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Abstract: The paper studies mesh dependent numerical solution of ground-
water problems with singularities, caused by boreholes represented as points,
instead of a real radius. We show on examples, that the numerical solution of
the borehole pumping problem with point source (singularity) can be related
to the exact solution of a regular problem with adapted geometry of a finite
borehole radius. The radius providing the fit is roughly proportional to the
mesh step. Next we define a problem of fracture-rock coupling, with one part
equivalent to the singular point source problem and the second part with a uni-
form flow. It is a regularized problem, but with the mesh dependence similar
to the radial flow, in a certain range of steps. The behavior is explained by
comparing the numerical solution with the analytical solution of a simplified
problem. It also captures the effects of varying physical parameters.
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1. Introduction

Although not mentioned among the main challenges in groundwater modelling,
the issue of singularity, related to boreholes represented by a single point (in 2D) or
line (in 3D), is not fully resolved, also because it is studied differently in theoretical
work and in practical applications or simulation software.

The problem of point source in groundwater flow is shortly specified in 1.1. The
singularity in the problem is a result of problem abstraction, convenient for handling
the problem technically. The real case is that a borehole has a finite radius, but
very small compared to the problem domain, which is inconvenient for meshing.
On the other hand, a problem of a single borehole in homogeneous medium can
be efficiently solved analytically. There are several either empirical or theoretical-
based methods, introducing the analytical solution of the radial flow in the local
scale to be coupled with a coarser mesh numerical solution – the analytical element

DOI: 10.21136/panm.2016.05

37

http://dx.doi.org/10.21136/panm.2016.05


Source/b.c.
b.c.

b.c.

Figure 1: Left: radial flow around borehole in a singular form. Middle: configuration
of boundary for numerical solution. Right: radial flow in a regular problem form.

method [2], Peaceman model in the field of reservoir engineering [6, 3], or the concept
of extended finite element method (XFEM) with the enrichment functions based on
the local analytical solution, e.g. [4].

The background is also different than studies aiming to approximate the singu-
lar problem solution and interpreting the numerical precision, e.g. [1] for the Dirac
right-hand side with an a-priori set mesh refinement. Instead, we study the mesh
dependence of the approximate solution in relation to a replacement problem, which
gives a simpler understanding in the context of the finite borehole radius (alterna-
tively to [3]). For such case, a sequence of fixed meshes is used, made by standard
generators based on prescribed step at the boundary. This is subject of the first
part of the paper and also a background for the second part, where we introduce
a specific groundwater geometric configuration with analogous features but different
interpretation of the mesh dependence.

1.1. Problem and singularity characterisation

The groundwater flow in its simplest form is a potential field, governed by linear
Darcy’s law and the mass balance equation,

v = K∇p , ∇ · v = f , (1)

where p is pressure head, v is flux density (velocity), K is hydraulic conductivity, and
f are sources/sinks. Flux q meaning the integral of v is used in the solved problems.

In the borehole inflow configuration of Fig. 1, the singularity appears for the
Dirac right-hand side, i.e. finite flux concentrated to a point as infinite spatial den-
sity, resulting to a generalised solution with infinite pressure at the point. Another
formulation is with given finite pressure in the borehole, which can either be a bound-
ary condition (formally, for the circular sector domain), or an additional constraint
on the pressure solution together with related degree of freedom in the source/sink
function f . The same is the asymptotic case of a finite borehole problem, solved
analytically below.

For a real borehole, neither case is physically realistic, as the measured values of
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flux and pressure are always finite, and any kind of solution needs to introduce the
borehole diameter as a parameter.

2. Borehole-driven radial flow problem

The example problem is a case of radial-symmetric flow into a borehole, which
can be expressed either by a circle with the borehole in its center or by any sector
of such circle (Fig. 1), with the radius r as one variable. The analytical solution is
simply derived from 1D radial form of (1) by applying the separation of variables
method. With pressure boundary conditions p(r1) = p1 and p(r2) = p2, the solution
is

q(r) = 2πK
p2 − p1

ln r2
r1

, i.e. q(r) = const = q , (2)

p(r) = p1 + (p2 − p1)
ln r

r1

ln r2
r1

, (3)

considering the flux q over the full circumference. We see the singularity as the
asymptotic behavior of the formulas for r1 → 0, i.e. q → 0 for finite p1 while
p1 → −∞ for a non-zero q. We study the first case in the following work, i.e. the
dependence q[r1], which is our notation for the parametric dependence on the problem
geometry, to distinguish from the solution as a function of its space variable.

The study is based on comparison between the numerical solution of the singular
problem with dependence on a mesh step h, and the analytical solution of the regular
problem (2) with dependence on r1. We use the circular sector geometry for the
numerical problem (2D meshing). The boundary condition p = p1 representing the
borehole (singularity) is introduced to one node value of the standard finite element
discretisation with piecewice linear base functions. The parameters used are r2 = 10,
K = 1, p1 = 0 and p2 = 1.

The comparison is made in two ways: the numerical q[h] dependence against
analytical q[r1] dependence for the choice r1 = h and an “inverse” problem of finding
an effective borehole diameter r1 to fit the numerical q value by the analytical one.
We use more variants of mesh topology and, for each, a set of meshes of varying
step h at the borehole boundary point is generated. So we can check other possible
influences than the h value.

In the mesh set of type A, each refinement is generated independently, only
based on the prescribed step h at the borehole and a different step along the outer
boundary, resulting in either more uniform or more graded meshes. Three such sets
of different domain angles ϕ = 45◦, 60◦, and 90◦ are generated, denoted as A-45,
A-60, and A-90. The set of type B, for ϕ = 60◦ only, is constructed from the coarsest
uniform mesh by sequential splitting of each triangular element uniformly, resulting
in the same topology of all meshes in the set.

The results for a range of mesh steps are presented in Fig. 2. The parametric
dependence of the flux is visually very similar between the analytical solution and
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Figure 2: Relation of the numerical and analytical solution of radial flow for various
mesh topologies: left is the resulting flux depending on either the mesh step or the
borehole radius (scaled to equivalent of ϕ = 60◦), right is the ratio of equivalent
analytical solution radius (r1) to a given numerical discretisation step.

the numerical solution (for r1 = h), but the fluxes are not proportional, as seen from
the evaluated ratio.

The effects of different meshes of the same h are often invisible for q[h], in general
less then 10%, but they are detected in the inverse problem of effective r1. The
ratio of the given h and the fitted r1, depending on h, is plot in Fig. 2 (right). The
dependence can be evaluated as a constant, but with significant deviations related
to different origin of the mesh. It leads to a hypothesis that the effective behaviour
of the numerical solution with “point boundary” corresponds to the desired solution
of the radial flow with particular radius, proportional to the mesh step. A precise
relation could depend on the choice of numerical scheme and mesh topology.

3. Fracture-block coupling problem

3.1. Real-world motivation

The rock hydraulic conductivity K can change over many orders of magnitude
and blocks of very different K are often parts of a single modelling problem. Within
the low-permeable rocks, the water can be conducted along planes like fractures
or tectonic faults; these are domains with orders of magnitude larger than K and
small thickness. To get a measure of contribution to the total flux in a domain,
the transmissivity is defined as a product of K and the thickness. If the fracture is
represented as plane, the problem, in its vertical cross-section (2D), is a composition
of a rectangle and a line (Fig. 3). It creates, at their contact, a singularity within
the rectangle domain, similar to the borehole point source problem. Again, it is an
effect of the model abstraction, while no sharp K changes or block edges would exist
in the real rock.
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Figure 3: Left: real-world problem of fracture to permeable zone contact, which is in
its part an analogue of the radial flow problem. Middle: model problem of fracture-
porous block contact for the numerical study with the boundary conditions. Right:
derived simpler analogue of coupled radial flow (circle) and uniform flow (line).

3.2. Problem configuration

The test problem to demonstrate numerical features is illustrated in Fig. 3 (mid-
dle). The configuration is an analogue of the problem in Decovalex-2015 bench-
mark [5], where the question of possible mesh dependence arised. Besides using
reflection symmetry, there are two main differences against the real-world concept
(Fig. 3 left):

One is in extending the fracture (line) domain along the whole rock (rectangle)
domain in order to establish a communication between the domains which would not
be possible for the mixed-hybrid finite elements through one node. Considering the
fracture transmissivity is not significantly larger than the rock block transmissivity
(realistic assumption because of the large rock volume), the problem should not be
affected much quantitatively.

The second adaptation excludes the part of the line not in contact with the
rectangle. The total flux is controlled by a “serial connection” of the line along
the rectangle and the line below the rectangle. The latter is controlled by a linear
relation of pressure gradient and flux, so the difficulty related to the singularity is
present only in the rectangle part, which we concentrate on.

The domain dimensions are 50×50, as well as r2 = 50 in the problem of Section 3.3
for comparison. The boundary pressure values are p1 = 0 and p2 = 1, and the
coefficients are listed in Section 3.4.

3.3. Simplified analytical solution

To get an analytical solution for comparison, the problem needs to be significantly
simplified (Fig. 3 right): a circular sector between two radii, r1 inner and r2 outer,
and a line with coordinates between the same r1 and r2. We assume radial symmetry
and ideal contact between the domains, i.e. a common value of pressure p(r) for both
the radial flow and the uniform flow. There are two variables for the flux, q(r) in
the circular domain and qL(r) in the line domain. For simplicity, we consider the
unit thickness of the circular domain and the unit cross-section of the line domain,
without loss of generality.
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The system of equations for the choice of the circular sector angle ϕ is

q(r) + qL(r) = const = Q, (4)

q(r) = ϕK r
dp

dr
, (5)

qL(r) = KL
dp

dr
, (6)

where K and KL are hydraulic conductivities of the respective subdomains.
The analytical solution is a generalisation of the radial flow, with mostly technical

differences. Substituting both q and qL into the first (mass balance) equation, we
get a form ready for separation of variables, p and r. Then two constants, the total
flux Q and the integration constant, are evaluated from the two boundary conditions.
The results are

Q = ϕK
p2 − p1

ln ϕKr2+KL

ϕKr1+KL

, (7)

p(r) = p1 + (p2 − p1)
ln ϕKr+KL

ϕKr1+KL

ln ϕKr2+KL

ϕKr1+KL

. (8)

Additionally, we can derive qL(r) and q(r). Then we evaluate the asymptotic problem
behavior for r1 → 0. Obviously, the term KL regularizes the solution, so that
Q[r1] converges to a finite value composed, at the boundary, of finite qL[0](0) and
zero q[0](0).

3.4. Parameter sensitivity

The asymptotic behavior for r1 → 0 is strongly related to the magnitude of ϕK
versus KL, which is demonstrated in Fig. 4 for K = 10−8 and two choices KL = 10−7

and KL = 10−10. For dominating conductivity of the circular domain (Fig. 4 left),
the certain range of r1 dependence is similar to the singularity case of the radial
flow alone, requiring substantially small r1 to exhibit the convergence through the
contribution of the line domain. For small r1, most of water comes through the
line domain at the r1 boundary and the flux q[r1](r1) decreases much more quickly
with r1 than would for the pure radial flow problem. Contrary, for dominating
conductivity of the line domain (Fig. 4 right), the q contribution quickly vanishes
with decreasing r1 and the changes of Q[r1] are relatively smaller.

3.5. Numerical tests

We compare the dependence of the analytical solution on r1 (total flux Q[r1]) with
the dependence of the numerical solution (flux through the Dirichlet boundary bot-
tom right corner) on mesh step h in Fig. 5. We note that, contrary to the previous
case of radial flow, the solution used for the comparison is for a significantly simpli-
fied problem – in particular, not capturing that the 2D domain is not exactly radially
symmetric and there is not necessarily an equilibrium between the domains. Two
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K_L=1e=10
r1 q_L (line) q (radial) Q (total) q (rad. only)q_L (1D only)

10 3.11E-12 6.48E-09 6.48E-09 6.48E-09 1.25E-12
5 4.34E-12 4.53E-09 4.53E-09 4.53E-09 1.11E-12
1 1.27E-11 2.66E-09 2.67E-09 2.67E-09 1.02E-12

0.1 7.74E-11 1.61E-09 1.69E-09 1.68E-09 1E-12
0.01 4.16E-10 8.68E-10 1.28E-09 1.22E-09 1E-12

0.001 9.52E-10 1.99E-10 1.15E-09 9.64E-10 1E-12
0.0001 1.11E-09 2.31E-11 1.13E-09 7.95E-10 1E-12

0.00001 1.13E-09 2.35E-12 1.13E-09 6.76E-10 1E-12
1E-08 1.13E-09 2.35E-15 1.13E-09 4.67E-10 1E-12
1E-15 1.13E-09 2.35E-22 1.13E-09 2.71E-10 1E-12

K_L=1e-7
r1 q_L (line) q (radial) Q (total) radial only 1D only

10 2.58E-09 5.38E-09 7.97E-09 6.48E-09 1.25E-09
5 2.97E-09 3.09E-09 6.06E-09 4.53E-09 1.11E-09
1 3.84E-09 8.01E-10 4.64E-09 2.67E-09 1.02E-09

0.1 4.23E-09 8.82E-11 4.32E-09 1.68E-09 1E-09
0.01 4.28E-09 8.92E-12 4.28E-09 1.22E-09 1E-09

0.001 4.28E-09 8.93E-13 4.28E-09 9.64E-10 1E-09
0.0001 4.28E-09 8.93E-14 4.28E-09 7.95E-10 1E-09

0.00001 4.28E-09 8.93E-15 4.28E-09 6.76E-10 1E-09
1E-08 4.28E-09 8.93E-18 4.28E-09 4.67E-10 1E-09
1E-15 4.28E-09 8.93E-25 4.28E-09 2.71E-10 1E-09
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Figure 4: Analytical solution of the coupled circle-line flow problem showing con-
vergence with decreasing inner radius, different for either dominant circle (left) or
dominant line (right). The “radial only” and “line only” cases are solutions on each
of the subdomains uncoupled, with the same boundary conditions.

different finite-element versions are used – the standard linear FEM with shared de-
grees of freedom of the rectangle side and the line and the mixed-hybrid (MH-FEM),
with separate degrees of freedom.

There is a lot of common in the mesh-dependence with the radius-dependence,
but the quantitative relation is not so clear as for the radial flow in Section 2. The
mesh dependence disappears for sufficiently small h, which suggests the convergence
of the solution like in the simplified analytical problem for r1 → 0.

The physical parameter sensitivity is also well reproduced: there is a little mesh
dependence for large KL (even negligible for KL = 10−6, not shown), contrary to the
significant mesh dependence for small KL, disappearing for very small h. The mesh
step size, necessary for Q[h] to get steady, is typically one order of magnitude larger
then the radius, for which the analytical solution dependence on r1 disappear, and
this position is roughly proportional to KL (Fig. 5).

On the other hand, the trends of Q[h] differ between the numerical schemes. The
standard FEM solution Q decreases with mesh refinement similarly to the analyti-
cal Q[r1] (total flux). The MH-FEM solution rises with the mesh refinement, similarly
to the curve of the analytical qL[r1] (line-only flux). It can be explained by a struc-
ture of the discrete unknowns: in the used implementation of the standard FEM, the
boundary condition is prescribed to a shared node while in the MH-FEM, the b.c. is
introduced to the line (see the red b.c. circle in Fig. 3 middle), which is then coupled
to the rectangle, making the line domain more significant for the overall hydraulic
resistance.

The flux at the mesh refinement limit lies between the analytical solution for
ϕ = π/3 and ϕ = π/2. It means that only a part of the numerical problem domain
(corresponds to ϕ = π/2) is effectively covered by the flow, as it is deviated from the
radial symmetry (more for larger fracture contribution).

43



0E+0

2E-9

4E-9

6E-9

8E-9

1E-8

0.0001 0.001 0.01 0.1 1 10

Fl
ux

mesh step or r_1

K_L=1e-7
Q analytical
phi=1/3 pi

Q analytical
phi=1/2 pi

q_L(r_1)
analytical

Q standard
FEM

Q mixed-
hybrid FEM

0E+0

2E-9

4E-9

6E-9

8E-9

1E-8

0.0001 0.001 0.01 0.1 1 10

Fl
ux

 

mesh step or r_1

K_L=1e-8
Q analytical
phi=1/3 pi

Q analytical
phi=1/2 pi

q_L(r_1)
analytical

Q standard
FEM

Q mixed-
hybrid FEM

0E+0

2E-9

4E-9

6E-9

8E-9

1E-8

0.0001 0.001 0.01 0.1 1 10

Fl
ux

mesh step or r_1

K_L=1e-9
Q analytical
phi=1/3 pi

Q analytical
phi=1/2 pi

q_L(r_1)
analytical

Q standard
FEM

Q mixed-
hybrid FEM

0E+0

2E-9

4E-9

6E-9

8E-9

1E-8

0.0001 0.001 0.01 0.1 1 10

Fl
ux

mesh step or r_1

K_L=1e-10
Q analytical
phi=1/3 pi

Q analytical
phi=1/2 pi

q_L(r_1)
analytical

Q standard
FEM

Q mixed-
hybrid FEM

Figure 5: Mesh dependence of the block-fracture problem numerical solution com-
pared to the radius dependence of the circle-line analytical solution (two choices of ϕ)
for K = 10−8 and a range of KL, from fracture-dominant to block-dominant.

4. Conclusion

We have shown for the radial flow problem that the mesh dependence of the nu-
merical solution, resulting from the singularity property of the point source/bound-
ary, can have a physical meaning equivalent to the dependence of the real flow on the
borehole radius. The mesh step providing the fit is roughly proportional to the bore-
hole radius with a factor between 5 and 6 for meshes close to uniform while a larger
deviation appears for more graded meshes. It could be a topic for further study to
predict the relation theoretically from a numerical scheme. Such mesh choice can be
useful as an alternative for adaptive mesh refinement based on error analysis. The
error in flux is appropriate for groundwater data accuracy.

For the fracture-rock coupling problem, the extension of the fracture along the
block regularizes the problem, although the mesh dependence is still present depend-
ing on the singularity component dominance. The mesh and the physical parameter
dependence can be predicted by a relatively simple analytically solvable problem, in
particular the position of visual convergence. Also, we have shown how the solution
is sensitive on the position of the discrete unknowns.
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