIPG variants of DGFEM. We presented a priori error esti-
mates which are optimal in the L2(0, T, H1(Ω))-seminorm but suboptimal in the
L∞(0, T, L2(Ω))-norm.
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estimates for the DG approximation of a nonlinear nonstationary convection-
diffusion problem on nonconforming meshes. M2AN, (submitted).
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