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VŠB – Technical University of Ostrava

17. listopadu 15, 708 33 Ostrava, Czech Republic
ladislav.foltyn@vsb.cz, oldrich.vlach2@vsb.cz

Abstract: To solve the contact problems by using a semismooth Newton
method, we shall linearize stiffness and mass matrices as well as contact con-
ditions. The latter are prescribed by means of mortar formulation. In this
paper we describe implementation details.
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1. Introduction

After a finite element discretization, a mathematical model of the contact prob-
lem is a problem of quadratic programming with an equality and an inequality con-
straints in a special form, see for example [1]. If a system matrix isn’t positive
definite, we cannot use this approach. Positive definiteness of the system matrix
may be impaired in a case of material nonlinearity and computing in increments.
One of the possible solutions is the solution of a nonlinear equation system in-
stead of a minimization problem. The inequality constraints can be also written
as the equality constraints unfortunately compensated by the price of a nonsmooth
function appearance in the formulation. This reformulated problem can be solved
by the semismooth Newton method. Therefore, it is necessary to linearize the stiff-
ness matrix and the contact matrices which is in detail described in [3]. The mortar
contact topic is described in [4]. Our goal was to implement solution for the lin-
earized contact problem using the semismooth Newton method in the framework
of the MatSol library.
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Figure 1: Reference and actual configuration.

2. Formulation of a contact problem

Consider a 2D contact problem with definite deformations of two elastic bod-
ies (see Figure 1). Both bodies are represented as open sets Ω(sl) ⊂ R

2 (a slave),
Ω(m) ⊂ R

2 (a master). Their boundary ∂Ω(sl), ∂Ω(m) can be divided into the following
parts:

• the part with prescribed Neumann condition Γ
(i)
N ,

• the part with prescribed Dirichlet condition Γ
(i)
D ,

• and the part with contact boundary Γ
(i)
C ,

where i ∈ {sl, m}. We will assume that all boundary parts Γ
(i)
N , Γ

(i)
D and Γ

(i)
C are

mutually disjoint. We also distinguish two types of configuration in the contact
problem, an actual configuration (ω(i), γ

(i)
D , γ

(i)
N , γ

(i)
C , x(i)) and a reference configu-

ration (Ω(i), Γ
(i)
D , Γ

(i)
N , Γ

(i)
C , X(i)). Actual configuration of both bodies is described

by a displacement vector

u(i) = X(i) − x(i). (1)

On contact boundary a gap function is introduced to define gap between the slave
and the master body

g(X(sl)) = −n
(

x(sl)(X(sl))
)

·
[

x(sl)(X(sl))− x̂(m)(X̂(m))
]

, (2)

where n = n(sl) is a normal vector of the slave surface γ
(sl)
C in the actual configuration,

x̂(m) is a projection of the slave node x(sl) to the master surface γ
(m)
C in the direction
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of the normal vector and X is a corresponding point to x in the reference configura-
tion. Using the gap function we are able to find a corresponding node on the master
surface in the reference configuration to the slave node in the same configuration.

After a discretization process (for details see [5]), we can reformulate the contact
problem with the KKT conditions to an algebraic form

Kd + D⊤z−M⊤z− f = 0

g̃j ≥ 0 (nonnegative gap between bodies)

(zn)j ≥ 0

(zn)j g̃j = 0 (the complementarity condition)

(zt)j = 0 (no friction),

(3)

where K is a stiffness matrix, D and M are mortar contact matrices, d is a displace-
ment vector, z is a vector of multiplicators and f is a vector of volume and boundary
forces.

If we want to calculate mortar matrices, we have to divide the contact elements
to smaller parts called the contact segments (see Figure 2). It is necessary for the nu-
merical integration of the master shape functions because one segment is connected
with exactly one master and one slave element and the shape function formulas have
nonchanging prescriptions. A segmentation process is based on the node projection
from the slave (the master) surface to the other surface along the normal of the slave
surface.

Figure 2: Surface segmentation.

3. Nonsmooth formulation for discrete problem

The semismooth Newton method solves

F◦(x) = 0 , (4)

where F◦ is a nonsmooth function, so it is necessary to transform all inequalities in (3)
to equality. Moreover, the semismooth Newton method uses iterative prescription
which is similar to continuous one

F◦(xk)∆xk = −F(xk), xk+1 = xk +∆xk, (5)
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but there is the nonsmooth function F◦ and we reach only a superlinear convergence.
For details see [2].

With the use of the active set strategy idea, it is possible to reformulate inequal-
ities in (3) to equalities but there is no apriori information which nodes of the slave
contact surface belong to an active set A or to an inactive set I. It is known only if
the solution is available. Luckily, the inequalities can be formulated as finding a zero
level of the nonsmooth function. Therefore we introduce a so-called complementarity
function Cj

Cj(z j , d) = (zn)j −max (0, (zn)j − cng̃j) ∀j ∈ S, (6)

where S denotes a set of all contact nodes of the slave surface. The zero level
of the complementarity function Cj is equal with the KKT conditions

g̃j ≥ 0

(zn)j ≥ 0 ∀j ∈ S

(zn)j g̃j = 0











⇔ Cj(zj, d) = 0 ∀j ∈ S . (7)

The function Cj is continuous but nonsmooth, we cannot determine a derivative
at (zn)j − cng̃j = 0. With use of the complementarity function Cj, we are able to
reformulate (3) to

r = Kd + D⊤z−M⊤z− f = 0 ,

Cj (zj, d) = 0 ∀j ∈ S ,

(zt)j = 0 ∀j ∈ S .

(8)

If we want to be able to linearize the function Cj, we have to define a generalized
derivative of the max(a, x) function

f(x) = max(a, x) −→ ∆f(x) =

{

0, for x ≤ a

1, for x > a
. (9)

Sets which are described bellow are used to determine which nodes of the slave con-
tact surface belong to the active Ak or to the inactive Ik set in each step of the al-
gorithm

Ik =
{

j ∈ S|
(

nk
j · z

k
j − cng̃

k
j

)

≤ 0
}

, (10)

Ak =
{

j ∈ S|
(

nk
j · z

k
j − cng̃

k
j

)

> 0
}

. (11)

Using these sets also allows us to use a block matrix notation which you can see
below.
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Complete linearization of the problem yields the system of linear equations
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, (12)

where elements with a tilde above are affected by a linearization process, N denotes
all nodes which aren’t on the contact surfaces, M denotes all nodes of the master
contact surface, A denotes nodes of the slave contact surface which are actually in
contact (active set) and I denotes all nodes of the slave contact surface which aren’t
actually in contact (inactive set).

We can also eliminate all multiplicators z from the system above by using

z I = 0 , (13)

zA = D−1
A

(

−KAN ∆dN −KAM ∆dM −KAI ∆d I −KAA ∆dA − rA
)

. (14)

4. Algorithm

The algorithm for solving the contact problem, which was formulated above, can
be written in this way

1. In the step k = 0, set initial value of the vector

[

∆d0

z0

]

.

2. Determine A0 and I0, where A0 ∪ I0 = S and A0 ∩ I0 = ∅.

3. Find primal-dual couple
(

∆dk, zk+1
)

by solving the system of linear equa-
tions (12) (or the system with eliminated multiplicators).

4. Update dk+1 = dk +∆dk.

5. Determine Ak+1 and Ik+1

Ik+1 =
{

j ∈ S|
(

nk+1
j · zk+1

j − cng̃
k+1
j

)

≤ 0
}

,

Ak+1 =
{

j ∈ S|
(

nk+1
j · zk+1

j − cng̃
k+1
j

)

> 0
}

.

6. If Ak+1 = Ak, Ik+1 = Ik and ‖rtot‖ ≤ εr , then stop, else increment k = k + 1
and continue from the 3rd step.

εr represents accuracy of our calculation and a vector rtot contains vector of a residual
force r and the residual contact constraints.
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5. Numerical experiment

The semismooth Newton method was tested on a static problem, in which the
slave body was divided into 10× 10 elements and the master body into 20× 10 ele-
ments (see Figure 3). On the upper halves of sides of the slave boundary a Dirich-
let condition was defined. The Dirichlet condition was also defined on the bottom
of the master boundary. On the other parts of the boundaries, except the contact
boundary, a Neumann condition was prescribed. We choose the calculation accuracy
equal to εr = 10−9.

Figure 3: Static problem.

We compared both modifications of the semismooth Newton method (the first
modification, denoted SSNM – Alg. 1, uses the system which contains multipli-
cators z and the second modification, denoted SSNM – Alg. 2, uses the system
without multiplicators z) with a fixed point problem. In each step of the algorithms
the ‖rtot‖ value was used to stop the algorithm. The individual ‖rtot‖ values are
shown in Table 1 listed below .

Individual matrices assembling was implemented in a C++ language with the use
of the mex interface for ability to employ this code in MATLAB. Both of the men-
tioned algorithms (semismooth Newton method modification and fixed point algo-
rithm) were implemented in MATLAB and were added to existing MatSol library
which was developed at the Department of Applied Mathematics of the VŠB – Tech-
nical University of Ostrava.
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k SSNM – Alg. 1 SSNM – Alg. 2 fixed point

1 6.13 · 101 6.13 · 101 6.00 · 104

2 6.53 · 10−1 6.53 · 10−1 3.30 · 100

3 5.62 · 10−4 5.62 · 10−4 2.97 · 100

4 3.17 · 10−7 3.17 · 10−7 3.30 · 10−3

5 8.08 · 10−10 7.85 · 10−10 3.13 · 10−4

6 7.38 · 10−6

7 4.75 · 10−7

8 1.92 · 10−8

9 1.01 · 10−9

10 4.54 · 10−11

Table 1: ‖rtot‖ values.

Acknowledgements

This work was supported by grant SGS . SP2015/100, VŠB – Technical University
of Ostrava, Czech Republic.

References
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