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Abstract

In this work, artificial compressibility method is used to solve steady and unsteady

flows of viscous incompressible fluid. The method is based on implicit higher order

upwind discretization of Navier-Stokes equations. The extension for unsteady simu-

lation is considered by increasing artificial compressibility parameter or by using dual

time stepping. The methods are tested on laminar flow around circular cylinder and

used to simulate turbulent unsteady flows by URANS approach. The simulated cases

are synthetic jet and flow in a branched channel.

1. Introduction

The work deals with numerical solution of incompressible viscous (laminar and
turbulent) unsteady flows. The solved cases include flows with self-induced un-
steadiness – laminar flow around circular cylinder, turbulent flow through branched
channel, and unsteadiness caused by periodic forcing – synthetic free jet.

The algorithm used in this work is based on artificial compressibility method.
The idea, proposed by Chorin [2], is to complete continuity equation by a pressure
time derivative 1

β2

∂p
∂t

and then use some numerical scheme for compressible flow
computation. With steady boundary conditions and time dependent method steady
solution may be achieved for t → ∞. An extension for unsteady simulation is
achieved by introducing dual time and using implicit discretization for both physical
and artificial time.

2. Mathematical model

The governing equations are Navier-Stokes (NS) equations for incompressible
fluid (density ρ = const) in Cartesian coordinates
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where ui is velocity vector, p static pressure and ν kinematic viscosity of the fluid.
A convenient time marching algorithm for NS equations for incompressible flow can
be achieved by artificial compressibility method. In its simplest form, only the
continuity equation is modified by pressure time derivative

1

β2

∂(p/ρ)

∂t
+

∂ui

∂xi
= 0, (2)

where β is positive parameter. The inviscid part of modified NS equations is now
fully hyperbolic and can be solved by standard methods for hyperbolic conservation
laws. The system including continuity equation and two momentum equations in 3D
can be written as

Γ
∂W

∂t
+Rez(W ) = 0, Γ = diag[β−2, 1, 1, 1], W = col[p/ρ, u1, u2, u3], (3)

(x1, x2, x3) ∈ D, t ∈ (0,∞), Rez(W ) =
∂(uiuj)

∂xj
+

∂(p/ρ)

∂xi
− ν

∂

∂xj

(

∂ui

∂xj
+

∂uj

∂xi

)

whereW is vector of unknown pressure and velocity components, and steady residual
Rez(W ) is zero for steady solution. However, the divergence free velocity field is not
achieved before steady state at which ∂p/∂t = 0. In unsteady case, the velocity
divergence error may have negligible impact on relevant flow parameters if the β2 is
large enough.

Other possibility of dealing with unsteadiness is to introduce artificial (dual,
iterative) time τ and apply the artificial compressibility method in this time:

Γ
∂W

∂τ
+Rezuns(W ) = 0, Rezuns(W ) = R

∂W

∂t
+Rez(W ), (4)

R = diag[0, 1, 1, 1], (x1, x2, x3) ∈ D, t ∈ (tn, tn+1), τ ∈ (0,∞)

where Rezuns(W ) is unsteady residual. The steady state in τ now should be achieved
at each physical time level t.

2.1. Turbulence modelling

In order to simulate turbulent flows the Reynolds averaging procedure is used
leading to the Reynolds-averaged Navier-Stokes (RANS) system of equations. For
unsteady simulation it formally becomes URANS (unsteady RANS) approach. The

164



physical meaning is maintained if the simulated unsteadiness is far enough from
turbulent unsteadiness with time and length scale respectively

τt ≈
k

ǫ
, lt ≈

k3/2

ǫ
, (5)

where k is turbulent energy and ǫ turbulent dissipation rate. For unsteady flow with
periodic forcing the averaging is phase averaging. The averaged equations formally
differ from Navier-Stokes equations by additional momentum transport expressed by
the Reynolds stress tensor. In this work, the Reynolds stress is modelled using Shear
Stress Transport (SST) model [5] and an explicit algebraic Reynolds stress model
(EARSM) [9, 3]. In the SST model, the extended eddy-viscosity assumption is used
to express the Reynolds stress, while in EARSM a constitutive relation contains
terms up to fourth order in terms of velocity gradient. Both turbulence models
require solving a system of k-ω equations for turbulent scales (ω ∼ ǫ/k).

2.2. Numerical methods

The stability limitation for an explicit artificial compressibility method requires
∆t ∼ L/β, where L is minimum step size of a numerical grid. In view of the necessity
to increase β and of application to simulation of viscous flows, an implicit three-layer
scheme of second order accuracy is used. For single time method, the scheme reads

Γ
3W n+1

i,j,k − 4W n
i,j,k +W n−1

i,j,k

2∆t
+Rez(W )n+1

i,j,k = 0. (6)

For dual time method, the scheme is backward Euler in artificial time (superscript µ)

Γ
W µ+1

i,j,k −W µ
i,j,k

∆τ
+R

3W µ+1

i,j,k − 4W n
i,j,k +W n−1

i,j,k

2∆t
+Rez(W )µ+1

i,j,k = 0. (7)

The steady residuals are computed by a cell-centered finite volume method with
quadrilateral or hexahedral finite volumes in 2D and 3D, respectively. The dis-
cretization of convective terms uses third order accurate van Leer upwind interpola-
tion. Pressure gradient is computed by central approximation. The viscous terms are
approximated using 2nd order central scheme, with cell face derivatives computed
on a dual grid of quadrilaterals/ octahedrons in 2D/ 3D constructed over each face
of primary grid using vertices of the face and centres of two adjacent finite volumes.

3. Numerical results

3.1. Laminar flow around a cylinder

In this section, 2D laminar flow around the circular cylinder is considered. The
first test case is circular cylinder of diameterD placed excentrically inside channel [6].
The Reynolds number Re = UD/ν = 100, where U is bulk inlet velocity. At this
Reynolds number, unsteady periodic flow evolves due to the vortex shedding on
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reference [6] β = U β = 10U dual time (β = U)
max(cD) 3.10–3.28 3.39 3.27 3.10
max(cL) 0.99–1.01 0.77 1.09 0.98
St = Df/U 0.295–0.305 0.196 0.288 0.294

Table 1: Drag, lift and the Strouhal number for flow around cylinder in channel.

Re 47 50 60 80 100 120 140
St 0.1336 0.1362 0.1438 0.1547 0.1642 0.1733 0.1821
CD (mean) 1.55 1.53 1.50 1.43 1.36 1.34 1.34
CL (ampl.) 0.15 0.18 0.22 0.22 0.23 0.34 0.45

Table 2: Strouhal number, drag and lift coefficients for cylinder in free space.

the cylinder. The computed force on the cylinder (FD, FL) is expressed by drag
coefficient CD = 2FD/(ρU

2D) and lift coefficient CL = 2FL/(ρU
2D) are compared

with reference compilation [6] as well as the Strouhal number St = D/(TU), where
T is period of the force, see Tab. 1. For single time method with β = U , the Strouhal
number is too small. In the case of β = 10U , the results improve. However this
value of β was about the maximum for an acceptable time step (∆t = 0.02D/U).
The results of dual time stepping method using β = U,∆t = 0.06D/U are clearly
best, however at the cost of higher CPU time. The time evolution of drag and lift
for the mentioned cases are shown in Figs.1, 2 and 3.

The evolution of L2-norm of steady and unsteady residual is shown
in Fig. 4 (Re = 100). The convergence of pressure is worst, which is typical for
this form of artificial compressibility method. The behaviour does not change for
β =

√
0.1 or

√
10 either.

Next we consider cylinder in a free stream of velocity U . The cylinder is placed
in the middle of the computational domain of size 40D(streamwise) × 100D. The
results are achieved with dual time method with β = U,∆t = 0.06D/U .

Figure 5 shows dependency of the Strouhal number (frequency) of vortex shed-
ding for different Reynolds numbers, in comparison with empirical corelation St =
0.266− 1.016/

√
Re [10]. The critical Reynolds number where vortex shedding starts

is recently measured at Re = 47.5± 0.7 [10]. In our computation, the flow is steady
for Re = 30, unsteady but non-periodic for Re = 40 and periodic at Re = 47 (shown
in Fig. 5). However for lower Re the computed shedding frequency is higher than the
empirical correlation. Another computational attempt [8], probably on finer grid,
shows good agreement with experiment however predicted much higher critical Re.
The results are summarized in Tab. 2. An example of flow-field (Re = 100) is shown
in Fig. 6.
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Figure 1: Laminar flow around cylin-
der, β = U .
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Figure 2: Laminar flow around cylin-
der, β = 10U .
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Figure 3: Laminar flow around cylinder, dual time stepping. Left: evolution from
initial state, right: zoom of periodic flow.
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Figure 4: Laminar flow around cylinder, convergence history for dual time method.
Left: steady residual showing that we have unsteady solution, right: typical history
of unsteady residual showing convergence for unsteady flow between time tn and
tn+1.
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Figure 6: Isolines of velocity around cylinder in free space. Above: instantaneous
velocity, below: time averaged velocity.

3.2. Turbulent 3D synthetic free jet flow

In this part, we consider the synthetic jet generated by periodical inflow/outflow
with zero mean value in the circular nozzle [7]. The Reynolds number from nozzle
diameter and velocity amplitude Re = UmaxD/ν = 13 325. Turbulence is modelled
by the SST model. We used dual time stepping method with β = Umax and ∆t =
T/72 with forcing period T = 1/(75Hz). The computed instantaneous velocity on
jet axis is compared with measured [7] phase averaged velocity in Fig. 9. For larger
x/D, the flowfield corresponds to steady free jet. Next Fig. 10 shows time averaged
velocity on jet axis. The computational results achieved using Fluent code with
axisymmetrical formulation in [7] are also shown. The velocity on the axis by Fluent
decreases too fast, which suggests higher spreading rate than in experiment. The
time averaged velocity profiles exhibit self-similarity already in the unsteady region.
The computational results, Fig. 11, have this feature except for small distance to the
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Figure 8: Solution domain for channel
junction.
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Figure 9: Phase averaged velocity on jet axis. Left: computation, right: measure-
ment.
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nozzle, where an approximate boundary condition again plays a role. In this figure,
the r0.5 denotes the radial distance from jet axis, where the velocity reaches half of
the axial velocity. Velocity profiles moreover agree well with empirical correlation
U/Uax = exp[− ln(2)(r/r0.5)

2] according to [1].

3.3. Turbulent 3D flow in channel with branch

Here, turbulent flow in a channel with perpendicular branch is considered. In
ref. [4], the channel had 1 inlet in the main channel and 2 outlets: from main channel
and from the branch. In the following the case with inlet through branch and 2 outlets
from the main channel is presented. The solution domain as well as finite volume
grid is same as in [4]. The Reynolds number computed from inlet diameter and bulk
velocity is Re = 140 000. Different distribution of outflow into the outlets can be
prescribed. The target flow rates are achieved using 2 conditions for pressure in the
outlets:

α) “do-nothing”-like condition

µ
∂u

∂n
− p = pref (8)

where u is velocity component normal to the outlet plane, µ dynamic viscosity,
p pressure and pref an arbitrary constant

β) correction for target flow rate Ubt

∂p

∂n
= −

Ubt − Ub

∆t
(9)

where Ub is flow rate at time tn and ∆t = tn+1 − tn

The condition α can be used in 1 outlet only and needs to be combined with e.g. con-
dition β. The condition β can be used in both outlets. Any of these 3 combinations
worked comparably well in the simulated cases.

The distribution of outflow is 20:80, total flow-rate 5.5 l/s. In this configuration
the simulation became unsteady and is interpreted in URANS sense. The Fig. 12
shows isolines of instantaneous and time averaged velocity near the junction. They
seem quite similar. However, the next Fig. 13 shows that the resolved turbulent
energy is comparable in magnitude to the turbulent energy from the turbulence
model (color scale is same in both figures). The resolved unsteadiness is confined
mainly to outlet channels. The comparison with PIV measurement is shown in
Fig. 14 in terms of isolines of velocity.

4. Conclusions

In this work an artificial compressibility implicit upwind finite-volume method
has been applied to unsteady flows of incompressible newtonian fluid. The computed
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Figure 12: Isolines of instantaneous (left) and time averaged (right) velocity in the
center-plane of T-channel.

Figure 13: Isolines of modelled turbulent energy k (left) and resolved turbulent
energy (right) in the center-plane of T-channel.

Length[m/s]: 0.5 1 1.5 2 2.5 3 3.5 4 4.5
VEL: 0.2 0.4 0.5 0.7 0.9 1.1 1.2 1.4 1.6

Figure 14: Velocity in the channel junction – experiment (left) and simulation (right).

cases included self-induced as well as forced unsteadiness. In single time method,
the implicit discretization is necessary to overcome stability restriction when increas-
ing artificial compressibility parameter. Although the computed lift force and the
Strouhal number are satisfactory, the drag force is mis-predicted. The dual time
stepping method is found more reliable and of sufficient accuracy also for studied 3D
turbulent flows. The downside is that it is more CPU time consuming than single
time method.
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