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ON UNIQUENESS OF A WEAK SOLUTION TO THE STEADY
NAVIER-STOKES PROBLEM IN A PROFILE CASCADE WITH
A NONLINEAR BOUNDARY CONDITION ON THE OUTFLOW∗

Tomáš Neustupa

1. Introduction

The paper deals with theoretical analysis of the mathematical model of viscous
incompressible stationary flow through a plane cascade of profiles. The considered
fluid moves around an infinite row of profiles which periodically repeat in one spatial
direction. This property enables us to reduce the problem to a bounded domain
which represents just one spatial period. We assume that the velocity satisfies the
Dirichlet boundary condition on the inflow and on the profile, a certain “natural”
nonlinear boundary condition of the “do nothing-type” on the outflow and periodic
boundary conditions on the artificial boundaries which separate the chosen spatial
period from other periods. We present the weak formulation of the problem and
recall the theorem on the existence of a weak solution. Afterwards, we study the
question of uniqueness of the weak solution. We arrive at a theorem stating that the
solution is unique if the data prescribed on the boundary and the external specific
body force are in certain norms “sufficiently small” with respect to the viscosity. This
result is in agreement with known theorems on uniqueness in the case of the Dirichlet
boundary condition on the whole boundary, see e.g. the books on the Navier-Stokes
equations by R. Temam and G. P. Galdi.

2. The geometry of the problem

The considered 2D domain Ω, representing one spatial period of the flow field
around the infinite and unbounded series of profiles, is sketched on Fig. 1. Its bound-
ary consists of the curves Γi (the inflow), Γw (the surface of the profile), Γ− and Γ+

(the lower and the upper artificial boundaries), and Γo (the outflow). The reduction
of the original problem for an infinite profile cascade to just one spatial period is
standard and the main idea standing in the background is that the weak solution
constructed in one spatial period Ω, periodically extended in the direction of the
x2-axis, becomes a solution for the whole profile cascade, see [2] for details.

∗The research was supported by the research plan of the Ministry of Education of the Czech
Republic No. MSM 6840770010.
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3. The classical formulation of the boundary-value problem

We denote by u = (u1, u2) the (fluid) velocity, by p the kinematic pressure and
by n the outer normal vector on the boundary. We study the flow described by 2D
steady Navier-Stokes equation

(u · ∇)u = f − ∇p + ν ∆u. (1)

The condition of incompressibility is

div u = 0. (2)

We prescribe the inhomogeneous Dirichlet boundary condition on the inlet and the
homogeneous no-slip Dirichlet boundary condition on the profile

u = g on Γi, (3)

u = 0 on Γw. (4)

We suppose that the conditions of periodicity are fulfilled on the artificial bound-
aries Γ− and Γ+

u(x1, x2 + τ) = u(x1, x2) for (x1, x2) ∈ Γ−, (5)

∂u

∂n
(x1, x2 + τ) = −∂u

∂n
(x1, x2) for (x1, x2) ∈ Γ−, (6)

p(x1, x2 + τ) = p(x1, x2) for (x1, x2) ∈ Γ−. (7)

We use the nonlinear do-nothing-type boundary condition (proposed by Bruneau
and Fabri in [1]) on the outflow Γo

−ν
∂u

∂n
+ p n− 1

2
(u · n)− u = h. (8)
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4. The weak formulation of the boundary-value problem and the theorem
on existence

We denote by H1(Ω) the usual Sobolev space and by H1(Ω)2 :=
[
H1(Ω)

]2
the

space of two component vector functions with both components in H1(Ω). We define

V :=
{
v ∈ H1(Ω)2; v = 0 a.e. in Γi ∪ Γw, v(x1, x2 + τ) = v(x1, x2)

for a.a. (x1, x2) ∈ Γ−, and div v = 0 a.e. in Ω
}
.

V is equipped with the norm |||v||| := ‖∇v‖L2(Ω)4 , which is equivalent to the norm
in H1(Ω)2.

In order to realize the inhomogeneous boundary condition (3), we introduce an
auxiliary function g∗:

Lemma 4.1 Let s ∈ (1
2
, 1], let function g belong to the Sobolev-Slobodetskĭı space

Hs(Γi)
2, and let g(A1) = g(A0) (where A0 and A1 are the end points of Γi). Then

there exists a constant cg > 0 independent of g and a divergence-free extension
g∗ ∈ H1(Ω)2 of function g from Γi onto Ω such that g∗ = 0 on Γw, g∗ satisfies the
condition of periodicity

g∗(x1, x2 + τ) = g∗(x1, x2) for (x1, x2) ∈ Γ− (9)

and the estimate ‖g∗‖H1(Ω)2 ≤ cg ‖g‖Hs(Γi)2 . (10)

The lemma is proved in [2].
The weak solution u of the problem (1)–(8) can be constructed in the form

u = g∗ + z where z ∈ V is a new unknown function. This form of u guarantees
that u satisfies the boundary condition (3) on the part Γi of ∂Ω.

In order to arrive formally at the weak formulation of the problem (1)–(8), we
multiply equation (1) by an arbitrary test function v = (v1, v2) ∈ V , integrate over Ω,
apply Green’s theorem, and use the condition of incompressibility (2), the boundary
condition (4), the conditions of periodicity (5)–(7), and the nonlinear condition (8).
We obtain an equation, which can be written down in the form

a(u,v) = (f , v) + b(h,v), (11)

with a(u,v) := a1(u,v) + a2(u, u,v) + a3(u,u,v) and b(h,v) := − ∫
Γo

h · v dS,
where

a1(u,v) := ν

∫

Ω

∇u : ∇v dx, a2(u,v,w) :=

∫

Ω

u · ∇v ·w dx,

a3(u,v,w) :=

∫

Γo

1

2
(u · n)− v ·w dS, (f , v) :=

∫

Ω

f · v dx.

All these forms are defined for u, v, w ∈ V , f ∈ L2(Ω)2 and h ∈ L2(Γo)
2. Thus, we

arrive at the definition:
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Definition 4.2 Let g ∈ Hs(Γi)
2 (for some s ∈ (1

2
, 1]) satisfy the condition g(A1) =

g(A0). Let f ∈ L2(Ω)2 and h ∈ L2(Γo)
2. The weak solution of the problem (1)–(8)

is the vector function u := g∗+ z, where z ∈ V and u satisfies the identity (11) for
all test functions v ∈ V .

The next theorem brings the information on the existence of a weak solution u.

Theorem 4.3 There exists ε > 0 such that if ‖g‖Hs(Γi)2 < ε then there exists a so-
lution u = g∗+ z of the problem defined in Definition 4.2. Moreover, z satisfies the
estimate

|||z||| ≤ R1, (12)

where R1 = R1

(
ν, ‖g‖Hs(Γi)2 , ‖f‖L2(Ω)2 , ‖h‖L2(Γo)2

)
. Consequently, u satisfies

‖∇u‖L2(Ω)4 ≤ R1 + ‖∇g∗‖L2(Ω)4 ≤ R1 + cg ‖g‖Hs(Γi)2 =: R2. (13)

The proof can be found in [2]. The function u has the form g∗ + z, where z ∈ V
satisfies

a(g∗ + z, v) = (f ,v) + b(h,v)

for all v ∈ V . The function z was constructed as a limit of an appropriate sequence
of Galerkin approximations. We were able to find an explicit form of the dependence
of R1 on ν, ‖g‖Hs(Γi)2 , ‖f‖L2(Ω)2 and ‖h‖L2(Γo)2 in [2]. The restriction ‖g‖Hs(Γi)2 < ε
follows from the requirement that the form a is coercive.

5. Uniqueness of the weak solution of the problem (1)–(8)

The next theorem presents the main result of this paper. It says that the weak
solution u of the problem (1)–(8) is unique in a certain sufficiently small ball.

Theorem 5.1 (on uniqueness of the weak solution) There exists R > 0 such
that if u1 and u2 are two weak solutions of the problem (1)–(8) defined in Definition
4.2 such that ‖∇u1‖L2(Ω)4 ≤ R and ‖∇u2‖L2(Ω)4 ≤ R, then u1 = u2.

Proof. Since u1 and u2 are weak solutions of problem (1)–(8), they satisfy the
equations

a(u1,v) = (f ,v) + b(h, v),

a(u2,v) = (f ,v) + b(h, v)

for all v ∈ V . Subtracting these equations, we get a(u1,v)− a(u2,v) = 0.
Expressing the bilinear form a by means of forms a1, a2 and a3 with v = u1 − u2,
we obtain

a1(u1 − u2,u1 − u2) + a2(u1,u1, u1 − u2)− a2(u2,u2, u1 − u2)

+ a3(u1,u1, u1 − u2)− a3(u2,u2,u1 − u2) = 0. (14)
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If we denote

I1 := a1(u1 − u2,u1 − u2) = ν

∫

Ω

|∇(u1 − u2)|2 dx = ν |||u1 − u2|||2,

I2 := a2(u1,u1,u1 − u2)− a2(u2,u2,u1 − u2),

I3 := a3(u1,u1,u1 − u2)− a3(u2,u2,u1 − u2),

then (14) takes the form
I1 = −I2 − I3. (15)

Further, we estimate the terms on the right-hand side of (15).

|I2| =

∣∣∣∣
∫

Ω

u1 · ∇u1 · (u1 − u2) dx −
∫

Ω

u2 · ∇u2 · (u1 − u2) dx

∣∣∣∣

≤
∣∣∣∣
∫

Ω

(u1 − u2) · ∇u1 · (u1 − u2) dx

∣∣∣∣ +

∣∣∣∣
∫

Ω

u2 · ∇(u1 − u2) · (u1 − u2) dx

∣∣∣∣
≤ ‖u1 − u2‖2

L4(Ω)2 ‖∇u1‖L2(Ω)4 + ‖u2‖L4(Ω)2 ‖∇(u1 − u2)‖L2(Ω)4 ‖u1 − u2‖L4(Ω)2

≤ 2c2
1 R ‖∇(u1 − u2)‖2

L2(Ω)4 = 2c2
1 R |||u1 − u2|||2, (16)

where the constant c1 comes from the inequality ‖u‖L4(Ω)2 ≤ c1 ‖∇u‖L2(Ω)4 (which
can be found in [3]) for functions u from H1(Ω)2. The term I3 equals

I3 =

∫

Γo

1

2
(u1 · n)− u1 · (u1 − u2) dS −

∫

Γo

1

2
(u2 · n)− u2 · (u1 − u2) dS.

According to the signs of u1 · n and u2 · n on Γo, we must split Γo into four parts
Γo = Γo1 ∪ Γo2 ∪ Γo3 ∪ Γo4, where

(a) u1 · n ≥ 0, u2 · n ≥ 0, (u1 · n)− = 0, and (u2 · n)− = 0 on Γo1;

(b) u1 · n < 0, u2 · n ≥ 0, (u1 · n)− = u1 · n, and (u2 · n)− = 0 on Γo2;

(c) u1 · n ≥ 0, u2 · n < 0, (u1 · n)− = 0, and (u2 · n)− = u2 · n, on Γo3;

(d) u1 · n < 0, u2 · n < 0, (u1 · n)− = u1 · n, and (u2 · n)− = u2 · n on Γo4.

Let us denote by Io1
3 , Io2

3 , Io3
3 , and Io4

3 the same integrals as in I3, but this time
considered successively on Γo1, Γo2, Γo3, and Γo4. Obviously, Io1

3 = 0 because the
integrands are equal to zero on Γo1. On Γo2 we use the inequality |u1 ·n| ≤ |u1 ·n−
u2 · n|, which holds because u1 · n < 0 and u2 · n ≥ 0. We obtain

|Io2
3 | =

∣∣∣∣
∫

Γo2

(u1 · n)−u1 · (u1 − u2) dS

∣∣∣∣ ≤
∫

Γo2

|u1 · n− u2 · n| |u1| |u1 − u2| dS

≤
∫

Γo2

|u1 − u2|2 |u1| dS ≤ ‖u1 − u2‖2
L4(Γo2)2 ‖u1‖L2(Γo2)2

≤ ‖u1 − u2‖2
L4(Γo)2 ‖u1‖L2(Γo)2 ≤ c2 ‖u1 − u2‖2

H1(Ω)2 ‖u1‖H1(Ω)2

≤ c3 |||u1 − u2|||2 ‖∇u1‖L2(Ω)4 ≤ c3 R |||u1 − u2|||2, (17)
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where the constants c2 and c3 come from the inequalities ‖u‖L2(Γo)2 ≤ c2 ‖u‖H1(Ω)2 ≤
c3 ‖∇u‖L2(Ω)4 (which can be found in [3]) for functions u from H1(Ω)2. The term Io3

3

can be estimated in the same way as Io2
3 . The term Io4

3 can be treated as follows

|Io4
3 | =

∣∣∣∣
∫

Γo4

(u1 · n) u1 · (u1 − u2) dS −
∫

Γo4

(u2 · n) u2 · (u1 − u2) dS

∣∣∣∣

=

∣∣∣∣
∫

Γo4

[(u1 − u2) · n] u1 · (u1 − u2) dS +

∫

Γo4

(u2 · n) (u1 − u2) · (u1 − u2) dS

∣∣∣∣

≤
∫

Γo4

|u1 − u2| |u1| |u1 − u2| dS +

∫

Γo4

|u2| |u1 − u2| |u1 − u2| dS

≤ ‖u1 − u2‖2
L4(Γo4)2

(‖u1‖L2(Γo4)2 + ‖u2‖L2(Γo4)2
)

≤ ‖u1 − u2‖2
L4(Γo)2

(‖u1‖L2(Γo)2 + ‖u2‖L2(Γo)2
)

≤ c4 ‖∇u1 −∇u2‖L2(Ω)4 c3

(‖∇u1‖L2(Ω)4 + ‖∇u2‖L2(Ω)4
) ≤ 2c4 |||u1 − u2|||2 c3 R,

where the constant c4 comes from the inequality ‖u‖L4(Γo)2 ≤ c4 ‖∇u‖L2(Ω)4 (which
can be found in [3]) for functions u from H1(Ω)2. Substituting from (16), (17) and
from the last inequality into (15), we obtain

ν |||u1 − u2|||2 ≤ (2c2
1 + 2c3 + 2c3c4) R |||u1 − u2|||2.

Now it is seen that if R is so small that ν > (2c2
1 + 2c3 + 2c3c4) R then u1 = u2.

This proves the theorem. ¤
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