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Jǐŕı Vala

Brno University of Technology, Faculty of Civil Engineering,
Institute of Mathematics and Descriptive Geometry,
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Abstract: Numerical simulations of time-dependent behaviour of advances
structures need the analysis of systems of partial differential equations of hy-
perbolic type, whose semi-discretization, using the Fourier multiplicative de-
composition together with the finite element or similar techniques, leads to
large sparse systems of ordinary differential equations. Effective and robust
methods for numerical evaluation of their solutions in particular time steps are
required; thus still new computational schemes occur in the engineering liter-
ature. This paper presents certain classification of such approaches, together
with references to their expectable accuracy and some practical applications.
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1. Introduction

Physical formulations of computational tasks in continuum mechanics, motivated
by the analysis of advanced structures, needed in civil engineering, result in the initial
and boundary value problems for certain hyperbolic systems of partial differential
equations of second order, in the simplest case linear, but frequently containing some
nonlinear terms. Such problems can be handled using the multiplicative Fourier de-
composition of their solutions to functions of Cartesian coordinates in the (in general)
3-dimensional Euclidean space R

3 and to functions of time on certain finite time in-
terval, starting from zero time. The complete evaluation using orthogonal Fourier
(or similar) series is available just in sufficiently simple cases like [6], otherwise some
discretization technique in R

3 is needed, which leads to large systems of ordinary
differential equations; for a possible approach to the convergence analysis see [7].

Numerical analysis relying (at least for appropriate linearized formulations) on
the knowledge of exact solutions of such problems, analogous to [10] for a parabolic
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(heat transfer) problem, suffer from their general complex forms. Consequently ro-
bust, stable, reliable and effective direct integration algorithms for the construction
of approximate solutions, step by step in time, are needed – cf. [3], Chap. 9. Most
existence, uniqueness, convergence, etc. proofs utilize finite differences for the ap-
proximation of time derivatives of vectors of unknown variables, as sketched in [21].
An original idea of Newmark [18] is to solve a system including second time deriva-
tives from Taylor series (approximate ones, motivated by the mean value theorem),
constructed for both function values and first time derivatives, in particular time
steps; for its modern convergence analysis see [13]. Attempts to increase numerical
damping without degrading the order of accuracy can be documented on [8], [11]
and [1]; [14] shows even a (rather complicated) possibility to improve even the order
of accuracy. Other class of algorithms, based on operator splitting, comes from [9].

Unlike all one-step methods derived from [18], an intermediate time step by Bathe
is hidden in [2] and [4]: the first half-step is based on the simple rectangular integra-
tion rule, the second one on the one-side formula for numerical differentiation, for-
mally the same for function values and first time derivatives. Although this approach
brings no improvement of the order of accuracy, some computational advantages can
be registered. Recently 2 new relevant papers occurred: [17] brings a further im-
provement of [2] and [4], whereas the new Wen algorithm by [23] suggests a special
division of h into 3 substeps. We shall sketch the expectable numerical benefits of the
above sketched approaches, together with certain unified formulation of such class of
algorithms, open to further generalizations, and with some references to the original
numerical experiments.

2. Physical, mathematical and computational considerations

For the introduction of a model problem, let R
3 be supplied by the Cartesian co-

ordinate system x = (x1, x2, x3). Let Ω be some domain, representing a construction,
or its selected part, in R

3, with its (sufficiently smooth) boundary ∂Ω, whose sup-
ported part is Θ ⊆ ∂Ω, the remaining one Γ = ∂Ω \Θ. (The possible simplifications
for R

2 or R
1 are evident.) Moreover, let I = [0, τ ] be a time interval where τ denotes

its positive length (τ → ∞ is not forbidden). Any time t will be considered from I;
the upper dots will refer to d/dt briefly. Let u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) be
the (a priori unknown) displacement on Ω × I, related to the initial geometrical
configuration (with t = 0), connected with certain strain tensor ε(u) ∈ R

3×3
sym and

also with the stress tensor σ ∈ R
3×3 satisfying

σ = S(ε(u)) on Ω × I (1)

where S refers to some algebraic constitutive relation; the above sketched symme-
try can be interpreted as the property of Boltzmann continuum. The geometrical
linearization (appropriate at least for the first estimate) of (1) is based on the for-
mula εij(u) = (∂ui/∂xj + ∂uj/∂xi)/2 for every i, j ∈ {1, 2, 3}, whereas the physical
linearization

S(ε(u)) = Eε(u) on Ω × I , (2)
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containing E ∈ R
(3×3)×(3×3)
sym defined on Ω, comes from the empirical Hooke law (very

special for orthotropic or even isotropic materials, homogeneity is not necessary here).
The material density ρ will be considered as time-independent on Ω.

We shall work with the standard Cauchy initial conditions

u(., 0) = u0 , u̇(., 0) = û0 on Ω (3)

for some prescribed ū0 and û0 on Ω (zero-valued frequently, except seismic simula-
tions). The time development of u is then influenced by

i) the volume load f = (f1, f2, f3) on Ω × I,

ii) the surface (or, alternatively, interface contact) load g = (g1, g2, g3) on Γ × I,

iii) the forced support motion w = (w1, w2, w3) on Θ × I.

Clearly ii) refers to the Neumann (or similar) boundary conditions and iii) to the
Dirichlet ones. In general, the dependence of f , g and w on u is also possible,
although this typically disturbs any linearization.

We shall now work with the notation

(ω,̟)(t) =

∫

Ω

ω(x, t) ̟(x, t) dx , 〈ω,̟〉(t) =

∫

∂Ω

ω(x, t) ̟(x, t) ds(x)

for any scalar functions ω and ̟ integrable in the required sense; the generalization
of this notation for vector and tensor functions (needed here, too) is straightforward.
Following [5], using a virtual (arbitrary admissible) displacement v = (v1, v2, v3)
on Ω, zero-valued on Θ, assuming a closed physical system, we can formulate the
principle of conservation of energy

(ε(v), σ) = (v, f − f⋄) + 〈v, g〉 on I (4)

where

f⋄ = ρü on Ω × I . (5)

is the force of inertia. Consequently (1), (2), (4) and (5) yield

(v, ρü) + (ε(v), αEε̇(u⋆)) = F (v) on I (6)

with

F (v) = (v, f) + 〈v, g〉 on I . (7)

Nevertheless, the formulation (6) with (7) is not realistic because of the irre-
versible energy lost by damping, explained as the transformation of mechanical en-
ergy to thermal one on the contact between Ω and its surrounding in any time from I.
Two simplest models incorporating this effect are

f⋄ = ρ(ü+ βu̇) on Ω × I , (8)
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known as mass damping, and

S(ε(u)) = E(ε(u) + αε̇(u)) on Ω × I , (9)

known as structural damping, referring to the Kelvin viscoelastic model; α and β here
must be seen as certain new material characteristics. Both these linear models are
combined frequently; for more such considerations see [22]. Another useful technique
relies on the implementation of an additive decomposition u⋆ = u−w, working with
some reasonable extension of w from Θ × I to Ω × I. Consequently, instead of (6)
with (7), now (1), (9), (4) and (8) yield

(v, ρü⋆) + (v, βρu̇⋆) + (ε(v), αEε̇(u⋆)) + (ε(v), Eε(u⋆)) = F (v) on I (10)

with

F (v) = (v, f)+〈v, g〉−(v, ρẅ)−(v, βρẇ)−(ε(v), αEε(ẇ))−(ε(v), Eε(w)) on I . (11)

Assuming w(., 0) = u0 and ẇ(., 0) = û0 on Ω, the Cauchy initial conditions (3) for u⋆

and u̇⋆ become homogeneous.
For numerical evaluations some approximations of functions on Ω and ∂Ω of

a finite dimension n are needed; the study of convergence properties refers to the
limit passage n → ∞. For (almost) every x ∈ Ω and t ∈ I the generalized Fourier
decomposition u⋆(x, t) = φk(x)ψk(t), applying an Einstein summation index k ∈
{1, 2, . . . , n}, is available. All functions φ1, φ2, . . . , φn are a priori known (mostly
not orthogonal in a corresponding unitary space, but usually with a small compact
support, typically in the finite element method). Let us choose, step-by-step, v = φj

in (10) for all j ∈ {1, 2, . . . , n}, and consider (for simplicity, thanks to the appropriate
choice of φ1, φ2, . . . , φn) ψk(t) ≈ u⋆(xk, t) in selected points xk ∈ Ω. Consequently, in
the remaining text, similarly to [13], [4], [17] and [23], we can understand U(t) as the
vector of length n composed from ψ1(t), ψ2(t), . . . ψn(t). In the analogous way, F(t)
can denote the vector of the same length generated by the right-hand side of (10).

Thus we receive, instead to (10), some large (typically sparse) system of ordinary
differential equations

M Ü + CU̇ +KU = F on .I (12)

The matrices M , C and K from R
n×n
sym here, well-known as the mass, damping and

stiffness matrices, are crucial for the numerical analysis of the problem.
Clearly (10) corresponds to just one part of structure, connected with its other

parts by some interface conditions. For simplicity, let us suppose that all such
conditions can be written in the same form as those boundary ones on Γ or Θ using
σ−σ×, u−u×, etc., instead of σ, u, etc., in (4) and the following relations; .× refers to
some neighbour domain. Consequently, (10) is transformed from 1 partial differential
equation to a system of such equations, whose number corresponds to the number
of structural parts. Therefore the size of the system (12) increases dramatically (in
comparison with a model problem), the choice of functions φ. determines the number
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and location of non-zero elements in particular square blocks (whose overlapping
comes from interface conditions) in all square matrices occurring in (12) and also
in (13), as presented lower (needed for practical calculations), and the numbering of
domains influences the positions of such blocks. Moreover, the results of optimization
of such properties for the sequential algorithms need not be valid in the case of parallel
processing, depending on the available hardware and software support.

3. Classical and novel time integration schemes

Most engineering papers start their theoretical and computational analysis with
the semi-discretized system (12), although for nearly all applications some relations
like K = n2K̄ and C = nC̄ with bounded K̄, C̄,M ∈ R

n×n
sym hold, namely for regular

and semi-regular families of decompositions to finite elements, which is important
for the convergence properties and stability of computational algorithms. Also the
analysis of nonlinear effects, forcing the dependencies C(U), K(U) or even F(U)
and M(U), making use of some quasi-Newton iterations, is non-trivial, as sketched
in [21]: certain quasi-linearity conditions from [20] must be satisfied. However, such
considerations will be omitted in this short paper.

We shall now present a unified form of above mentioned approaches. We shall
work just with the decomposition of I tom equidistant subintervals of length h=τ/m,
i. e. to the subintervals Is = ((s − 1)h, sh] where s ∈ {1, . . .m}, with the final aim
m→ ∞. For the brevity we shall use the notation Us = U(sh) ∈ R

n and analogously
some Fs, taken as F(sh), as the mean value of F(.) over Is, or in some similar way,
to optimize the error of numerical quadrature. All algorithms come from the fully
discretized modification of (12)

M Üs + CU̇s +KUs = Fs on Is for each s ∈ {1, . . . , m} , (13)

derived from some formulae for numerical differentiation or quadrature based on ap-
propriate relations between us, u̇s and üs and other quantities. Their computational
efficiency depends on the possibility to evaluate Us, U̇s and Üs applying (13), just
from Us−1, U̇s−1 and Üs−1, which is true for all following schemes except the classical
finite difference one (which is the well-known drawback of such scheme, utilizing an
additive fictive node, in our case related to s = −1, i. e. to the hypothetical time −h).
The above sketched homogenization of the Cauchy initial conditions (3) is not obliga-
tory here, i. e. we are able to work also with the modified versions of (10) containing u
instead of u∗ and of (11) where all additive terms including w are missing, forcing
u(., sh) ≈ w(sh) on Θ by another computational technique. The appropriate vec-
tors Ū and Û can be then derived from the Cauchy initial conditions (3) with ū
and û.

We are now ready to compare the above introduced algorithms, together with
some remarks to their expectable convergence quality. All symbols I refer to the
unit matrix from R

n×n; zeros mean also the zero vectors and matrices from R
n

or R
n×n. The MAPLE software support has been utilized. For the brevity, all
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schemes here take the unified form KU = F where K is some real square matrix of
integer order p and U, F are vectors of length p containing various real functions.
Only the necessary first steps s ∈ {1, 2, . . .} are presented for easy comparison of
different schemes. However, all schemes start with s = 0 in (13) formally to set some
reasonable Ü0, unlike U0 and U̇0 induced by (3); we shall see that the finite difference
algorithm needs still another artificial step.

a) The finite difference algorithm works with the simplest formulae of nu-
merical differentiation to obtain U̇s and Üs. We have

K =





















−I 0 0 I 0 0 0
0 M C K 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 M C K
I 0 0 −2I −h2I 0 I
0 0 0 −I 0 −hI I





















, U =





















U−1

Ü0

U̇0

U0

Ü1

U̇1

U1





















, F =





















2hÛ0

F0

Û0

Ū0

F1

0
0





















.

Its simplicity (1st and 2nd derivatives are replaced by 1st and 2nd differences for-
mally) supports the transparency of all convergence proofs, as sketched in [21]. How-
ever, all numerical implementations suffer from the above mentioned drawback. The
hypothetical alternative of exact solution of (13) cannot avoid the expensive eval-
uation of complex eigenvalues and eigenvectors of sparce matrices, although the
resulting solution is real. The convergence O(h2) of the differentiation formulae
(under certain additional data smoothness assumptions) in any s-th step forces the
convergence O(h) (at least) for a finite I. This is true (in slight modifications) for b)
and c) and partially even to d), too, although some such formulae are replaced by
certain numerical quadrature rules.

b) The motivations for the Newmark algorithm and its practical implemen-
tations are studied in [15] in details; for its convergence properties cf. [21]. The
principle idea is to express Us and U̇s (s ∈ {1, 2, . . .} again) using the Taylor polyno-
mials separately, with Üs occurring in the additive error terms. We have

K =

















M C K 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 M C K
hI I 0 hI −2I 0
h2I 2hI 2I 0 0 −2I

















, U =

















Ü0

U̇0

U0

Ü1

U̇1

U1

















, F =

















F0

Û0

Ū0

F1

0
0

















.

Various modifications of this algorithms, preserving the same accuracy and efficiency
can be found in the literature: e. g. the last row of the left-hand-side matrix can be
replaced by [h2I 4hI 4I h2I 0 −4I ], which is motivated by the fact that the
evaluation of us can work even with linear Taylor polynomials, similarly to that of U̇s,
or even by [ 0 hI I 0 hI −2I ], substituting this by the rectangular quadrature
rule.
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c) The composed Bathe algorithm uses (in general) the rectangular quadrature
rule for the odd steps and the Euler backward differentiation formula for the even
steps. We have

K =





























M C K 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0
0 0 0 M C K 0 0 0
hI I 0 hI −2I 0 0 0 0
0 hI I 0 hI −2I 0 0 0
0 0 0 0 0 0 M C K
0 hI 0 −4hI 0 −I 3hI 0 0
0 0 hI 0 −4hI 0 −I 3hI 0





























,

U =































Ü0

U̇0

U0

Ü1

U̇1

U1

Ü2

U̇2

U2































, F =





























F0

Û0

Ū0

F1

0
0
F2

0
0





























.

The convergence in particular steps O(h2) can be guaranteed, similarly to b); thus
various combinations with b) in particular steps are available. Some variable positive
step lengths, namely h1 instead of h in the 5th and 6th lines of K and h2 in its 8th
and 9th lines can be implemented, too.

d) The Wen algorithm tries to improve c) joining an additional step (thus the
typical triple of steps occur). Such step relies on the Houbolt backward differentiation
formula, with the guaranteed convergence O(h3), in addition to the Euler one in the
preceding step. We have

K =









































M C K 0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 M C K 0 0 0 0 0 0
hI I 0 hI −2I 0 0 0 0 0 0 0
0 hI I 0 hI −2I 0 0 0 0 0 0
0 0 0 0 0 0 M C K 0 0 0
0 hI 0 −4hI 0 −I 3hI 0 0 0 0 0
0 0 hI 0 −4hI 0 −I 3hI 0 0 0 0
0 0 0 0 0 0 0 0 0 M C K
0 −2I 0 0 9I 0 0 −18hI 0 −3I 11hI 0
0 0 −2I 0 0 9I 0 0 −18hI 0 −3I 11hI









































,
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U =











































Ü0

U̇0

U0

Ü1

U̇1

U1

Ü2

U̇2

U2

Ü3

U̇3

U3











































, F =











































F0

Û0

Ū0

F1

Û1

Ū1

F2

Û2

Ū2

F3

Û3

Ū3











































.

The variable positive step lengths, namely h1 instead of h in the 5th and 6th lines
of K, h2 in its 8th and 9th and h3 in its 11th and 12th lines, make the last formula
still more complicated, but offer a possibility of algorithm optimization.

4. Conclusions with references to applications

In general, no formal proof of the better convergence of c) or d) than b) is avail-
able. However, many numerical experiments have been performed using the software
package RFEM. Their results seem to justify good properties of c) namely in the case
of seismic response where non-zero oscillating values of w in (11) occur, as demon-
strated by [16], but one cannot ignore the increased number of arithmetic operations
in particular steps of c) in comparison with b). The practical implementation of
d) is still in development. Also the parallel computations can lead to quite other
priorities, even to the rehabilitation of selected explicit algorithms – cf. [19].

A more extensive proper theoretical study comparing the convergence properties
of a), b), c), d) is being prepared. Consequently the continuing work on further
practical applications based on RFEM (contact problems, brittle and quasi-brittle
fracture, . . . ), with the participation of Ph.D. students at Brno University of Tech-
nology, should lead to the validation of theoretical results, related to both projects
from Acknowledgements.
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