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Abstract: The drum mower blade is freely rotatable around the fastening
pin. During the operation of the mower, the centrifugal force and the resistance
of the mowing material act on it. The presented article studies the effect of
these forces on the behavior of the blade, in particular its oscillation around
the steady state, depending on the properties of the cut material.

Keywords: momentum of force, momentum of inertia, nonlinear differential
equation, Maple

MSC: 34A34, 68U20, 70B10

1. Introduction

To solve the problem, we choose the two-dimensional rectangular coordinate sys-
tem. The direction of the x-axis is selected in the opposite direction to the speed of
the mower. The origin C of this coordinate system is selected on the axis of rotation
of the drum. R is the rotation radius of the mounting pin, the dimensions of the
rectangular blade are a, and b. The radius of the mounting pin is r, the mounting
pin is located on the axis of the blade and is at a distance Sb from the shorter side
of the blade a, see Fig. 1, detailed description can be downloaded from [2].

The blade rotates with angular velocity ω counterclockwise, the mower moves
in the negative direction of the x axis. The centrifugal force keeps the blade in the
radial direction – the equilibrium position. Due to the cutting resistance, the blade
is deflected by the angle ψ from the equilibrium position. If the blade is not in the
equilibrium, the centrifugal force acts on it by a torque that tries to return it to
equilibrium. The magnitude of the return torque depends on the angular velocity ψ,
the dimensions and weight of the blade, and the angular velocity ω. The moment of
cutting resistance is proportional to the surface velocity of mowing, Vp and further
depends on the properties of the crop, which are the biological and non-technical
parameters that we will call K.

All computations will be made in the Maple environment.
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Figure 1: Drum mower – Detail of the knife fastening – Coordinate system definition

2. Surface velocity of mowing – fundamentals

First, we start the program and define the basic variables and their design di-
mensions. All dimensions will be given in the SI-system of units.

Other variables are M the blade weight, RR the carrier drum radius, and V the
mower’s velocity. Next, we define Mr the transformation matrix for rotation about
the angle ψ around the support pin and MR the transformation matrix for rotation
about the angle α around the origin of the coordinate system.

> restart: with(LinearAlgebra): with(plots):
> Nsu:=[b=0.093, a=0.048, h=0.004, Sb=0.013, r=0.010, M=0.113, R=0.117, RR=0.132,

omega=50*2*Pi, V=3.0]:
> Mr:=Matrix([[cos(psi),sin(psi)], [-sin(psi),cos(psi)]]):
> MR:=Matrix([[cos(alpha),sin(alpha)], [-sin(alpha),cos(alpha)]]):

Now we can determine the coordinates of all vertices of the rectangular blade.
First in the basic position corresponding to the position in Fig. 1: ld left bottom
corner, lh left upper corner, pd right bottom corner, and ph right top corner. When
rotating about the the angle ψ around the support pin, these vertices move to Ld,
Lh, Pd, and Ph, respectively.

> ld:=[-a/2,-Sb]: lh:=[-a/2,-Sb+b]: pd:=[a/2,-Sb]: ph:=[a/2,-Sb+b]:
> Ld:=convert(evalm(ld.Mr+[0,R]),list): Lh:=convert(evalm(lh.Mr+[0,R]),list):
> Pd:=convert(evalm(pd.Mr+[0,R]),list): Ph:=convert(evalm(ph.Mr+[0,R]),list):
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The cutting edge is given by the intersection of the line joining the Ld and Lh

blade corners with a circle with center at the origin of the coordinate system and RR,
the radius of the carrier drum. We name this intersection Ldr, the length of the
cutting edge then equals the distance of the points Ldr and Lh.

> rh:=expand(Ld+p*(Lh-Ld)): eq1:=add(w^2,w=rh)=RR^2: p2:=[solve(eq1,p)]:
> p:=p2[1]: evalf(subs(Nsu,psi=-Pi/12,p2)): Ldr:=rh:

Next we compute the position of the blade vertices, LD, LH, PD, PH, and the lower
end of the cutting edge LDr, by rotating the system by the angle α around the origin
and by shifting it by some −dx in the X direction.

> LD:=convert(evalm(Ld.MR),list)+[-dx,0]: LH:=convert(evalm(Lh.MR),list)+[-dx,0]:
> PH:=convert(evalm(Ph.MR),list)+[-dx,0]: PD:=convert(evalm(Pd.MR),list)+[-dx,0]:
> LDr:=convert(evalm(Ldr.MR),list)+[-dx,0]:

To check correctness, we plot the position of the blade for ψ = π/12, α = 0,
dx = 0 in gray and for ψ = π/6, α = π/24, dx = 0.15 in black. The mowed area
is marked in a light gray color, see Fig. 2. We do not list the corresponding Maple
commands to save space.
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Figure 2: Visualization of the cropped area
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3. Surface velocity of mowing – general

Let us assume that, at time t = 0, the cutting edge is determined by [[A1x,A1y],
[B1x, B1y]]. After a short time interval dt, the cutting edge moves to [[A2x,A2y],
[B2x, B2y]]. If dt is small we can compute [[A2x, A2y], [B2x, B2y]] using Tay-
lor’s series and simplify the relationship for the mowing surface velocity VS.

> S:=1/2*B1x*B2y+1/2*A1x*B1y-1/2*A2x*B2y-1/2*A1x*A2y-1/2*B2x*B1y
-1/2*B1x*A1y+1/2*A2x*A1y+1/2*A2y*B2x:

> S2:=expand(subs(A1x=A1x(t),A1y=A1y(t),B1x=B1x(t),B1y=B1y(t),
A2x=A1x(t)+diff(A1x(t),t)*dt,A2y=A1y(t)+diff(A1y(t),t)*dt,
B2x=B1x(t)+diff(B1x(t),t)*dt,d=V*dt,B2y=B1y(t)+diff(B1y(t),t)*dt,S)):

> S2:=factor(subs(dt^2=0,S2)): VS:=S2/dt;

VS := 1
2
((A1y(t)−B1y(t))A1x(t)′ − (A1x(t)−B1x(t)) (A1y(t)′

+(A1y(t)−B1y(t))B1x(t)′ − (A1x(t)−B1x(t))B1y(t)′)
(1)

Now we substitute dx = V t, α = ω t and ψ = ψ(t) in the coordinates [LDr,LH]
of the endpoints of the line segment representing the cutting edge. Furthermore we
substitute the points A1, B1 in VS by these expressions and receive the final expression
of the surface velocity of the mowing Vs.

> LDR:=subs(psi=psi(t),dx=V*t,alpha=omega*t,LDr):
> LHR:=subs(psi=psi(t),dx=V*t,alpha=omega*t,LH):
> Vs:=simplify(eval(subs(A1x(t)=LDR[1],A1y(t)=LDR[2],B1x(t)=LHR[1],

B1y(t)=LHR[2],VS))):

4. Derivation of the torque equation

4.1. Determining the torque acting on the blade

The calculation of the returning torque is based on the integration of the
torque dMz acting on the material element of the blade dm. The position of dm

is specified in local coordinates [ξ, η], see Fig. 1.

> A:=[xi*cos(Pi/2-psi(t)),R+xi*sin(Pi/2-psi(t))]: # dM in local coordinates
> B:=A+[eta*cos(psi(t)),-eta*sin(psi(t))]: # dM in global coordinates
> L:=simplify(sqrt(add(w^2,w=B))): # radious of rotation of dM
> phi:=omega*t:
> dF:=L*omega^2*dM*[sin(phi),cos(phi)]: #elementary centrif. force acting on dM
> su:=[sin(phi)=B[2]/L,cos(phi)=B[1]/L]: # sin and cos substitution
> dFs:=factor(expand(subs(su,dF))): # dF in the local coordinates

The torque dMz acting on dm can be expressed as the vector product of the
force arm vector [ξ, η] and dFs, which can be expressed as the determinant of the
matrix Mat.

Mat =

∣∣∣∣∣∣
[1, 0, 0] [0, 1, 0] [0, 0, 1]
ξ η 0

dFsx dFsy 0

∣∣∣∣∣∣
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> Mat:=Matrix([[[1,0,0],[0,1,0],[0,0,1]],[xi,eta,0],[dFs[],0]]):
> dMz:=expand(Determinant(Mat)): # elementary torque acting on dM
> dMz:=dMz[3]: # dMz is parallel with the z axis
> Mz:=Int(Int(subs(dM=h*rho,dMz),xi=-Sb..b-Sb),eta=-a/2..a/2); # total torque
> Mz:=simplify(value(Mz),symbolic);

Mz :=
ω2M sin(ψ(t)) (a2 + 12Sb2 − 12 b Sb+ 4 b2)

12

4.2. Determining the momentum of the inertia of the blade

The moment of inertia, J, of the blade relative to the axis of rotation around the
mounting pin is similar to the calculation of the moment of force in the previous
section.

> J:=Int(Int((xi^2+eta^2)*h*rho,xi=-Sb..b-Sb),eta=-a/2..a/2):
> J:=simplify(subs(rho=M/(h*a*b),value(J)));

J :=
M(a2 + 12Sb2 − 12 b Sb+ 4 b2)

12

4.3. The resulting form of the torque equation

The basic form of the torque equation is ~H = J ~ε, derived by Newton, where ~H
is the torque, J is the momentum of the inertia and ~ε is the vector of the angular
acceleration.

The resulting shape of the torque equation De is obtained after substitution J by
the expression above and H by Mz and ~ε by ~ψ′′(t):

> DE:=J*epsilon=Mz: sue:=epsilon=-diff(psi(t),t,t):
> DE:=subs(sue,DE): De:=diff(psi(t),t,t)=solve(DE,diff(psi(t),t,t));

De := ψ(t)′′ = −ω2 sin(ψ(t)) (2)

If we substitute ω2 = g/l, where g = gravitational acceleration, l = distance of the
center of gravity of the mathematical pendulum from the suspension axis, in the
equation (2), it will describe the swinging of the mathematical pendulum in Earth’s
gravitational field. This means that the blade acts as a mathematical pendulum
when deflected from the equilibrium. The behavior of the mathematical pendulum
is described in many ways, for example [1]. So let’s study the behavior of a blade
that is deflected from a equilibrium due to mowing resistance.

5. The torque equation with the cutting resistance

Equation (1) describes the surface mowing velocity for a drum with a single
blade. In the case of a multi-blade drum, the first blade moves above the surface
that has already been cut by another blade. This situation is illustrated in Fig. 3.
The problem is that the movement of the second or other blades are on the motion of
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Figure 3: Two blades drum – surfaces mowed by the individual blades

the first blade is independent. Therefore deriving the general equation of the actual
surface velocity of mowing of the first blade is not possible.

Another problem is that we do not know the cutting resistance of the material to
be cut. This means that the torque that acts on the blade is given by the product of
an unknown mowing surface velocity and unknown cutting resistance. Given that the
product of two unknown values is again an unknown value, it is possible to replace
these two unknown quantities with only one unknown quantity and multiply this by
the estimated relative change of the mowing surface velocity.

Let’s assume that the relative mowing surface velocity can be described by the
function: − cos(x) Heaviside(− cos(x)), see Fig. 4.
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Figure 4: The relative mowing surface velocity

Using this the torque equation considering the cutting resistance becomes:

> DE2:=’J’*’epsilon’=’Mz’-K*’Vs’*Heaviside(-cos(omega*t-psi(t)))*
(-cos(omega*t-psi(t))):

DE2 := J ε = Mz +K VsHeaviside (− cos (ω t− ψ (t))) cos (ω t− ψ (t)) (3)

Equation (3) is an extremely nonlinear second order differential equation for ψ(t) the
angle of the blade describing the offset from the equilibrium position. The solution
can only be obtained using numerical methods.
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Because the frequency of the blade vibrations will be similar to the frequency of
the rotation of the carrier drum, as indicated by Equation (2), we will only study
the blade vibrations as a function of time. For this we use Maple procedure Fsol.
The input for this procedure is the initial conditions INI, the numerical value K of
the coefficient and the length of the time interval T. With these values the Fsol

procedure computes the numerical solution of the (3) equations using the Runge-
Kutta method. This solution is an input of Newton’s iteration to find the time at
which the blade deflection is maximal. Time and amplitude are stored and plotted
later. We do not list the corresponding Maple commands to save space.

Fsol:=proc(Ini,K,T) local de2, SolN, tau, DT, Q;
de2:=evalf(subs(Nsu,DE2));
SolN:=dsolve({de2,Ini[]},psi(t),numeric,method=rkf45,maxfun=500000);
tau:=0.02; DT:=1; Q:=[[0,evalf(rhs(Ini[1]))]];
while tau<=T do;

while abs(DT)>1e-8 do;
DT:=evalf(subs(SolN(tau),diff(psi(t),t)/rhs(de2))); tau:=tau-DT;

end do;
Q:=[Q[],[tau,rhs(SolN(tau)[2])]]; tau:=2*Q[-1][1]-Q[-2][1]; DT:=1;

end do:
map(u->[u[1],evalf(u[2]/Pi*180)],Q):

end proc:

With the coefficient K equal to 1/100, 2/100 and 3/100 and with the following
initial conditions: ψ(0) = π/6 and ψ′(0) = 0 we obtain Fig. 5. It displays the time
development of the amplitude of the blade vibrations.
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Figure 5: Amplitude of ψ(t) for ψ(0) = 30◦, 0 ≤ t ≤ 10

Now we can use the initial conditions ψ(0) = 0 and ψ′(0) = 0 and the same values
of the coefficient K, see Fig. 6.
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Figure 6: Amplitude of ψ(t) for ψ(0) = 0◦, 0 ≤ t ≤ 10

6. Conclusion

From the mathematical model presented, it is clear that the blade vibrates around
the equilibrium position during mowing. From the graphical results, we see that the
frequency of the blade vibrations depends on the mowing surface velocity multiplied
by the cut resistance K. The lower this product is, the more the frequency of the
blade vibrations approaches the frequency of the carrier drum.

Otherwise, if the product of Vs times K is higher, the frequency of the blade
oscillations decreases and it leads to the resonance shocks with the frequency of
the carrier drum rotation, which results in a gradual decrease and an increase of
the maximum deflection angle of the blade. With increasing cutting resistance, the
frequency of resonant shocks increases.

For double blade mowers, this means that the blades need not be balanced with
each other relative to the axis of rotation, which can lead to increased stress on the
bearings of the carrier drum.
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