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Abstract: The contribution is devoted to computations of the limit load for
a perfectly plastic model with the von Mises yield criterion. The limit factor
of a prescribed load is defined by a specific variational problem, the so-called
limit analysis problem. This problem is solved in terms of deformation fields
by a penalization, the finite element and the semismooth Newton methods.
From the numerical solution, we derive a guaranteed upper bound of the limit
factor. To achieve more accurate results, a local mesh adaptivity is used.
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1. Introduction

Limit analysis is a rigorous method developed for determination of a limit load
applied on a body. This means to find a limit value of a scalar multiplier of a pre-
scribed set of external forces. The presence of the limit load is a feature of perfectly
plastic problems. Its knowledge or at least bounds are important since the body
collapses beyond this ultimate load. The limit analysis method can be based on
a specific variational problem which defines the limit load factor directly without
any incremental procedure. This approach is analyzed, e.g., in [4], [15].

The present paper is focused on the limit analysis problem for the von Mises yield
criterion and follows on the recent article [9] where computable majorants of the limit
load have been investigated. Our aim is to improve numerical results from [9] by
using local mesh adaptivity.
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The paper is organized as follows. Section 2 is devoted to setting of the limit
analysis problem for the von Mises yield criterion. Section 3 deals with a numerical
solution of the limit analysis problem involving local mesh adaptivity. In Section 4,
we show how to get a computable majorant of the limit load using a posteriori analy-
sis. Section 5 is devoted to an illustrative numerical example. Section 6 concludes
the paper with several remarks.

2. Limit analysis problem

In this section, we first present static and kinematic approaches to limit analysis.
Then we specify the kinematic limit analysis problem for the von Mises yield criterion.

Let Ω be a bounded domain in Rd, d = 2, 3, with the Lipschitz continuous
boundary ∂Ω and ΓD,Γf be open parts of ∂Ω such that

measd−1ΓD > 0, ΓD ∩ Γf = ∅, Γ̄D ∪ Γ̄f = ∂Ω.

We assume that the body is fixed on ΓD and consider the following space of defor-
mation fields:

V := {v ∈ W 1,2(Ω; Rd) | v = 0 on ΓD}.
On Γf , surface forces of density f ∈ L2(Γf ; Rd) are prescribed. Volume forces are
represented by a function F ∈ L2(Ω; Rd). The load functional reads as:

L(v) :=

∫
Ω

F · v dx+

∫
Γf

f · v ds, v ∈ V.

By Md×d
sym, we denote the space of symmetric d × d matrices equipped with the

scalar product e : η := eijηij and the norm |e|2 = e : e. This space will be used for
Cauchy stress tensors and infinitesimal small strain tensors, respectively. Admissible
stress tensors belong to a closed, convex set B ⊂ Md×d

sym which is usually defined by
a (plastic) yield criterion. We assume a homogeneous material and thus B does not
vary in Ω. The symbol ε(v) = (∇v+(∇v)>)/2 stands for the linearized strain tensor
related to v ∈ V.

The following two sets define statically and plastically admissible stress fields,
respectively:

QλL :=

{
τ ∈ L2(Ω,Md×d

sym) |
∫

Ω

τ : ε(v) dx = λL(v) ∀v ∈ V
}
,

P :=
{
τ ∈ L2(Ω,Md×d

sym) | τ(x) ∈ B for a.a. x ∈ Ω
}
,

where λ ≥ 0 is the load parameter (factor). Thus any element belonging to QλL

satisfies the balance equation in Ω and the Neumann boundary conditions on Γf with
respect to the loads λF and λf , respectively. The static limit value λ∗ is defined
as the supremum over all λ, for which there exists simultaneously a statically and
plastically admissible stress field, i.e.,

λ∗ := sup{λ ≥ 0 | QλL ∩ P 6= ∅}.
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The kinematic approach to limit analysis is based on the minimization of the
plastic dissipation functional subject to the load constraint:

(P)∞ ζ∗ := inf
v∈V

L(v)=1

J∞(v), J∞(v) :=

∫
Ω

j∞(ε(v)) dx, v ∈ V,

where
j∞ : Md×d

sym → R+, R+ := R+ ∪ {+∞}, j∞(e) := sup
τ∈B

τ : e.

We see that the function j∞ need not be finite everywhere and thus one must ex-
pect additional constraints in (P)∞ depending on the definition of B. Further, it
is worth noticing that the space V is sufficient for the definition of the kinematic
limit value ζ∗ but the minimum of J∞ need not belong to V, in general. This is
due to the fact that the functional J∞ has only a linear growth at infinity in its
effective domain. Therefore, J∞ is coercive only in the space W 1,1(Ω,Rd) which is
not reflexive. A minimizer can be found in the BD space after a certain relaxation
of the problem. This space contains functions with bounded deformations which
can be discontinuous along surfaces and it enables us to describe expected failure
mechanisms in limit analysis.

The following duality relationship between the static and kinematic approaches
holds:

λ∗ = sup
τ∈L2(Ω,Md×d

sym)
τ∈B inΩ

inf
v∈V

L(v)=1

∫
Ω

τ : ε(v) dx ≤ inf
v∈V

L(v)=1

∫
Ω

j∞(ε(v)) dx = ζ∗,

i.e., λ∗ ≤ ζ∗, in general. However, the equality can be proven for specific B’s.
The von Mises yield criterion defines the set B in the form

B =
{
τ ∈ Md×d

sym | |τD| ≤ γ
}
, (1)

where τD = τ− 1
d
(tr τ)I is the deviatoric part of τ , tr τ = τii is the trace of τ , I is the

identity matrix in Md×d
sym, and γ > 0 represents an initial yield stress. Notice that B is

an unbounded cylinder aligned with the hydrostatic axis. For this particular choice
of B, one can specify the function j∞ and consequently the problem (P)∞. We have:

j∞(e) = sup
τ∈B

τ : e =

{
γ|eD|, tr e = 0
+∞, tr e 6= 0

∀e ∈ Md×d
sym,

and

ζ∗ = inf
w∈S

L(w)=1

JM
∞ (w), JM

∞ (w) :=

∫
Ω

γ|εD(w)| dx, (2)

where
S = {w ∈ V | divw = 0 a.e. in Ω}.

Clearly, (2) is a non-smooth optimization problem involving the isoperimetric and
divergence-free constraints. For this model we know that λ∗ = ζ∗ (see [15]).
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3. Numerical solution

Numerical strategy presented below has been developed in [1], [6], [7], [12], [14]
and it can be used for various types of the set B, not only for (1). It is based on the
following penalization of problem (P)∞:

(P)α inf
v∈V,

L(v)=1

∫
Ω

jα(ε(v)) dx, jα(e) := sup
τ∈B

{τ : e− 1

2α
C−1τ : τ}, e ∈ Md×d

sym,

where α > 0 is the penalization parameter and C is a symmetric and positive definite
fourth order tensor. Regardless of a particular choice of C, it holds that jα is convex,
smooth, real-valued in Md×d

sym, and jα → j∞ pointwisely as α → +∞. For example,
if B is defined by (1) and C is the identity tensor then

jα(e) =

{
α
2
e : e, |eD| ≤ γ/α

α
2

[
e : e− (|eD| − γ/α)2

]
, |eD| ≥ γ/α

∀e ∈ Md×d
sym,

j′α(e) =

 αe, |eD| ≤ γ/α

α
[
e− (|eD| − γ/α) eD

|eD|

]
, |eD| ≥ γ/α

∀e ∈ Md×d
sym,

where j′α(e) is the Fréchet derivative of jα at e. Similar formulas can be found, e.g.,
in [6], [15].

A minimizer of the penalized problem need not belong to V similarly as for
problem (P)∞. But if we admit that the minimizer belongs to V and denote it as uα,
then there exists λα ≥ 0 such that the pair (uα, λα) is a solution to the following
problem: ∫

Ω

ΠB(ε(αuα)) : ε(v) dx = λαL(v) ∀v ∈ V and L(uα) = 1, (3)

where ΠB(αe) := j′α(e) for any α > 0, e ∈ Md×d
sym and ΠB represents the projection

of Md×d
sym onto B. The first equation in (3) is closely related to Hencky’s problem for

a load parameter λ, see [6], [15]. It is important to note that the mapping ψ : α 7→ λα

is meaningful even if uα 6∈ V. Moreover, ψ is a continuous and nondecreasing function
in R+ and ψ(α) → λ∗ as α→ +∞, see [7].

Next, the penalized problem is discretized by conforming finite elements belonging
to a space Vh ⊂ V. The discrete counterparts of (P)α, uα, ψ, and λ∗ are denoted
as (P)α

h , uα,h, ψh, and λ∗h, respectively. The solution uα,h to (P)α
h always exists unlike

continuous setting of the problem. The function ψh can be directly defined as follows:

ψh(α) :=

∫
Ω

ΠB(ε(αuh,α)) : ε(uh,α) dx, α > 0, (4)

It is also a continuous, nondecreasing function in R+ and ψh(α) → λ∗h as α→ +∞,
see [7], [14]. If we consider a regular system of finite element meshes then ψh(α) →
ψ(α) as h→ 0+ for any α > 0, see [7]. Unfortunately, convergence λ∗h → λ∗ may not
hold. We only know that λ∗h ≥ λ∗.
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The discrete counterpart to (3) is solved by the semismooth Newton method
with damping. It leads to a sequential quadratic programming inside problem (P)α

h

and due to the damping, it can be interpreted as a descent direction method. For
convergence analysis, we refer to [1]. To find a sufficiently large value of α for which
the function ψh is already almost constant, we use a continuation technique with
respect to α, see also [9], [13].

In limit analysis, the failure is usually localized and rigid deformation fields are
observed far from the failure. Therefore, local mesh adaptivity can significantly
reduce the number of unknowns and improve accuracy of the results. Our refinement
procedure is available only for 2D cases which result from the plane strain reduction
of 3D problems. For the sake of simplicity, we consider right-angled and isosceles
triangles (elements) before and after the refinement to avoid a mesh degeneration.
The refined mesh is constructed by means of the bisection technique.

We use the following mesh adaptive strategy. First, the maximal value α̂ of
α achieved by the continuation on the coarsest mesh Th0 is fixed. For the mesh
level k = 0, 1, 2, . . ., we denote the solution to (P)bαhk

by uk. Then
∫

T
γ|εD(uk)| dx

is evaluated for any T ∈ Thk
and 10% of elements with the largest integral values

is selected. This set of elements is slightly modified to be the (k + 1)-th mesh
level created by right-angled triangles. For k = 1, 2, . . ., problem (P)bαhk

is solved
by the damped Newton method without continuation. For better convergence, we
use uk−1 on the finer mesh to initiate Newton’s method. Notice that the integrals∫

T
γ|εD(uk)| dx correspond to the function JM

∞ introduced in (2). Therefore, this
quantity was chosen for the adaptive mesh refinement.

The problem is implemented in Matlab. Tangential stiffness matrices and load
vectors are assembled by vectorized codes described in [2]. These codes are available
for P1, P2, Q1 and Q2 elements in 2D and 3D. For numerical examples presented be-
low, we use P2 elements with the 7-point Gauss quadrature for numerical integration
on triangular elements.

4. Computable majorants of the limit load

Limit analysis was originally developed as an analytical method determining lower
and upper bounds of the limit load, see [3], [11] and the references therein. Indeed,
from (2), we obtain the following upper bound:

ζ∗ ≤ JM
∞ (w)

L(w)
∀w ∈ S, L(w) > 0. (5)

Unfortunately, this bound holds only for divergence-free functions w and thus it
cannot be combined with the numerical solution from Section 3. We sketch an idea
how to extend this bound to a broader class of functions which need not satisfy the
divergence-free constraint. For more details we refer to [9].

153



The extension of (5) is based on the following distance estimate between functions
from V and the space S, [8], [9]: for any v ∈ V there exists w ∈ S such that

‖∇(v − w)‖Ω ≤ E(div v) := ‖{div v}Ω∇u∗‖Ω + CΩ ‖div v − {div v}Ωdiv u∗‖Ω , (6)

where {g}Ω denotes the integral mean value of a function g in Ω, u∗ ∈ V is an
arbitrary function satisfying {div u∗}Ω = 1 and CΩ > 0 is a constant depending only
on the shape of Ω. The inverse of CΩ > 0 equals to a lower bound in the well-known
inf-sup condition for incompressible flow media:

inf
q∈L2(Ω)
{q}Ω=0

sup
v∈W 1,2

0 (Ω;Rd)

∫
Ω
q div v dx

‖q‖Ω‖∇v‖Ω

≥ C−1
Ω .

The bound CΩ is known in the literature for specific simple shaped domains Ω [5].
Otherwise, it is possible to extend (6) by using a domain decomposition of Ω into
simpler subdomains [8], [9]. The function u∗ can be computed numerically by a min-
imization of ‖∇v‖2

Ω in Vh subject to {div v}Ω = 1.
From (6), two consequences follow for limit analysis: λ∗ = ζ∗ and the upper

bound

ζ∗ ≤ JM
∞ (v) + γ|Ω|1/2E(div v)

L(v)− ‖L‖+E(div v)
, ∀v ∈ V, L(v) > ‖L‖+E(div v), (7)

where ‖L‖+ denotes an upper bound of

‖L‖∗ := sup
v∈V
v 6=0

|L(v)|
‖∇v‖Ω

.

Notice that the bound ‖L‖+ can be found analytically for the example presented in
Section 5. In general, one can derive computable majorants of ‖L‖∗, see, e.g., [10].
Therefore the bound (7) is computable.

Inserting the solution uh,α of (P)α
h into (7), we arrive at the following upper bound

function:

Ψh(α) =


JM
∞ (uh,α) + γ|Ω|1/2E(divuh,α)

1− ‖L‖+E(divuh,α)
, if 1 > ‖L‖+E(divuh,α),

+∞, otherwise,

(8)

Clearly, Ψh(α) ≥ λ∗ for any α > 0. Moreover, Ψh(α) → λ∗h as α → +∞ and
infα>0 Ψh(α) → λ∗ as h→ 0+, see [9].

5. Numerical example

In this section, we consider a plane strain problem in Ω = (0, 10)×(0, 10)\ [0, 1]×
[0, 1], see Figure 2. On the left and bottom sides of ∂Ω, the symmetric boundary
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conditions are prescribed, i.e. v1(0, x2) = 0 for x2 ∈ (1, 10) and v2(x1, 0) = 0 for
x1 ∈ (1, 10). The load functional L is defined only by the constant traction of

density f = (0, 450) acting on the upper side of ∂Ω, i.e. L(v) = 450
∫ 10

0
v2(x1, 10) dx1,

v = (v1, v2) ∈ V. We set γ = 450
√

2/3. Finally, the analytical bounds ‖L‖+
.
= 4640

and CΩ
.
= 2.9745 are at our disposal, see [9].

We compare the values ψh(α) and Ψh(α) computed by the P2 elements for differ-
ent mesh levels. The resulting curves are depicted in Figure 1. The figure on the left
corresponds to the coarsest mesh where the continuation through α was used. We
see that the upper bound function Ψh is decreasing and thus the values Ψh(α) over-
estimate λ∗ for α small. But for the maximal value α̂

.
= 106 both curves practically

coincide and thus they are close to λ∗h as follows from the theoretical results. Then
the local mesh adaptivity for α = α̂ with 48 mesh levels is used, see the figure on the
right. During the mesh refinement, the bounds of λ∗ are reduced. We see that the
difference between ψh(α̂) and Ψh(α̂) remains almost constant and ψh(α̂)

.
= 1.0311

and Ψh(α̂)
.
= 1.0313 for the finest mesh with more than 200 thousands unknowns.

The (guaranteed) upper bound 1.0313 is slightly lower than in [9], where we found
the value 1.0319 using a very fine regular mesh. Since limh→0+ ψh(α̂) = ψ(α̂) ≤ λ∗,
one can expect that λ∗

.
= 1.03 from the trend in the figure on the right.

The finest mesh and its detail are depicted in Figure 2. We see that the mesh was
refined only in the central diagonal band of Ω. On the remaining parts of the domain,
the original (coarsest) mesh is preserved. It is worth noticing that the diagonal band
was not clearly visible within first few mesh levels. From the detail of the finest mesh,
one can see that the smallest elements are located in a vicinity of the point [1, 1] and
on the boundary of this band.

The finest mesh corresponds to the failure visualized in Figure 3. Here, we depict
|εD(uh,bα)| (left) and |uh,bα| (right). One can observe a significant jump of uh,bα at
the point [1, 1] and rigid deformation at the left-top, right-top and right-bottom
triangles, see dark regions in Figure 3 (left). The distribution of |εD(uh,bα)| is similar
but sharper than in [9]. Due to this comparison with the regular mesh, we see that the
mesh adaptive strategy was successfull and in accordance with the expected failure.

6. Conclusion

This contribution followed on our recent research from [1], [6], [7], [9], [12], [14],
where efficient numerical methods for solving the kinematic limit analysis problem
and reliable estimates of the limit load have been developed. Here, we enhanced this
concept by a simple local mesh adaptivity and illustrated that it can lead to more
accurate results.
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Figure 1: Comparison of ψh(α) and Ψh(α) on the coarsest mesh (left) and on the
different mesh levels for α = α̂ (right).

Figure 2: The finest mesh and its detail.

Figure 3: Visualization of the failure by |εD(uh,bα)| (left) and |uh,bα| (right).
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