
PANM 18

Stanislav Bartoň; Lukáš Renčín
A. C. Clarke’s Space Odyssey and Newton’s law of gravity

In: Jan Chleboun and Pavel Kůs and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský (eds.):
Programs and Algorithms of Numerical Mathematics, Proceedings of Seminar. Janov nad Nisou, June 19-24, 2016.
Institute of Mathematics CAS, Prague, 2017. pp. 7–14.

Persistent URL: http://dml.cz/dmlcz/702992

Terms of use:
© Institute of Mathematics CAS, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for
personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://dml.cz

http://dml.cz/dmlcz/702992
http://dml.cz


Programs and Algorithms of Numerical Mathematics 18
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Abstract: In his famous tetralogy, Space Odyssey, A. C. Clarke called the
calculation of a motion of a mass point in the gravitational field of the massive
cuboid a classical problem of gravitational mechanics. This article presents
a proposal for a solution to this problem in terms of Newton’s theory of grav-
ity. First we discuss and generalize Newton’s law of gravitation. We then
compare the gravitational field created by the cuboid — monolith, with the
gravitational field of the homogeneous sphere. This is followed by the calcula-
tion of the shape of free fall trajectories and the solving of Newton’s equations
of motion, defining the motion of the mass point in the monolith’s gravitational
field for general initial conditions. The final section describes the procedures
for calculating the shape of the monolith’s equipotential surfaces. Due to
the complexity of the problems, all calculations are performed in the Maple
program. The results of the calculations are illustrated using both 2D and
3D graphs.
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1. Introduction

In A. C. Clarke’s Space Odyssey, namely [3] and [4], he dealt, among other things,
with the motion of a spacecraft in the gravitational field of a cuboid with dimensions
in the ratio of 1:4:9. He even calls the calculation of the trajectory a classical problem
of gravitational mechanics. Let us try to solve this problem using classical mechanics
and Newton’s equations of motion.

2. Newton’s law of gravitation

Let us take two mass pointes m1 and m2. The first point is at the origin of
the coordinate system, and the second point is on the coordinates [x, y, z]. Accord-
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ing to Newton’s law of gravitation, [5], the two points attract each other with

a force ~F :

~F =
κm1m2

x2 + y2 + y2
~e12, where

κ = Newton’s gravitational constant

~e12 =
the unit vector of the line
connecting m1 and m2

(1)

This law can be generalized with a complex equation for the calculation of the
gravitational pull of two homogeneous spheres of identical mass.

First, let us assume a gravitational pull of the homogeneous sphere with a massM1,
and radius R, with a mass point m2 located on the coordinates [X, 0, 0], X > R.
Interestingly, it is impossible to achieve the expected result |F | = κm2M1X

−2 by
integration of the |F | = κm2

∫
M1
X−2 dM1; it is necessary to calculate the potential

energy of the mass point m2 in the gravitational field of the sphere M1.

2.1. Potential energy

The potential energy of mass point m2 in the gravitational field generated by mass
point m1, is equal to the work required to move it from its current position to infinity.
Let us assume that mass point m2 is moved along a general, parametrically defined
spatial curve S = [x(p), y(p), z(p)], where p = parameter. If we move point m2

by d~S, then it is possible using equation (1) to determine the corresponding element

of work dW , according to the relationship dW = ~F · ~dS,

dW = κm1m2

∫ ∞
p

dR(p)
dp

R(p)2
dp ⇒ W =

κm1m2

R(p)
, where R(p)=

√
x(p)2+y(p)2+z(p)2. (2)

If we know the potential energy W , then it is possible to determine the gravita-
tional force using the relation ~F = −∇ (W ).

2.2. Gravitational force between a mass point and a homogeneous sphere

Now we can calculate the potential energy of mass point dM , on coordinates
[X, Y, Z] in the gravitational field of the homogeneous sphere with a radius R and
mass m, which is located at the origin of the coordinate system. The position of the
mass element of the sphere is entered in cylindrical coordinates as shown in Fig. 1,
the density of the sphere mass ρ = 3m

4π R3 .

W = κ dM

∫ R

−R

∫ √R2−x2

0

∫ 2π

0

ρ r√
(X − x)2 + r2

dφ

dr

dx⇒ F = −κm dM

X2
. (3)

From Eq. (3) we can easily prove that the gravitational interaction between the
homogeneous sphere and the mass point is determined by the same law as the gra-
vitational interaction between two mass pointes, see Eq. (1). The generalization of
two homogeneous spheres is based on the repetition of the above process. If mass
point dM can move freely in the sphere’s gravitational field, then the gravitational

force will grant its acceleration ~A = d~F
dM

.
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2.3. Gravitational field inside the homogeneous sphere

Let us suppose that the point P is located inside the homogeneous sphere. It is
then possible to divide all the mass of the sphere that is at a greater distance from
the center of the sphere S than from the point P into concentric spherical shells
of elementary thickness dr. We can then pass a line through the point P which is
the axis of an elementary cone with apex dφ. Intersection points of this cone with
a shell can be considered as two mass points, and we can prove that their gravitational
forces on the point P cancel each other out. As a result, the only gravitational force
affecting the point P comes from the spherical mass that is closer to the center of
the sphere than the distance of the point P . The detailed computation can be found
in [1]. The gravitational acceleration As inside and outside the homogeneous sphere
with a radius Rs and mass M , equal to the mass of the monolith, is given by the
following equation:

As =
κ dM

R3
s

for d ≤ Rs, As =
κM

R2
s

for d ≥ Rs, where

Rs = 3T
3√π ,

T = length of the shortest

edge of the monolith

(4)

3. Gravitational field of the monolith from Space Odyssey

We will calculate the monolith’s gravitational acceleration ~A = [Ax, Ay, Az] in
the program Maple 13. To save space, we will only show the calculation for the
acceleration coordinate Ax, calculations for Ay and Az are very similar.

3.1. Monoliths gravitational force

If the acceleration vector is to be in units SI, or [A]SI = m s−2, then we must
multiply it by the density of the material; let us assume that ρ = 2000 kg m−3 and
Newton’s gravitational constant κ = 6.6710−11 m3 s−2 kg−1, that is 1.33410−7 s−2.
Since this value is very small and it is multiplied by all members of the acceleration
vector, it is not necessary to perform this multiplication, but all resulting acceleration
and speed values must be multiplied by this constant in comparison with the actual
acceleration values. The method also changes the speed or length of time steps.
Given that this is a relative comparison of individual accelerations, velocities and
displacements, these facts can be ignored.

> restart; with(plots): with(LinearAlgebra): R:=sqrt((X-x)^2+(Y-y)^2+(Z-z)^2):

> Lx:=9*T/2; Ly:=2*T; Lz:=T/2; Ix1:=Int((X-x)/R^3,x): Ix1:=simplify(Eval(Ix1,x=Lx)-Eval(Ix1,x=-Lx)):

> Ix1:=value(Ix1): Ix2:=Int(Ix1,y=-Ly..Ly); Ix2:=combine(value(Ix2),ln,symbolic);

Ix2 = ln

(
(%1 + %4)(%2 + %5)

(%1 + %5)(%2 + %4)

)
,where

%1=−2Y−4T

%2=−2Y+4T

%3=4X2+97T 2+4Y 2+16Y T+4Z2+4z2−8Zz

%4=
√

%3+36XT

%5=
√

%3−36XT

. (5)

The final calculation of the acceleration component Ax cannot be performed by
integration according to z, because this integral does not have an analytical solution.
We will therefore create a procedure for Ax that will perform a numerical integration
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for the coordinates [X, Y, Z] on which the mass point m is located, with an accuracy
of 10 significant figures. For the integration, it necessary to enter the length of the
shortest edge of the monolith, let us suppose it’s T = 10km, as exact values are not
listed in any one of the books [1-4].

> T:=1e5; Ax:=(a,b,c)->evalf(Int(subs(X=a,Y=b,Z=c,Ix2),z=-Lz..Lz,epsilon=10),10);

Now we can plot the course of the monolith’s gravitational force and compare
it with the gravitational field of the homogeneous sphere with the same mass and
material density. The gravitational force in the direction of axis X is plotted with
a red line, in the direction of axis Y it is plotted with a blue line, in the direction
of axis Z it is plotted with a green line, and the homogeneous sphere is plotted with
a black line. The graph in Fig. 2 shows that the course of the gravitational force
surrounding the monolith is significantly different from the spheres gravitational
field.

Figure 1: Gravitational interaction be-
tween sphere and dM .

0

20

40

60

80

20 40 60 80

y [km]

x [km]

x directiony direction

z direction

sphere

Figure 2: Gravitational force of the
monolith and sphere.

4. Movement in the monolith’s gravitational field

The movement of an object in the monolith’s gravitational field can be solved
using Newton’s equations of motion written in the standard form, [5]:

d2 ~P (t)

dt2
= ~A (t) , ~P (0) = [X0, Y0, Z0] ,

d ~P (t)

dt

∣∣∣∣∣
t=0

= [Vx0 , Vy0 , Vz0 ] . (6)

This is a system of non-linear second order differential equations, which have no
analytical solution in this case. Although the Maple program is equipped with an
extensive library of numerical solvers, they cannot be used because it is necessary to
calculate the gravitational acceleration in each step - see Eq. (5) and the following
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text. Because this vector must be calculated by numerical integration, we cannot use
the direction command dsolve in Maple. First, we will convert Eq. (6) to a system

of first order differential equations corresponding with the fact that d ~P (t)
dt

= ~V (t)

and d ~V (t)
dt

= ~A (t).
Now we can create a procedure Step, based on the Runge-Kutta method, which

will create a numerical solution to Eq. (6) with regard to the initial conditions. This
procedure is very simillar to procedure described in [2]. The procedure checks the
length of the spatial step. If the step is two short or long compared to the default
value DL, the time step changes the dt.

> FV:=(t,X,Y,Z,Vx,Vy,Vz)->[Vx,Vy,Vz]; FA:=(t,a,b,c,Vx,Vy,Vz)->-

[evalf(Int(subs(X=a,Y=b,Z=0,Ix2),z=Lz..Lz,epsilon=10),10),

evalf(Int(subs(X=a,Y=b,Z=0,Iy2),x=-Lx..Lx,epsilon=10),10),

evalf(Int(subs(X=a,Y=b,Z=c,Iz2),y=-Ly..Ly,epsilon=10),10)];

> Step:=proc(nu) local pv1,pv2,pv3,pv4,vv1,vv2,vv3,vv4,DPV,dl; global n,t,dt,Pos,PV,W,VV,Tau;

pv1:=dt*evalf(FV(t,Pos[],W[])): vv1:=dt*evalf(FA(t,Pos[],W[])):

pv2:=dt*evalf(FV(t+dt/2,(Pos+pv1/2)[],(W+vv1/2)[])):

vv2:=dt*evalf(FA(t+dt/2,(Pos+pv1/2)[],(W+vv1/2)[])):

pv3:=dt*evalf(FV(t+dt/2,(Pos+pv2/2)[],(W+vv2/2)[])):

vv3:=dt*evalf(FA(t+dt/2,(Pos+pv2/2)[],(W+vv2/2)[])):

pv4:=dt*evalf(FV(t+dt,(Pos+pv3)[],(W+vv3)[])):

vv4:=dt*evalf(FA(t+dt,(Pos+pv3)[],(W+vv3)[])): #............................ New Lines for StepPE

DPV:=1/6*(pv1+2*pv2+2*pv2+pv4): dl:=sqrt(add(w^2,w=DPV));

if dl>DL then dt:=dt/2; elif dl*8<DL then dt:=dt*2;

else n:=n+1; t:=t+dt; Pos:=Pos+DPV; PV:=[PV[],Pos];

W:=W+1/6*(vv1+2*vv2+2*vv3+vv4): VV:=[VV[],W];Tau:=[Tau[],t];

end if: end proc;

Let us suppose we let a small object fall from the resting state of Z = 0, from
a distance of 4 times the length of the edge Ly, from places where the position angle
is changed by 10◦. Each time step will be stored in variable TTau, velocity vectors
in variable TVV and position vectors in variable TPV.

> Nu:=9; TPV:=[]: TVV:=[]: TTau:=[]:

> for i from 0 to Nu do;

Pos:=[4*Ly*cos(pi*i/2/Nu),4*Ly*sin(pi*i/2/Nu),0]; W:=[0,0,0]; #................Initial Conditions

t:=0; dt:=0.125; DL:=1000; n:=0; PV:=[Pos]; VV:=[W]; Tau:=[0];

while not(abs(Pos[1])<Lx and abs(Pos[2])<Ly and Pos[3]<Lz) do; Step(); end do:

TPV:=[TPV[],PV]: TVV:=[TVV[],VV]; TTau:=[TTau[],Tau];

end do:

The free fall trajectory for the remaining planes can be calculated in a similar
manner X = 0 a Y = 0, see Fig. 3. The plotting commands are not listed here.
The free fall trajectories are marked red, the trajectory tangents in the initial point
of the fall are marked green, and the free fall trajectory in central gravitational field
is marked brown. The figure shows that motion in the monolith’s gravitational field
and in the sphere’s gravitational field varies considerably.

The equations of motion (6) can also be used for a general case of motion in
the monolith’s gravitational field. It only differs from the free fall in the choice of
initial conditions. For calculating the trajectories we can use procedure Step. Let us
suppose the motion in a plane Z = 0, with an initial position of [Lx, Ly, 0] and the
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velocity vector oriented in the direction of axis X; we will perform the calculations
for 8 velocities that are constantly increasing. Remaining Maple commands are not
listed.

> Pos:=[Lx,Lx,0]; W:=[-i*6000,0,0]; #................Initial Conditions .......

As Fig. 4 shows, the body either hits the monolith or flies around it on the
equivalent of a hyperbolic orbit. We can therefore assume that finding stable orbits
around the monolith can be a problem that is difficult to solve. This assumption
is supported by other calculations for different initial conditions. In the previous
calculation, we can simply replace the line marked as #Initial Conditions, with
the following line:

> Pos:=[Lx,Lx,3*Lz]; W:=[(-10600-i*200)/sqrt(2),0,(10600+i*200)/sqrt(2)]; #.....Initial Conditions
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Figure 3: Free fall in the
monolith’s gravitational field.

–100

–50

0

50

0
20

–20
–40

–60
–80

–100

40

0

x [km]

y [km]

z [km]

Figure 4: Motion in the plane Z = 0.

As Fig. 5 shows, the body moves along quite unusual trajectories, which ulti-
mately lead it to fall on the monolith. If the initial velocity is slightly changed,
the corresponding trajectories are close to each other, which is confirmed by the
correctness of the calculations above.

5. Equipotential surfaces

The calculation of the shape of equipotential surfaces can be based on Eq. (2),
which implies that the gravitational force is always perpendicular to the equipotential
surface. We will therefore perform calculations of the shape of equipotential surfaces
for the plane of symmetry of the monolith; the intersection of the plane of symmetry
with the equipotential surface defines the curve that can be easily depicted thanks
to the validity of Eq. (2). First, we must determine the distance of the equipotential
surface from the center of the monolith. For this we can use the law of conservation
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of energy. From the center of the monolith - the beginning of the coordinate system,
we shoot a mass point in the direction of each axis at a known speed. The point at
which its motion stops will correspond with the equipotential surface with a poten-
tial of U = v2/2. The coordinates of this point can be found using the procedure
StepPE. Since it is necessary to determine the point at which the mass point stops,
it is necessary to change the lines of procedure Step, that follow # New Lines for

StepPE, because it is not possible to optimize the length of the spatial step when it
stops. The corresponding line of procedure StepPE is:

Pos:=Pos+1/6*(pv1+2*pv2+2*pv2+pv4): W:=W+1/6*(vv1+2*vv2+2*vv3+vv4):

At the stopping point, we can determine the direction of the gravitational field
using numerical integration of Eq. (2), and in the plane of symmetry we can de-
termine the direction that is perpendicular to this direction. There will be another
point of the equipotential surface in this direction. This is basically determining the
tangent trajectory of the direction field - solving the system of first order differential
equations. A numerical solution can be found using the procedure StepEQ:

> StepEQ:=proc(O) local pv1, pv2, pv3, pv4, DPV, dl; global n, t, dt, Pos, PV, Tau;

pv1:=dt*evalf(FA(t,Pos[])): pv2:=dt*evalf(FA(t+dt/2,(Pos+pv1/2)[])):

pv3:=dt*evalf(FA(t+dt/2,(Pos+pv2/2)[])): pv4:=dt*evalf(FA(t+dt,(Pos+pv3)[])):

DPV:=1/6*(pv1+2*pv2+2*pv2+pv4): dl:=sqrt(add(w^2,w=DPV));

if dl>DL then dt:=dt/2; elif dl*8<DL then dt:=dt*2;

else n:=n+1; t:=t+dt; DPV:=map(u->‘if‘(u=0,0,signum(u)*DPV[abs(u)]),O);

Pos:=Pos+DPV; PV:=[PV[],Pos]; Tau:=[Tau[],t];

end if: end proc;

The coordinates of points on equipotential surfaces can then be calculated using
the following commands:

> TPV:=[]: i:=’i’:

> for i from 25 to 50 do;

W:=[0,i*1000,0]; Pos:=[0,0,0]; VV:=[W]; t:=0; dt:=0.005; n:=0; PV:=[Pos]; Tau:=[0]; DL:=1500;

while W[2]>0 do; StepPE(); end do:

while abs(dt)>1e-5 do; dt:=-W[2]/FA(t,Pos[],W[])[2]; StepPE(); end do:

PV:=[Pos];dt:=0.025; while Pos[2]>0 do; StepEQ([-2,1,0]): end do:

TPV:=[TPV[],map(u->u[1..2],PV)];

end do:

The plotting commands are not listed in order to save space. The commands for
calculating equipotential surfaces corresponding with remaining planes of symmetry
are not listed for the same reason. The equipotential surfaces are plotted in Fig. 6.

6. Conclusion and discussion

The results of our calculations are seemingly contrary to what we know about
Earth’s gravitational field. Especially the free fall trajectories in Fig. 3 and the
unstable orbit trajectories in Fig. 5 are quite strange. These differences can be
explained quite simply. In the sphere’s gravitational field the free fall trajectory is
identical to the local vertical, which does not apply to the monolith.
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Figure 5: General orienta-
tion of the initial velocity.
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Figure 6: Equipotential levels.

Moreover, the gravitational force of the sphere’s gravitational field is always di-
rected towards the center of the object that is the source of gravity. The monolith’s
gravitational field does not meet this condition, which is why an object moving away
from the monolith, e.g. in the direction of axis Z, can oscillate in all directions
perpendicular to this axis, which is quite evident from Fig. 5.
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