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Abstract

In this paper, we present a parallel scheme to solve the population balance equa-
tions based on the method of characteristics and the finite element discretization. The
application of the method of characteristics transform the higher dimensional popula-
tion balance equation into a series of lower dimensional convection-diffusion-reaction
equations which can be solved in a parallel way. Some numerical results are presented
to show the accuracy and efficiency.

1. Introduction

In this paper, we propose a parallel scheme to solve the population balance equa-
tion (PBE) based on the application of the method of characteristics and the finite
element method. The PBEs aries from the model of the industrial crystallization
process (see, e.g., [7, 11, 12] and the references cited therein). Recently, more and
more researchers are interested in the numerical methods for PBEs (c.f. [1, 5, 6, 7]).
In PBEs, besides the normal space and time variables, the distribution of entities
also depends on their own properties which are referred to as internal coordinates.
It is a high dimensional system of equations which is a big challenge from the com-
putational point of view. In order to overcome this difficulty, we use the method
of characteristics (c.f. [2, 4]) to transfer the original problem to a series of lower-
dimensional convection-diffusion-reaction problems which are defined on the char-
acteristics curves and the spatial directions. Based on the data structure for the
method of characteristics, a parallel implementation can be applied to do the simu-
lation process that can improve the computational efficiency.

So far, there exists the alternating direction (operator splitting) method for the
PBE by decomposing the original problem into two unsteady subproblems of smaller
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complexity (see, e.g., [1, 5, 6]). In the two subproblems, the ordering of the data
for the solution needs to be different, since they are discretized in different direc-
tion (c.f. [1]). It is not so suitable for the parallel implementation and prevents the
further improvement of the computation efficiency for the PBE.

In the present paper, we use the method of characteristics to transform the PBE
into a series of convection-diffusion-reaction equations on the characteristic curves
in each time step. Then the finite element method is applied to solve the series of
convection-diffusion-reaction problems. Furthermore, based on the data structure of
the numerical scheme, a parallel scheme is constructed to solve the PBE based on
the distributed memory. Some numerical results are provided to check the efficiency
of this parallel method.

The rest of the paper will go as follows: Section 2 introduces the model problem
under consideration and defines some notation. In Section 3, we describe the method
of characteristics for solving the PBE. The finite element discretization for the PBE
is described in Section 4. Then Section 5 gives the parallel implementation way
for the full discrete form of the PBE. The numerical results are given in Section 6
to validate the efficiency of the numerical method proposed in this paper. Some
concluding remarks are given in the last section.

2. Model problem

Let Ω
x
be a simply connected domain inRd (d = 2 or 3) with Lipschitz continuous

boundary ∂Ω
x
, Ωℓ = [ℓmin, ℓmax] ⊂ R, and T > 0. The state of the individual particle

in the PBE equation may consists of the external coordinate x (x = (x1, . . . , xd)),
denoting its position in the physical space, and the internal coordinate ℓ, representing
the properties of particles, such as size, volume, temperature etc. A PBE for a solid
process such as crystallization with one internal coordinate can be described by the
following partial differential equation:

Find z : (0, T ]× Ωℓ × Ω
x
→ R such that















∂z/∂t +G(ℓ)∂ℓz − ε∆
x
z + b(x) · ∇

x
z = f(t, ℓ,x) in (0, T ]× Ωℓ × Ω

x
,

z(0, ℓ,x) = zinit(ℓ,x) in Ωℓ × Ω
x
,

z(t, ℓmin,x) = zbdry(t,x) on (0, T ]× Ω
x
,

z(t, ℓ,x) = 0 on (0, T ]× Ωℓ × ∂Ω
x
,

(1)

where the diffusion coefficient ε > 0 is a given constant, ∆
x
and ∇

x
denote the

Laplacian and gradient with respect to x, respectively, b is a given velocity and
satisfies ∇

x
·b = 0, and f is a source function. Here G(ℓ) > 0 represents the growth

rate of the particles that depends on ℓ but is independent of x and t. Furthermore,
let us assume the data G(ℓ), b, f , zinit and zbdry are sufficiently smooth functions for
our error estimate analysis.
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Now we introduce some notation of the function spaces (see [2, 3]). Let Hm(Ω
x
)

denote the standard Sobolev space of functions with derivatives up to m in L2(Ω
x
)

and the norm is defined by

‖v‖Hm(Ωx) =





∫

Ωx

m
∑

0≤|α|≤m

∣

∣

∣

∂αv

∂xα

∣

∣

∣

2

dx





1/2

,

where α denote a non-negative multi-index α = {α1, . . . , αd}, |α| =
∑

1≤j≤d αj, and

∂αv

∂αx
=

∂α1...αdv

∂xα1

1 . . . xαd

d

.

We use (·, ·)
x
and ‖ · ‖L2(Ωx) to denote the L2-inner product and the associated norm

in Ω
x
, respectively, which are defined as follows

(v, w)
x
=

∫

Ωx

vwdx and ‖v‖2L2(Ωx) = (v, v)
x
.

Let X be a Banach space with the norm ‖ · ‖X . Then we define

C(Ωℓ;X) =
{

v : Ωℓ → X : v is continuous
}

,

Wm,∞(Ωℓ;X) =
{

v : Ωℓ → X :
∥

∥

∥

∂jv

∂ℓj

∥

∥

∥

X
<∞, 0 ≤ j ≤ m

}

,

Wm,∞((0, T ];X) =
{

v : (0, T ] → X :
∥

∥

∥

∂jv

∂tj

∥

∥

∥

X
<∞, 0 ≤ j ≤ m

}

,

where the derivatives ∂jv/∂ℓj and ∂jv/∂tj are understood in the sense of distributions
on Ωℓ and (0, T ], respectively. The norms in the above defined spaces are given as
follows

‖v‖C(Ωℓ;X) = sup
ℓ∈Ωℓ

‖v(ℓ)‖X,

‖v‖Wm,∞(Ωℓ;X) = max
0≤j≤m

sup
ℓ∈Ωℓ

∥

∥

∥

∂jv

∂ℓj

∥

∥

∥

X
,

‖v‖Wm,∞((0,T ];X) = max
0≤j≤m

sup
t∈(0,T ]

∥

∥

∥

∂jv

∂tj

∥

∥

∥

X
.

For spaces X , Y and Z, we use the short notation Z(Y (X)) := Z((0, T ]; (Y (Ωℓ;X))
in this paper.

3. Method of characteristics

In this section, we describe the method of characteristics (c.f. [2, 4, 9]) for the
PBE (1). The reason we adopt this method for the discretization in the product space
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(0, T ]× Ωℓ is that it has the suitable data structure for the parallel implementation
which will be discussed in the following sections.

First we set

ψ(t, ℓ) = (1 +G(ℓ)2)1/2.

Let the characteristic direction associated with the hyperbolic part of (1), ∂z/∂t +
G(ℓ)∂z/∂ℓ, be denoted by s(t). Then

∂

∂s
=

1

ψ

∂

∂t
+
G(ℓ)

ψ

∂

∂ℓ
. (2)

Then (1) can be written as














ψ∂z/∂s − ε∆
x
z + b(x) · ∇

x
z = f in (0, T ]× Ωℓ × Ω

x
,

z(0, ℓ,x) = zinit(ℓ,x) in Ωℓ × Ω
x
,

z(t, ℓmin,x) = zbdry(t,x) on (0, T ]× Ω
x
,

z(t, ℓ,x) = 0 on (0, T ]× Ωℓ × ∂Ω
x
.

(3)

We use uniform partitions for the time interval (0, T ] and the internal coordinate
interval Ωℓ, respectively. Let τ = T/N , ι = (ℓmax−ℓmin)/M , tn = nτ , n = 0, 1, . . . , N
and ℓm = ℓmin +mι, m = 0, 1, . . . ,M . In order to satisfy the stability condition, we
set

τ ≤
ι

maxℓmin≤ℓ≤ℓmax
G(ℓ)

. (4)

Then starting with z(0, ℓ,x) = zinit, z(t, ℓmin,x) = zbdry(t,x), the equation (3) can
be discreted in each sub-intervals (tn−1, tn] × (ℓm−1, ℓm] × Ω

x
(n = 1, 2, . . . , N and

m = 1, 2, . . . ,M) as follows.
First we compute

ℓ̌m = ℓm − τG(ℓm). (5)

Actually, this is a first order discretization to obtain the approximation at the time
level t = tn−1 for the following characteristic ordinary differential equation (c.f. [4]):

{

dℓ/dt = G(ℓ) in [tn−1, tn),
ℓ(tn) = ℓm.

(6)

From the condition (4), we have ℓ̌m ≥ ℓmin for m ≥ 1. Then we compute the
direction differential ψ ∂z

∂s
at the node (tn, ℓm) in the following way

ψ(tn, ℓm)
∂z

∂s
(tn, ℓm,x) ≈ ψ(tn, ℓm)

z(tn, ℓm,x)− ž(tn−1, ℓ̌m,x)

(τ 2 + (ℓm − ℓ̌m)2)1/2

=
z(tn, ℓm,x)− ž(tn−1, ℓ̌m,x)

τ
, (7)
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where ž (tn−1, ℓ̌m,x) := αn
m z (t

n−1, ℓm−1,x) + (1 − αn
m) z (t

n−1, ℓm,x) with αn
m =

(ℓm − ℓ̌m)/ι.
In order to give the semi-discrete form of the PBE, we set znm(x) ≈ z(tn, ℓm,x).

Then the semi-discrete form of the PBE can be defined as follows:














znm(x)−žnm(x)
τ

− ε∆
x
znm(x) + b(x)∇

x
znm(x) = fn

m(x) in Ω
x
,

z0m(x) = zminit(x) for x ∈ Ω
x
,

zn0 (x) = zbdry(t
n,x) for (0, T ]× Ω

x
,

znm(x) = 0 for m = 1, 2, . . . ,M on ∂Ω
x
,

(8)

where fn
m(x) = f(tn, ℓm,x), ž

n
m(x) = αn

mz
n−1
m−1(x) + (1− αn

m)z
n−1
m (x).

From the Taylor expansion method, we can derive the following error estimate
for the semi-discrete form (8)

‖z(tn, ℓm,x)− znm(x)‖C(X) ≤ Cτ‖z(t, ℓ,x)‖W 2,∞(W 1,∞(X)), (9)

where the space X can be L2(Ω
x
) or H1(Ω

x
).

4. Finite element method

In this section, we give the fully discrete form of the PBE by the finite element
method. Let Vh be a finite element subspace of H1

0 (Ωx
) which has the k-th order of

accuracy (c.f. [2, 3]):

inf
vh∈Vh

‖u− vh‖H1(Ωx) ≤ Chk‖u‖Hm+1(Ωx) ∀u ∈ Hm+1(Ω
x
). (10)

and

inf
vh∈Vh

‖u− vh‖L2(Ωx) ≤ Chk+1‖u‖Hm+1(Ωx) ∀u ∈ Hm+1(Ω
x
). (11)

Based on the finite element space Vh, we can define the fully discrete form for the
PBE as follows:

For the n-th time step t = tn and m = 0, 1, . . . ,M , find znm,h ∈ Vh such that











(

zn
m,h

−žn
m,h

τ
, vh

)

+ a(znm,h, vh) = (fn
m(x), vh) ∀vh ∈ Vh,

a0(z
0
m,h, vh) = a0(zinit(ℓm,x), vh) ∀vh ∈ Vh, m = 1, . . . ,M,

a0(z
n
0,h, vh) = a0(zbdry(t

n,x), vh) ∀vh ∈ Vh,

(12)

where žnm,h = αn
mz

n−1
m−1,h + (1− αn

m)z
n−1
m,h with αn

m being defined in Section 3 and

a(u, v) =

∫

Ωx

(

ε∇u · ∇v + b(x) · ∇u v
)

dx,

a0(u, v) =

∫

Ωx

∇u · ∇vdx.
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From the standard error estimate theory of the finite element method (c.f. [2, 3]),
the fully discrete form (12) has the following error estimates

max
1≤m≤M

‖z(T, ℓm,x)− zNm,h‖H1(Ωx) ≤ C(τ + hk)‖z‖W 2,∞(W 1,∞(Hk+1(Ωx))) (13)

and

max
1≤m≤M

‖z(T, ℓm,x)− zNm,h‖L2(Ωx) ≤ C(τ + hk+1)‖z‖W 2,∞(W 1,∞(Hk+1(Ωx))). (14)

5. A parallel way

In this section, we present a parallel scheme to solve the PBE (1) based on the full
discrete (12). Fortunately, from (12), we can find that the finite element equation
is independent for each m in any time step tn. Based on this property, we can
construct a type of parallel scheme to implement the full discretization of the fully
discrete form (12).

Assume we use P processors to compute the PBE. Decompose the set
{0, 1, 2, . . . ,M} into P subsets m1,m2, . . . ,mP such that m1 = {0, 1, . . . , m1 − 1},
mp={mp−1, mp−1+1, . . . , mp− 1} (p=2, . . . , P − 1) and mP ={mP−1, . . . , mP − 1}.
In the p-th processor, the equation (12) is solved on the sub-intervals (tn−1, tn] ×
(ℓmp−1

, ℓmp−1] × Ω
x
(n = 1, 2, . . . , N , p = 1, 2, . . . , P , ℓ0 = ℓmin and ℓM = ℓmax). Be-

cause the growth rate of the particlesG(ℓ) is positive, the dependence of each point ℓm
is on the left (ℓ < ℓm). This means that the solution zn−1

mp−1,h in the p-th processor as

the initial condition for the (p+ 1)-th processor computing at the time step tn.
We allocate the memory in the p-th processor (p = 1, . . . , P ) to save the solutions

znmp−1,h
, . . . , znmp−1,h and the p-th processor (p = 1, . . . , P − 1) should send its saved

solutions to the next (p+1)-th processor after each time step computation. Obviously,
for p = 1, we need to use the boundary condition zbdry(t,x). Similarly for p = P ,
the sending of solutions is not required since it is the last processor. Based on this
distribution of the memory and the computation of the scheme (12), we can construct
the following parallel algorithm for the PBE.

Algorithm 5.1. Parallel algorithm for PBE

For n = 1, 2, . . . , N do

1. On each processor, compute the solution znm,h for m ∈ mp (p = 1, 2, . . . , P ) in
sub-interval (tn−1, tn]× (ℓmp−1

, ℓmp−1].

2. For p = 1, 2, . . . , P − 1, send the solutions obtained in the p-th processor
znm,h (m ∈ mp) to the (p+ 1)-th processor.

3. If n < N , set n := n+ 1 and go to Step 1. Else stop.
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6. Numerical results

In this section, we provide some numerical results to validate the numerical
scheme proposed in this paper. Let Ω

x
= [0, 1]× [0, 1], Ωℓ = [0, 1], T = 1, ε = 1, and

b(x) = (1, 1)T . We chose the functions f(t, ℓ,x), zinit(ℓ,x) and zbdry(t,x) such that
the exact solution is

z(t, ℓ, x, y) = e−at sin(πℓ) sin(πx) sin(πy)

with a = 0.1. The growth rate of the particles is G(ℓ) = 1
2
+ 2(1− ℓ)ℓ.

First, we check the convergence order for the error estimates

‖e‖0 = max
1≤m≤M

‖z(T, ℓm,x)− znm,h‖L2(Ωx) (15)

and

‖e‖1 = max
1≤m≤M

‖z(T, ℓm,x)− znm,h‖H1(Ωx). (16)

The convergence order of the linear and quadratic finite element method for the
discretization in Ω

x
is shown in Tables 1 and 2. We see that the experimental results

of convergence approach to the theoretically predicated values both for linear and
quadratic elements.

mesh size h ‖e‖0 ‖e‖1
error order error order

2−2 4.5702E-01 2.6897E-00
2−3 1.4872E-01 1.6197 1.5128E-00 0.8302
2−4 4.0481E-02 1.8773 7.8083E-01 0.9541
2−5 1.0318E-02 1.9721 3.9359E-01 0.9883
2−6 2.7230E-03 1.9219 1.9720E-01 0.9970

Table 1: Errors (15) and (16) and the corresponding rates of convergence for linear
element with τ = ι = h2.

mesh size h ‖e‖0 ‖e‖1
error order error order

2−1 6.0137E-01 2.5073E-00
2−2 6.3958E-02 3.2331 8.5316E-01 1.5552
2−3 7.4660E-03 3.0987 2.3528E-01 1.8584
2−4 9.5200E-04 2.9713 6.0522E-02 1.9588

Table 2: Errors (15) and (16) and the corresponding rates of convergence for
quadratic element with τ = ι = h3.
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size of internal ‖e‖0 ‖e‖1
coordinate ι error order error order

2−2 6.3862E-01 2.8423E-00
2−3 3.4562E-01 0.8858 1.5382E-00 0.8858
2−4 1.7650E-01 0.9695 7.8427E-01 0.9718
2−5 8.8689E-02 0.9928 3.9404E-01 0.9930
2−6 4.4398E-02 0.9983 1.9726E-01 0.9980

Table 3: Errors (15) and (16) and the corresponding rates of convergence in the
internal coordinate for the quadratic element with h = ι and τ = ι2.

number of processors 8 16 32 64 128
time (in seconds) 28103.01 13555.03 6832.26 3708.71 1840.43
rate of speed up 1.00 2.07 4.11 7.57 15.26

Table 4: Strong parallel test with linear element h = 1/256, τ = 1/512 and ι = 1/512.

number in ℓ 1 2 4 8 16
8 9.30 15.30 27.51 55.28 116.42
16 9.91 15.44 28.44 59.44 117.24
32 9.85 16.98 32.02 60.93 118.89
64 10.01 17.28 32.66 63.88 121.96
128 10.21 17.98 33.55 64.27 127.63

Table 5: Weak parallel test with linear element h = 1/256: average time in seconds.

number in ℓ 1 2 4 8 16
8 11.19 16.10 27.60 60.52 120.26
16 11.26 16.43 31.54 61.36 120.83
32 12.73 18.50 35.29 68.18 131.98
64 11.20 19.63 36.39 75.43 133.55
128 12.86 20.28 38.01 73.63 146.01

Table 6: Weak parallel test with linear element h = 1/256: maximum time in
seconds.

We also check the convergence order for the method of characteristics developed
in Section 3. The corresponding numerical result are provided in Table 3. From this
table, we can find the convergence order is 1 which is the same as in (9).
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Now we come to check the efficiency of the parallel scheme of Algorithm 5.1. For
this aim, we set the discretization parameters h = 1/256, τ = ι = 1/512 and use the
linear finite element method. The run-time (in seconds) is shown in Table 4. From
Table 4, we can find that the parallel Algorithm 5.1 has a good expansibility.

We also check the run-time in each processor for different scale in each processor.
For each test, we run 8 time steps (N = 8). Tables 5 and 6 show the corresponding
run-time (in seconds) for the average time and maximum time, respectively, for all
the processors. These two tables also show that Algorithm 5.1 has good parallel
properties.

7. Concluding remarks

In this paper, we are concerned with the parallel numerical method for the PBEs
with one internal coordinate posed on the domain (0, T ]×Ωℓ×Ω

x
with the dimension

1 + 1 + d. The parallel scheme is based on the method of characteristics and the
finite element discretization. Some numerical results are also provided in Section 6
to demonstrate the efficiency of the proposed method.

Here, for the simplicity of the description of the numerical method, we assume
the diffusion coefficient ε to be large enough such that the diffusion is dominated.
For the convection dominated case (c.f. [1, 10, 13]), we will combine the method of
characteristics and the stabilized finite element methods (c.f. [1, 2, 13, 10]) and this
is our future work. Furthermore, the parallel method should also be applied to the
simulation of the industrial crystallization process (c.f. [11, 12]) and other similar
models (c.f. [7]).
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