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Abstract: This paper examines the pricing of two-asset European options
under the Merton model represented by a nonstationary integro-differential
equation with two state variables. For its numerical solution, the wavelet-
Galerkin method combined with the Crank-Nicolson scheme is used. A draw-
back of most classical methods is the full structure of discretization matrices.
In comparison, the wavelet method enables the approximation of discretization
matrices with sparse matrices. Sparsity is essential for the efficient application
of iterative methods in solving the resulting systems and the efficient com-
putation of the matrices arising from the discretization of integral terms. To
illustrate the efficiency of the method, we provide the results of numerical
experiments concerning a European option on the maximum of two assets.
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1. Introduction

Thus far, many models for option pricing have been proposed, including the fa-
mous Black-Scholes model and various stochastic volatility models. These models
assume that the price of the underlying asset is a continuous function in time, which
is not always consistent with the behaviour of real market prices. Therefore, several
models that assume that jumps can occur in the price have been designed. This
paper focuses on a jump-diffusion model, namely the Merton model, for two under-
lying assets. This model is represented by a nonstationary partial integro-differential
equation (PIDE) with two state variables.

Several numerical schemes for the deterministic two-asset Merton model have al-
ready been studied, e.g. the time discretization schemes in [2], the finite difference
method in [6], and the wavelet-Galerkin method featuring logarithmic prices in [7].
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Let us also mention that the wavelet-Galerkin method for one-asset jump-diffusion
models, including the Merton model and the Kou model, was studied in [3] and [4],
where the main advantages of the method were sparse and well-conditioned matrices,
higher-order convergence, and a small number of parameters needed to represent the
solution with the desired accuracy. These promising results are the motivation for
the study of the wavelet-Galerkin method for the two-asset Merton model. However,
there are several challenges to overcome. First, the method leads to four-dimensional
integrals. Second, the standard methods such as the finite difference method, the
finite element method, and the Galerkin method with splines, used for PIDEs typ-
ically lead to full matrices. On the contrary, the wavelet-Galerkin method used to
discretizate the PIDEs leads to matrices that can be approximated by sparse ma-
trices efficiently. Moreover, the differential operator contained in the equation is
degenerate, and the initial function is not smooth.

2. The two-asset Merton model

The Merton model designed in [8] assumes that the price Siτ of the ith asset at
time τ follows the jump-diffusion process

Siτ = Si0 exp

((
r − σ2

i

2
− λκi

)
τ + σiW

i
τ +

Nτ∑
k=1

Y i
k

)
, i = 1, 2. (1)

The parameter r represents a risk free interest rate, and σi is the volatility of
the asset i corresponding to the diffusion part of the process. The processes W 1

τ

and W 2
τ are two Wiener processes with correlation coefficient ρ. Furthermore, Nτ

is the Poisson process, where the intensity λ represents the number of jumps. The
random variables Y i

k are independent identically distributed random variables for
fixed i, Y 1

k and Y 2
k occur simultaneously, and their correlation coefficient is ρ̂. The

parameter κi is the expected relative jump size, i.e. κi = E(exp(Y i
k )− 1).

The equation (1) describes a general jump-diffusion process. The concrete model
is obtained by specifying the distribution of the random variables Y i

k . In the Merton
model, it is assumed that Yk = (Y 1

k , Y
2
k ) is bivariate normally distributed, which

implies that the vector eYk has a log-normal distribution with a density

f(y1, y2)=
K

y1y2

exp

−
(

ln y1−γ1
δ1

)2

+
(

ln y2−γ2
δ2

)2

−2ρ̂
(

ln y1−γ1
δ1

)(
ln y2−γ2

δ2

)
2 (1− ρ̂2)

 , (2)

where K = 1/2πδ1δ2

√
1− ρ̂2.

Under these assumptions and using no arbitrage principle and Itô calculus, the
deterministic model for the price of an option can be derived, see [8]. Let T be the
maturity date, t = T − τ be time to maturity, Si be the price of the asset i, and U
be the function such that U (S1, S2, t) represents the value of the option for asset
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prices S1 and S2 and time to maturity t. Then U can be computed as the solution
of the partial integro-differential equation

∂U

∂t
− LD (U)− LI (U) = 0, S1 > 0, S2 > 0, 0 < t ≤ T, (3)

where LD is a degenerate elliptic operator defined as

LD (U) =
σ2

1S
2
1

2

∂2U

∂S2
1

+ ρσ1σ2S1S2
∂2U

∂S1∂S2

+
σ2

2S
2
2

2

∂2U

∂S2
2

(4)

+ (r − λκ1)S1
∂U

∂S1

+ (r − λκ2)S2
∂U

∂S2

− (r + λ)U,

and LI is an integral operator given by

LI (U) = λ

∞∫
0

∞∫
0

U (S1y1, S2y2, t) f (y1, y2) dy1 dy2. (5)

The equation (3) must be accompanied by appropriate initial and boundary con-
ditions, which depend on the option type.

As an example, we consider a European put option on the maximum of two
assets. This option gives its holder the right, but not the obligation, to sell the max-
imum of two underlying assets at the strike price K at expiry T . In this case, the
initial condition representing the value of the option at maturity is U (S1, S2, 0) =
max (K −max (S1, S2) , 0). Note that this function does not have a first-order deriva-
tive on some parts of its domain.

We localize the equation (3) to a bounded domain Ω = (0, S) × (0, S), where S
is a sufficiently large value, and we denote the parts of the boundary ∂Ω of the
domain Ω as

Γ1 = {(S1, 0) , S1 ∈ (0, S)} , Γ2 = {(0, S2) , S2 ∈ (0, S)} , Γ3 = ∂Ω\ (Γ1 ∪ Γ2) . (6)

Since the differential operator is degenerate on Γ1 and Γ2, no boundary conditions
are prescribed there, see [1].

Below, we consider only European put options, because the values for call options
can be computed using the put-call parity, see [1]. Since the value of a put option is
negligible when the price S1 or S2 is very large, we set U (S1, S2, t) = 0 for (S1, S2, t) ∈
Γ3 × (0, T ) .

Furthermore, in alignment with [2, 7], we define a region of interest

ROI =

[
K

2
,
3K

2

]
×
[
K

2
,
3K

2

]
, (7)

and we focus on the approximation of the option value in this region.
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As mentioned above, the differential operator LD is degenerate. This degeneracy
is found in many other differential and integro-differential equations representing
option pricing problems. The mathematical literature presents two ways to deal
with this issue. The first method consists of using a variational formulation directly
for an equation with a degenerate differential operator, making it necessary to use
weighted Sobolev spaces and complicating the mathematical analysis of the problem
and the process used to find its numerical solution. However, in this case, it is often
possible to impose relatively simple boundary conditions in a manner similar to that
used above. This approach was studied in [1], but only for some models represented
by differential equations and has not yet been used for the multi-asset Merton model.

The second method employs substitution into logarithmic prices, which typically
has a significant advantage that the transformed differential operator is elliptic and
contains constant coefficients. Thus, standard Sobolev spaces are used for the dis-
cretization, and the analysis is quite standard. The disadvantage is that the substi-
tution leads to an unbounded domain, which has to be approximated by a bounded
domain, and the prescription of appropriate boundary conditions is a delicate task.
This approach has been studied in various papers but has been used mostly for PDE
models. It has been used for PIDEs in, e.g. [7].

This paper studies the first approach. Let 〈·, ·〉 and ‖·‖ denote the inner product
and the norm of the space L2 (Ω), respectively. Define the Hilbert space

V =

{
v ∈ L2 (Ω) : S1

∂v

∂S1

∈ L2 (Ω) , S2
∂v

∂S2

∈ L2 (Ω)

}
(8)

endowed with the inner product

〈u, v〉V = 〈u, v〉+

〈
S1

∂u

∂S1

, S1
∂v

∂S1

〉
+

〈
S2

∂u

∂S2

, S2
∂v

∂S2

〉
. (9)

The seminorm is defined as

|v|V =

√〈
S1

∂v

∂S1

, S1
∂v

∂S1

〉
+

〈
S2

∂v

∂S2

, S2
∂v

∂S2

〉
, (10)

and this seminorm is, in fact, a norm, see [1]. For u, v ∈ V , the bilinear form aD
corresponding to the differential term is defined as

aD (u, v) =
σ2

1

2

〈
S1

∂u

∂S1

, S1
∂v

∂S1

〉
− ρσ1σ2

〈
S1

∂u

∂S1

, S2
∂v

∂S2

〉
(11)

+
σ2

2

2

〈
S2

∂u

∂S2

, S2
∂v

∂S2

〉
+
(
σ2

1 − r + λκ1

)〈
S1

∂u

∂S1

, v

〉
+
(
σ2

2 − r + λκ2

)〈
S2

∂u

∂S2

, v

〉
+ (r + λ) 〈u, v〉 .
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Since the integral term is defined over the unbounded domain, it is convenient to
approximate it in the following way

LI (U) =λ

∫ ∞
0

∫ ∞
0

U (S1y1, S2y2, t) f (y1, y2) dy1 dy2 (12)

=λ

∫ ∞
0

∫ ∞
0

U (z1, z2, t)

S1S2

f

(
z1

S1

,
z2

S2

)
dz1 dz2

≈λ
S∫

0

S∫
0

U (z1, z2, t)

S1S2

f

(
z1

S1

,
z2

S2

)
dz1 dz2.

Then the bilinear form aI corresponding to the integral term is defined as

aI (u, v) = λ

S∫
0

S∫
0

S∫
0

S∫
0

u (z1, z2)

S1S2

f

(
z1

S1

,
z2

S2

)
v (S1, S2) dz1 dz2 dS1 dS2. (13)

Lemma 1. The bilinear form a : V × V → R defined as a = aD − aI is continuous
and satisfies the G̊arding inequality, i.e. there exist constants C1 > 0 and C2 ≥ 0
such that, for any v ∈ V ,

a (v, v) ≥ C1 |v|2V − C2 ‖v‖2 .

Proof. The proof of the continuity and the G̊arding inequality for the bilinear form aD
follows the lines of the proofs of Lemma 2.9 and Lemma 2.10 in [1]. Due to the
fact that the kernel of the integral operator in (13) is nonnegative, it holds that
aI (v, v) ≤ C ‖v‖2, which implies the continuity and the validity of the G̊arding
inequality for the bilinear form a.

Let the symbol V ′ denote the dual space of V . The variational formulation of
the equation (3) reads as: For given U0 ∈ L2 (Ω), find U ∈ L2 (0, T ;V ) such that
∂U
∂t
∈ L2 (0, T ;V ′) and〈

∂U

∂t
, v

〉
+ a (U, v) = 0 ∀v ∈ V, a.e. in (0, T ) ; U (·, ·, 0) = U0. (14)

Theorem 2. There exists a unique solution U of the variational problem (14).

Proof. This theorem is a direct consequence of Lemma 1, for details on the theory
concerning the G̊arding inequality and the existence and uniqueness of variational
problems, see, e.g. [1, 7].

34



3. Wavelet basis

Since the spatial discretization is based on using wavelets as basis functions, we
briefly review the definition of a wavelet basis and provide a concrete example.

Let J be an index set such that λ ∈ J takes the form λ = (j, k) and let |λ| = j
denote the level.

Definition 3. A wavelet basis of a Hilbert space H is defined as the family Ψ =
{ψλ, λ ∈ J } satisfying the following conditions:

(i) The family Ψ is a Riesz basis for H.

(ii) The functions are local, i.e. diam supp ψλ ≤ C2−|λ| for all λ ∈ J .

(iii) A wavelet basis has the hierarchical structure

Ψ = Φj0 ∪
∞⋃
j=j0

Ψj, Φj0 = {φj0,k, k ∈ Ij0} , Ψj = {ψj,k, k ∈ Jj} . (15)

(iv) Wavelets have vanishing moments, i.e.∫
suppψj,k

p (x) ψj,k (x) dx = 0, k ∈ Jj, (16)

for any polynomial p of degree less than L, where L ≥ 1 is dependent on the
type of wavelet.

Furthermore, the functions φj0,k are called scaling functions, and the functions ψj,k
are called wavelets.

The concept of a wavelet basis is not unified in the literature, and some of the
conditions i)− iv) are generalized or omitted in other papers.

As an example, we present a cubic spline-wavelet basis from [5], which will be
also used in the numerical experiments presented in Section 5.

The scaling basis is formed by the standard quadratic B-splines. Let φ, φb1,
and φb2 be quadratic B-splines defined on knots [0, 1, 2, 3], [0, 0, 0, 1], and [0, 0, 1, 2],
respectively. For the explicit forms of these functions see [5]. For j ≥ 2 and x ∈ [0, S],
we set

φj,1(x) =2j/2φb1(2jx/S), φj,2(x) = 2j/2φb2(2jx/S), (17)

φj,k(x) =2j/2φ(2jx/S − k + 3), k = 3, ..., 2j,

φj,2j+1(x) =2j/2φb2(2j(1− x/S)).

35



Then we define a wavelet ψ and boundary wavelets ψb and ψDb as

ψ(x) =− 1

4
φ(2x) +

3

4
φ(2x− 1)− 3

4
φ(2x− 2) +

1

4
φ(2x− 3), (18)

ψb(x) =− φb1(2x) +
13φb2(2x)

12
− 37φ(2x)

72
+
φ(2x− 1)

8
,

ψDb (x) =− φb2(2x)

4
+

47φ(2x)

120
− 13φ(2x− 1)

40
+
φ(2x− 2)

10
.

The graphs of these wavelets are displayed in Figure 1.
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Figure 1: The wavelet ψ, and the boundary wavelets ψb and ψDb .

It was proved in [5] that these wavelets have three vanishing moments and the
shortest possible support among all quadratic B-spline wavelets of the same type.
For j ≥ 2 and x ∈ [0, S], we define

ψj,k(x) =2j/2ψ(2jx/S − k + 2), k = 2, . . . , 2j − 1, (19)

ψj,1(x) =2j/2ψb(2
jx/S), ψj,2j(x) = 2j/2ψDb (2j(1− x/S)).

We set Φj = {φj,k, k = 1, . . . , 2j + 1} and Ψj = {ψj,k, k = 1, . . . , 2j}.
The wavelet basis Ψ on Ω satisfying the homogeneous Dirichlet boundary condi-

tions on Γ3 is obtained via the (isotropic) tensor product, i.e.

Ψ = (Φ2 ⊗ Φ2) ∪
∞⋃
j=2

(Φj ⊗Ψj ∪Ψj ⊗ Φj ∪Ψj ⊗Ψj) . (20)

The following theorem was proved in [5].

Theorem 4. The set Ψ is a wavelet basis of the space L2 (Ω), and ψλ (x) = 0 for all
x ∈ Γ3 and for all ψλ ∈ Ψ.

4. Wavelet-Galerkin method

Let Ψ be a wavelet basis for the space L2 (Ω) containing wavelets with L ≥ 1
vanishing moments and let Ψ be a basis for V . Let Ψk ⊂ Ψ be a multiscale ba-
sis containing scaling functions at the coarsest level j0 and wavelets up to level k.
Furthermore, set Xk = span Ψk and denote the dual of Xk as X ′k.
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Let U0 ∈ L2 (Ω), Uk,0 be an approximation of U0 in Xk, and let X ′k be the
dual space for Xk. Then, the wavelet-Galerkin formulation reads as: Find Uk ∈
L2 (0, T ;Xk) such that ∂U

∂t
∈ L2 (0, T ;X ′k) and for all vk ∈ Xk and a.e. in (0, T )〈

∂Uk
∂t

, vk

〉
+ a (Uk, vk) = 0, Uk (·, ·, 0) = Uk,0. (21)

Theorem 5. There exists a unique solution of the semidiscrete equation (21).

Proof. This theorem is also a consequence of Lemma 1.

For the temporal discretization, we use the Crank-Nicolson scheme. Let M ∈ N,
τ = T/M , tl = lτ , l = 0, . . . ,M , U l

k (S1, S2) = Uk (S1, S2, tl). The scheme has the
following form: for all vk ∈ Xk,〈

U l+1
k , vk

〉
τ

−
〈
U l
k, vk

〉
τ

+
a
(
U l+1
k , vk

)
2

+
a
(
U l
k, vk

)
2

= 0, U0
k = Uk,0. (22)

Writing U l
k =

∑
ψλ∈Ψk

(
clk
)
λ
ψλ and setting vk = ψµ for l = 0, . . . ,M − 1, we get

the system Akcl+1
k = f lk, where Ak = Gk −Kk,

Gk
µ,λ =

〈ψλ, ψµ〉
τ

+ aD (ψλ, ψµ) , ψλ, ψµ ∈ Ψk, (23)

Kk
µ,λ =aI (ψλ, ψµ) ,

(
f lk
)
µ

=

〈
U l
k, ψµ

〉
τ

−
a
(
U l
k, ψµ

)
2

. (24)

Since the matrix Ak is not symmetrical, we use the GMRES method with a Jacobi
preconditioner for the numerical solution of the system.

Next, we focus on the structure of the discretization matrices. Let Nk×Nk be the
size of the matrix Gk. Due to the locality of the differential operators, hierarchical
structure of the wavelet basis, and local support of the wavelets, the matrix Gk

has O (Nk logNk) nonzero entries. Moreover, the matrix-vector product Gkx can be
computed by O (Nk) flops employing the Kronecker product and the discrete wavelet
transform.

The situation with the matrix Kk is not so straightforward, because for many
methods, matrices arising from the discretization of the integral term are full. How-
ever, in the case of the wavelet-Galerkin method, due to the vanishing moments,
there is decay in the matrix entries. For the sake of simplicity, the following theorem
concerning decay estimates is formulated for the wavelet basis presented in Section 3.

Theorem 6. Let ψλ and ψµ be wavelets with L = 3 vanishing moments from the
wavelet basis Ψ defined by (20). Let Ωλ and Ωµ be the supports of ψλ and ψµ,
respectively. Then

|aI (ψλ, ψµ)| ≤ Cλ,µ2−(L+1)(|λ|+|µ|), (25)
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where

Cλ,µ = max
l,k=1,2,3

4

l! (L− l)!k! (L− k)!
Cl,k (26)

and

Cl,k = max
(S1,S2)∈Ωµ
(z1,z2)∈Ωλ

∣∣∣∣ ∂2L

∂Sl1∂S
L−1
2 ∂zk1∂z

L−k
2

1

S1S2

f

(
z1

S1

,
z2

S2

)∣∣∣∣ . (27)

Proof. The proof is not presented here, because it is long and technical. However,
it follows the lines of the proofs of Theorem 15 in [5] and Theorem 5 in [4]. The
constant 4 in (26) is generally dependent on the chosen wavelet basis, namely on the
length of the support of the scaling functions and wavelets and on the L1-norm of
the wavelets.

Based on the decay estimate obtained in Theorem 6, many entries of the ma-
trix Kk are very small and can be thresholded. Thus, the matrix can be efficiently
approximated by a sparse matrix.

5. Numerical example

We consider a European put option on the maximum of two assets, because in
this special case, the analytical solution is known [2]. We model the value of the
option with parameters [2]: K = 100, T = 1, r = 0.05, σ1 = 0.12, σ2 = 0.15, ρ = 0.3,
λ = 0.6, γ1 = −0.1, γ2 = 0.1, ρ̂ = −0.20, δ1 = 0.17, and δ2 = 0.13. We set S = 5K
and τ = 1/730.

In Figure 2, the convergence history is presented. The symbol ρ∞ denotes
the L∞ (Ω) norm of the error, ρROI

∞ denotes the L∞ (ROI) norm of the error, ρ2

is the relative error with respect to the L2 (Ω) norm, and ρROI
2 is the relative er-

ror with respect to the L2 (ROI) norm. The quadratic spline approximation of the
smooth functions yields ρ2, ρ∞ ≈ CN−3/2, where N is the number of basis functions.
The slope for this rate of convergence is represented by the triangle in Figure 2.

Figure 2: Errors in the L∞ (left) and relative L2 (right) norms.
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6. Conclusions

We presented the wavelet-Galerkin method combined with the Crank-Nicolson
scheme for the numerical valuation of two-asset European options under the Merton
jump-diffusion model. Due to the vanishing moments of the wavelets, the matrix
corresponding to the integral term was efficiently approximated by a sparse matrix.
In the region of interest, the optimal rate of convergence was realized in the numerical
experiments.
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