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Abstract: Rock bolts as construction elements are often used in underground
civil engineering projects. This work deals with their numerical modelling.
Aydan special finite elements for the description of rock bolts and hexahedral
quadratic finite elements for the description of rock massif were used. A code
for the computation of stiffness matrices and right hand sides of these elements
was developed. The code was tested on several simple test examples and their
results were compared with the analytical solution. Stresses in a rock massif
in the surrounding of an excavation reinforced by rock bolts were computed.
The results show that the use of rock bolts can reduce the areas of maximal
mechanical stress in the vicinity of excavations.
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1. Introduction

Rock bolts as reinforcing construction elements are often used in underground
civil engineering projects (Fig. 1).

Several special finite elements for rock bolt modelling were developed. The most
widely used element was presented by Aydan [1]. The so-called Aydan element
consists of two groups of nodes. The first group represents a rod sub-element, which
is a simple model of a steel bar. The remaining nodes are located on the interface of
cement grout and rock massif. The connection of the bar with the surrounding rock
by cement grout is represented by the joint action of both groups of nodes. This
paper is focused on the six-node type of the Aydan element with quadratic shape
functions, which is used in 3D models.

The computation of the stiffness matrix of this element and its application in
the 3D model of two tunnels reinforced by rock bolts is described. The rock bolts
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Figure 1: Rock bolts.

Figure 2: Classical formulation of the linear elasticity problem.

are fastened by cement grout along their full length. The geometry of the model
corresponds to the characteristic cross section of the Brusnice tunnel that is a part
of the Blanka tunnel complex, an underground part of the Prague City Ring Road.

2. Classical formulation of a linear elasticity problem

Differential equations describe real physical processes inside the material. The
classical formulation of the linear elasticity problem is described in [3], for instance.

We consider a linear elastic body that occupies a domain Ω (Fig. 2). We look
for the vector of displacements u = (u1, u2, u3) satisfying Lamé equations in the
domain Ω, see Equations (1),

(λ+ µ)
3∑
j=1

∂2uj
∂xi∂xj

+
3∑
j=1

∂2ui
∂x2

j

+ Fi = 0, i = 1, 2, 3 (1)

where λ, µ are the Lamé coefficients, xi and Fi stand for the i-th coordinate com-
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Figure 3: Finite element discretization of the rock bolt reinforcement without and
with a special rock bolt element.

ponent and volumetric load component, respectively. Displacements are prescribed
on Γu and the stress vector is given on Γτ (see Fig. 2), that is,

ui = 0, i = 1, 2, 3 on Γu (2)
3∑
j=1

τijνj = 0, i = 1, 2, 3 on Γτ (3)

where τ = (τij) is the stress tensor and ν = (ν1, ν2, ν3) is the outward unit normal
vector to the boundary of Ω.

We prescribed zero displacements on the bottom, on the sides and on the front
and back faces of the domain Ω, see Equation (2). The zero stress vector is prescribed
on the excavation surface and on the top surface of the body Ω, see Equation (3).

3. The finite element method

3.1. Rock bolt element of the Aydan type

Because a detailed discretization of the rock bolt reinforcement including the steel
bar and fastening material needs a generation of a complicated finite element mesh,
special finite elements were derived, see Fig. 3.

The Aydan rock bolt element with quadratic shape functions has six nodes
(Fig. 4). Three of them represent the steel rod (nodes 1, 2 and 3). The others are
located on the interface between the fastening material and the surrounding rock.
The rock bolt element is connected to the elements, which represent rock massif, by
nodes 4, 5 and 6 (Fig. 4). The connection of the bar with surrounding rock massif
by cement grout is represented by the joint action of both groups of the nodes.

Several simplifications were considered during the derivation of the stiffness ma-
trix of the Aydan element. The steel rod and body formed by the fastening material
are assumed axially symmetric and coaxial bodies. Both mentioned materials are
considered homogeneous, isotropic and linear elastic. Therefore the dependence be-
tween stresses and deformations of these materials is described by linear Hooke’s
law. The radius of the rock bolt is negligible with respect to its length. Therefore,
nodes 1 and 4 have identical coordinates. The same is valid for nodes 2 and 5 or 3
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Figure 4: Aydan six-node rock bolt element.

and 6. However, the assumption of negligible radius cannot be applied to the process
of derivation of the stiffness matrix. Only three types of deformations of the Aydan
element are included in the computation:

• relative longitudinal deformation of the steel bar caused by different axial dis-
placements of nodes 1, 2 and 3,

• relative cross shear deformation of the steel bar caused by different radial dis-
placements of nodes 1, 2 and 3,

• relative longitudinal shear deformation of fastening material caused by different
axial displacements of nodes 1, 2 and 3 with respect to nodes 4, 5 and 6,

• relative cross deformation of fastening material caused by different radial dis-
placements of nodes 1, 2 and 3 with respect to nodes 4, 5 and 6,

To define the element stiffness matrix, we introduce matrices D and B. In detail,

D =


Et 0 0 0 0 0
0 Gt 0 0 0 0
0 0 Gt 0 0 0
0 0 0 Gz 0 0
0 0 0 0 Dz 0
0 0 0 0 0 Dz

 .

Here, Et is Young’s modulus of steel, Gt and GZ is the shear modulus of steel and
fastening material, DZ is Young’s modulus of the fastening material multiplied by
two. The multiplicative factor of two reflects the effects of enlacement of the cement
grout by the rock massif.

Next,

B =

[
B1 B2

B3 −B3

]
,
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where

B1 =

 N ′1 0 0 N ′2 0 0 N ′3 0 0
0 N ′1 0 0 N ′2 0 0 N ′3 0
0 0 N ′1 0 0 N ′2 0 0 N ′3

 ,
B3 =

 cN1 0 0 cN2 0 0 cN3 0 0
0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3

 ,
B2 is a zero matrix, the prime denotes the derivative with respect to ξ (see (4)), and
c = 2/((rh + rt)l, where l = ln(rh/rt) and rt, rh are the respective diameters of the
steel bar and the rock bolt borehole, the latter is equivalent to the diameter of the
body formed by the fastening material.

The constant c was derived in [1]. Shape functions are quadratic:

N1 = 0.5 · ξ · (ξ − 1),

N2 = 1− ξ2, (4)

N3 = 0.5 · ξ · (ξ + 1),

where ξ ∈ [−1; 1] is the local coordinate. The stiffness matrix of the rock bolt
referential element is

K =

∫ 1

−1

BTDB dξ,

where BT = is the transpose of B.
Constant values of the displacements across the cross section of the rock bolt are

considered. Therefore, the volume integral is reduced to one-dimensional integral
with the integration area of the length of the rock bolt element. Three-point Gaussian
numerical integration was used for the calculation of the one-dimensional integral.

Finally, it is necessary to transform the stiffness matrix from local to global
system of coordinates.

3.2. Hexahedron - rock element for 3D model

Rock massif is represented by hexahedral elements with 20 nodes [2] in 3D model.
Eight nodes are located in vertices, remaining twelve are located in the centres of
edges. Gaussian numerical integration of third order was used for calculating stiffness
matrices and right hand sides.

4. Test example and comparison with analytical solution

An analytical expression for stresses in excavation is known only for several simple
cases. For a circular excavation without rock bolts, such solution is described in [6].
For a circular excavation with rock bolts, an analytical solution is known only if an
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Figure 5: Test example consisting of two bricks and eight Aydan elements (left), and
shape of excavation and spacing of rock bolts (right).

averaging of the rock bolt and rock material properties is introduced, see [4]. There-
fore we studied several simple problems where the analytical solution can easily be
derived. One of the simple problems used for the verification of our implementation
of the Aydan rock bolt element is presented below, see Fig. 5.

This example consists of two bricks (elements 1 and 2) of 1× 2× 1 m reinforced
by eight Aydan elements (elements 3 - 10). Zero displacements are prescribed at
the base of the body, the other displacements are restricted to the y−direction. The
following material properties and loads were considered:

Erock = 500 MPa, νrock = 0.2,

Esteel = 210 GPa, νsteel = 0.3,

Egrout = 30 GPa, νgrout = 0.2, fy = −25 kN ·m−3.

Analytical solution was easy to compute from the equation

d

dy

(
EA

du

dy

)
+ fy = 0,

where A denotes the area of the cross-section. The stiffness of the cross-section was
defined by the sum of stiffnesses of the rock bolts and the rock. Results for both
numerical and analytical solution are summarized in Table 1. The shape of the
deformed body is also depicted in Figure 5.

5. Model of rock bolt reinforcement

The geometry of the model corresponds to the characteristic cross section of the
two-tube Brusnice tunnel, which is a part of the Blanka tunnel complex. Two three
lane motorways are situated inside of these two tunnels. All data necessary for the
model creation were taken from [7].
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Solution Displacement of rock at y = 1 m Displacement of rock at y = 2 m
Numerical from −0.341× 10−4 to −0.402× 10−4 m from −0.468× 10−4 to −0.532× 10−4 m
Analytical −0.383× 10−4 m −0.511× 10−4 m

Table 1: Comparison of numerical and analytical solution at y = 1 and y = 2 m.

5.1. Input data

Each of the two excavations is composed of four types of circular arcs, has a height
of 12.8 metres, a width of 16.6 metres, and an area of almost 180.0 square metres.
Twelve rock bolts six metres long are placed in the tunnel arch. The angle between
two adjacent rock bolts varies from 18o to 23o (Fig. 5 right).

The distance between parallel planes containing rock bolt bundles in the direction
of the axis of the tunnel is 1.25 m. All 24 rock bolts are located in the central plane
of the model. Therefore, thickness of the model periodic segment is considered
also 1.25 m. Each rock bolt is, in fact, a steel bar with a radius of 2.0 cm that
is fastened by cement grout along its full length in the borehole with a diameter
of 6.0 cm.

The width of the whole model is 150.0 metres and the height varies from 51.4 me-
tres up to 62.6 metres. The thickness of a rock cover is 13.3 metres for the left
excavation and 12.8 metres for the right one (Fig. 6 top). For this model we consider
boundary conditions that were already described in the classical formulation of the
problem. The rock massif is formed by mildly eroded slates, which are very common
in the surrounding of the tunnel. Steel and cement grout are another materials con-
tained in the model. It is necessary to prescribe Young’s modulus, Poisson’s ratio
and specific density for all the materials,

Erock = 400 MPa, νrock = 0.28, ρrock = 2450 kg ·m−3,

Esteel = 210 GPa, νsteel = 0.3,

Egrout = 30 GPa, νgrout = 0.2.

In the development of the finite element mesh, a circular zone around the excavation
was created in order to properly couple the Aydan elements with the brick elements
(Fig. 6 bottom). The mesh consists of 61,368 hexahedrons and 360 rock bolt elements
and it is represented by 297,931 nodes. The mesh is composed of four layers of
elements with the same thickness in the direction of the axis of the tunnel.

5.2. Results

We considered two studies. In the first case, we assumed the excavations with-
out any rock bolts. Then the model with rock bolts was used. An influence of
rock bolts is recognizable only in the close vicinity of the excavations, therefore we
analyse the results only in this detailed area, especially in the surrounding of the
left excavation. Stress σyy in the vertical direction and stress σxx in the horizontal
direction is depicted (Fig. 7). The influence of rock bolts is most evident, if the
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Figure 6: Geometry of the whole model (top), and finite element mesh including the
position of rock bolts (bottom).

direction of their axis is similar to the direction of the considered stress. Areas with
large stress are redistributed into several smaller areas, although the stress need not
decrease (Fig. 8).

Rock bolts placed above the excavation have greater impact on the vertical stress
and rock bolts placed on the sides have greater impact on the horizontal stress.
Stresses in the area above the excavation are relatively low, so rock bolts cannot
achieve full activation here. Presence of rock bolts is most evident in the horizontal
stress and mainly on the sides of the excavations (Fig. 9). The location of the rock
bolts is clearly apparent from the local stress anomalies.

6. Conclusion

The influence of rock bolts is recognizable from our results. Rock bolts reduce
local extreme values of stresses. In general, they mildly raise stresses in the radial
direction and they help to create rock arch and improve the stability of the excava-
tion. When using rock bolts, areas with large stress are redistributed into several
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Figure 7: Stress σxx in the surrounding of the left excavation without rock bolts
(left) and with rock bolts (right).

Figure 8: Stress σxx along the upper part of the excavation arc – without rock bolts
(dashed line) and with rock bolts (solid line).

smaller areas, although the stress need not decrease. Described influence corresponds
to theoretical knowledge of the functioning of rock bolt reinforcement. It is possible
to combine special rock bolt elements with other types of elements with appropriate
shape functions and this is the way how to create complex numerical models of rein-
forced excavations. Due to the simplicity of the rock bolt element it is quite easy to
create its different modifications with various shape functions. These modifications
were described by Aydan [1], Chao [5] or Runt [8]. The resulting elements can be
used in both 2D and 3D models.
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Figure 9: Stress σxx inside the excavation.
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