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Abstract: The main aim of this paper is to analyze numerically the model
behaviour of a granular material during loading and unloading. The model was
originally proposed by D. Kolymbas and afterward modified by E. Bauer. For
our purposes the constitutive equation was transformed into a rate independent
form by introducing a dimensionless time parameter. By this transformation
we were able to derive explicit formulas for the strain-stress trajectories dur-
ing loading-unloading cycles and compare the results with experiments. We
were particularly interested in the observation of a special behaviour called
ratchetlike motion in vibrated granular materials.
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1. Introduction

An introduction into the study of the asymptotic behaviour of stress trajectories
under proportional loading and unloading can be found in [2]. The rate-independent
transformation of the model describing hypoplasticity used in [7], [8] is enriched
by the hypoplasticity hypothesis. This concept was already studied from the en-
gineering point of view in [3], [5], [6], [9], [10], [11], [12] with a great attention to
the phenomenon of ratcheting , see [1]. This phenomenon has the strongest agree-
ment with reality for rate-independent constitutive models describing the behaviour
of loading and unloading of granular materials. The mathematical techniques for
proving the well-posedness of the model presented in the next section can be found
in [4].
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2. The Bauer model

Investigation of the inner processes in granular material during loading and un-
loading is based on the model from [2]. The strain-stress law is considered in the
form

σ̇ = c1

(
ε̇a2tr σ +

σ

tr σ
(σ : ε̇) + a(2σ − 1

3
(tr σ)I)‖ε̇‖

)
, (1)

where ε is the strain tensor and σ is the stress tensor, both tensors are time-
depentent, ‖ ·‖ stands for the Frobenius norm, I is the Kronecker tensor, tr σ = σ : I
is the trace of σ, a > 0 is a model parameter, and c1 < 0 is a scaling parameter
which, as we shall see, has no influence on the asymptotic behaviour of the model.
The dot represents the derivative with respect to time t. We consider proportional
strain paths of the form

ε(t) = ε(t)U, ε̇(t) = ε̇(t)U, (2)

where ε(t) : [0,∞) → R is a given function, and U is a fixed symmetric tensor

U =

u11 u12 u13

u21 u22 u23

u31 u32 u33

 . (3)

This is what we call a proportional loading . The tensor U can be physically inter-
preted as the direction of stress paths during loading and unloading.

Hypothesis 1. Our analysis of equation (1) will be carried out under the following
hypotheses:

(i) the material is initially compressed, that is, σ(0) is a given tensor such that
〈σ(0), I〉 < 0, where 〈·, ·〉 is the Frobenius inner product;

(ii) we investigate below the different dynamics of the model under increasing com-
pression (or loading) corresponding to 〈U, I〉 > 0, decreasing compression (or
unloading) corresponding to 〈U, I〉 < 0, and volume preserving compression
corresponding to 〈U, I〉 = 0;

(iii) ε : [0,∞) → R is absolutely continuous, ε̇(t) < 0 for a. e. t > 0,
limt→∞ ε(t) = −∞.

By introducing a time transformation s(t) by the formula

ṡ(t) = c1ε̇(t), s(0) = 0, and σ′(s) =
dσ

ds
,

we transform equation (1) into a rate-independent form:

σ′ = a2 〈σ, I〉U +
〈σ,U〉
〈σ, I〉

σ − a‖U‖
(

2σ − 1

3
〈σ, I〉 I

)
= 〈σ, I〉

(
a2U +

a

3
‖U‖I

)
+ σ

(
〈σ,U〉
〈σ, I〉

− 2a‖U‖
)

.

(4)
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3. Model analysis

The solution of (4) for each fixed constant tensor U (see [2]) admits an explicit
representation in the form:

σ(s) = eg(s)σ(0) +
〈σ(0), I〉
〈V, I〉

(
ef(s) − eg(s)

)
V , (5)

with functions

f(s) = Ds +
C

η
(1− e−ηs), g(s) = (B − 2a‖U‖)s +

C

η
(1− e−ηs), (6)

where
V = a2U +

a

3
‖U‖I, (7)

B =
〈V,U〉
〈V, I〉

, (8)

C =
〈σ(0),U〉
〈σ(0), I〉

−B, (9)

η = a‖U‖+ a2 〈V,U〉 , (10)

D =
a3 〈U, I〉2 + 1

3
‖U‖ 〈U, I〉

‖U‖a 〈U, I〉
. (11)

According to formula (5), the tensor V represents the asymptotic stress direction as
long as g(s) < 0. A discussion in [2] shows that only the parameter values

a >
1

2
√

3
≈ 0.289 (12)

lead to a good qualitative agreement with experiments, and are therefore physically
relevant.

In the numerical examples in Section 4, we consider loading/unloading processes
in two opposite directions U that we denote U+ for loading, and U− = −U+ for
unloading. We let the dimensionless time s vary within fixed bounded intervals
[0, S+], [0, S−], respectively. The corresponding asymptotic directions V in (7) are
denoted accordingly V+,V−.

4. Numerical examples

From the observation of the behaviour of the model for different parameter val-
ues, we were able to categorize these types: cyclic case, convergence to zero, diver-
gence to infinity, isotropic case, and fast divergence to infinity when the physical
condition (12) is violated. For each type of behaviour we choose typical values of
parameters for which the behaviour can be observed and graphed. We consider only
diagonal tensors U, σ and represent them in the tables by 3D vectors.
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Cyclic case

Ratcheting is observed in cyclic processes when the mechanical response to a time-
periodic input exhibits shifts in the phase space. In the case of Figure 1, the stress
path asymptotically converges to the plane determined by the two asymptotic direc-
tions V+,V− and represented by the grey parallelogram. The values of the variables
can be found in Table 1.

variables S+ S− U+ σ(0) a

values 1 0.2 (1, 0, 0) (10, 10, 10) 0.5

Table 1: Cyclic case.

Figure 1: Cyclic case.

Convergence to zero

The case when the stress path converges to zero corresponds to a stable state
of inner processes during loading and unloading. It means that the resting phase,
or, in other words, the stress relaxation during unloading is dominant. In this case
the stress paths converge asymptotically to zero, see Figure 2. The values of the
variables can be found in Table 2.

Divergence to infinity

In the case when the stress relaxation during the unloading phase is dominated
by the stress increase during loading, the stress path diverges to infinity, see Figure 3.
The values of the variables can be found in Table 3.

84



variables S+ S− U+ σ(0) a

values 1 0.5 (1, 0, 0) (10, 10, 10) 0.5

Table 2: Convergence to zero.

Figure 2: Convergence to zero.

variables S+ S− U+ σ(0) a

values 1 0.1 (1, 0, 0) (10, 10, 10) 0.5

Table 3: Divergence to infinity.

Figure 3: Divergence to infinity.
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Violation of the physical condition

This example demonstrates what can happen if the condition a > 1/2
√

3 from (12)
is violated. We see in Figure 4 that the stress paths quickly diverge to infinity and
the process is very unstable. The values of the variables can be found in Table 4.

variables S+ S− U+ σ(0) a

values 1 0.2 (1, 0, 0) (10, 10, 10) 0.1

Table 4: Violation of the condition a > 1/2
√

3.

Figure 4: Violation of the condition a > 1/2
√

3.

Isotropic case

This is an example of strain ratcheting. The values of S+ and S− are computed in
terms of the ratio between D and B−2a for given a and σ(0) so as to get a periodic
stress path up and down along the isotropic direction I as in Figure 5. The ratio
S+/S− characterizes the strain ratcheting rate along I. The values of the variables
can be found in Table 5.

variables S+ S− U+ σ(0) a

values 1 0.338 (1, 1, 1) (10, 10, 10) 0.5

Table 5: Isotropic case.
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Figure 5: Isotropic case.

5. Conclusion

By using numerical methods we model different types of behaviour of granular
material during loading and unloading. These types of behaviour can be categorized
as: cyclic case, convergence to zero, divergence to infinity, isotropic case, and fast
divergence to infinity when physical conditions are violated. Strain ratcheting with
a good qualitative and quantitative agreement with experiments is observed in the
isotropic case.
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