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Sokolovská 49/83, 186 00, Prague, Czech Republic

lvacek@karlin.mff.cuni.cz, kucera@karlin.mff.cuni.cz

Abstract: We deal with the simulation of traffic flow on networks. On
individual roads we use standard macroscopic traffic models. The discontin-
uous Galerkin method in space and explicit Euler method in time is used for
the numerical solution. We apply limiters to keep the density in an admissi-
ble interval as well as prevent spurious oscillations in the numerical solution.
To solve traffic networks, we construct suitable numerical fluxes at junctions.
Numerical experiments are presented.

Keywords: traffic flow, discontinuous Galerkin method, junctions, numerical
flux

MSC: 65M60, 76A30, 90B20

1. Introduction

Let us have a road and an arbitrary number of cars. We would like to model
the movement of cars on our road. We call this model a traffic flow model. There
are two main ways how to describe traffic flow. The first way is the microscopic
model. Microscopic models describe every car and we can specify the behaviour of
every driver and type of car. The basic microscopic models are described by ordinary
differential equations. The second approach is the macroscopic model. In that case,
we view our traffic situation as a continuum and study the density of cars in every
point of the road. This model is described by partial differential equations.

Our aim is to numerically solve macroscopic models of traffic flow. Our unknown
is density at point x and time t. As we shall see later, the solution can be dis-
continuous. Due to the need for discontinuous approximation of density, we use
the discontinuous Galerkin method. The aim of modelling is understanding traffic
dynamics and deriving possible control mechanisms for traffic.

DOI: 10.21136/panm.2020.15

149

http://dx.doi.org/10.21136/panm.2020.15


2. Macroscopic traffic flow models

We consider traffic flows on networks, described by macroscopic models, cf. [4, 6].
Here the traffic flow is described by three fundamental quantities – traffic flow Q(x, t)
which determines the number of cars per second at the position x at time t; traffic
density ρ(x, t) determines the number of cars per meter at x and t; and the mean
traffic flow velocity V (x, t) = Q(x, t)/ρ(x, t).

Greenshields described a relation between traffic density and traffic flow in [3].
He realised that traffic flow is a function depending only on traffic density in homoge-
neous traffic (traffic with no changes in time and space). This implies that even the
mean traffic flow velocity depends only on traffic density. The relationship between
the traffic density and the mean traffic flow velocity or traffic flow is described by
the fundamental diagram, cf. [3].

Since the number of cars is conserved, the basic governing equation is a first order
hyperbolic partial differential equation, cf. [4]:

∂

∂t
ρ(x, t) +

∂

∂x
(ρ(x, t)V (x, t)) = 0. (1)

Equation (1) must be supplemented by the initial condition

ρ(x, 0) = ρ0(x) and V (x, 0) = V0(x), x ∈ R.

and an inflow boundary condition.
We have only one equation for two unknowns. Thus, we need an equation

for V (x, t). One possibility is the Lighthill–Whitham–Richards model (abbreviated
LWR) where we use the equilibrium velocity Ve(ρ). There are many different pro-
posals for the equilibrium velocity derived from real traffic data, e.g. Greenshields

model takes Ve(ρ) = vmax

(
1− ρ

ρmax

)
, where vmax is the maximal velocity and ρmax is

the maximal density. The corresponding equilibrium traffic flow is Qe(ρ) = ρVe(ρ).
Thus we get the following nonlinear first order hyperbolic equation for ρ:

ρt + (ρVe(ρ))x = 0, x ∈ R, t > 0. (2)

2.1. Junctions

Following [2], we consider a complex network represented by a directed graph.
The graph is a finite collection of directed edges, connected together at vertices. Each
vertex has a finite set of incoming and outgoing edges. In our case it is sufficient to
study our problem only at one vertex and on its adjacent edges.

On each road (edge) we consider the LWR model, while at junctions (vertices) we
consider a Riemann solver. At each vertex J , there is a traffic–distribution matrix A
describing the distribution of traffic among outgoing roads. Let J be a fixed vertex
with n incoming and m outgoing edges. Then

A =

αn+1,1 · · · αn+1,n
...

...
...

αn+m,1 · · · αn+m,n

 , (3)
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where for all i ∈ {1, . . . , n}, j ∈ {n + 1, . . . , n + m}: αj,i ∈ [0, 1] and for all
i ∈ {1, . . . , n}:

∑n+m
j=n+1 αj,i = 1. The ith column of A describes how traffic from

an incoming road Ii distributes to outgoing roads at the junction J . We denote the
endpoints of road Ii as ai, bi, one of which coincides with J . We introduce the nota-
tion of spatial limits u(L)(a, t) := limx→a− u(x, t) and u(R)(a, t) := limx→a+ u(x, t).

Let ρ = (ρ1, . . . , ρn+m)T be a weak solution at the junction J , see [2, Defini-
tion 5.1.8, page 98], where ρ has bounded variation in space. Then ρ satisfies the
Rankine–Hugoniot condition, which represents the conservation of cars at the junc-
tion:

n∑
i=1

Qe(ρ
(L)
i (bi, t)) =

n+m∑
j=n+1

Qe(ρ
(R)
j (aj, t)) (4)

for almost every t > 0 at the junction J , cf. [2, Lemma 5.1.9, page 98].
In [2], the authors define an admissible weak solution of (2) related to the matrix A

at the junction J as ρ = (ρ1, . . . , ρn+m)T satisfying

1) ρ is a weak solution at the junction J such that ρi(·, t) is of bounded variation
for every t ≥ 0, i.e. the Rankine–Hugoniot condition holds.

2) Qe(ρ
(R)
j (aj, ·)) =

∑n
i=1 αj,iQe(ρ

(L)
i (bi, ·)), ∀j = n+ 1, . . . , n+m.

3)
∑n

i=1Qe(ρ
(L)
i (bi, ·)) is a maximum subject to 1) and 2).

Assumption 1) is the conservation of cars at the junction. Assumption 2) takes
into account the prescribed preferences of drivers how the traffic from incoming
roads is distributed to outgoing roads according to fixed coefficients. Assumption 3)
postulates that drivers choose to maximize the total flux through the junction. In
Section 4.1, we define an alternative approach and compare to that of [2].

3. Discontinuous Galerkin method

As an appropriate method for the numerical solution of (2), we choose the discon-
tinuous Galerkin (DG) method, which is essentially a combination of finite volume
and finite element techniques, cf. [1]. We expect discontinuities, so the finite ele-
ment method is not suitable. At the same time, DG is a higher order method which
approximates smooth solutions better than the finite volume method.

Consider an interval Ω = (a, b). Let Th be a partition of Ω into a finite number
of intervals (elements) K = [aK , bK ]. We denote the set of all boundary points of
all elements by Fh. Let p ≥ 0 be an integer. We seek the numerical solution in the
space of discontinuous piecewise polynomial functions

Sh = {v; v|K ∈ P p(K), ∀K ∈ Th},

where P p(K) denotes the space of all polynomials on K of degree at most p. For
a function v ∈ Sh we denote the jump in the point s as [v]s = v(L)(s)− v(R)(s).
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We formulate the DG method for the general first order hyperbolic problem

ut + f(u)x = g, x ∈ Ω, t ∈ (0, T ),

u = uD, x ∈ FDh , t ∈ (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where g, uD and u0 are given functions and u is our unknown. The Dirichlet boundary
condition is prescribed only on the inlet FDh ⊆ {a, b}, respecting the direction of
information propagation (characteristics).

The DG formulation then reads, cf. [1]: Find uh : [0, T ]→ Sh such that∫
Ω

(uh)tϕ dx−
∑
K∈Th

∫
K

f(uh)ϕx dx+
∑
s∈Fh

H(u
(L)
h , u

(R)
h ) [ϕ]s =

∫
Ω

gϕ dx,

for all ϕ ∈ Sh. In the boundary terms on Fh we use the approximation f(uh) ≈
H(u

(L)
h , u

(R)
h ), where H is a numerical flux. We use the Godunov flux, cf. [5]:

H(u
(L)
h , u

(R)
h ) =

{
min

u
(L)
h ≤u≤u

(R)
h
f(u), if u

(L)
h < u

(R)
h ,

max
u
(R)
h ≤u≤u(L)

h
f(u), if u

(L)
h ≥ u

(R)
h .

(5)

4. Implementation

For time discretization of the DG method we use the explicit Euler method. As
a basis for Sh, we use Legendre polynomials. We use Gauss–Legendre quadrature to
evaluate integrals over elements. The implementation is in the C++ language.

Because we calculate physical quantities (density and velocity), the result must
be in some interval, e.g. ρ ∈ [0, ρmax]. Thus, we use limiters in each time step to
obtain the solution in the admissible interval. Here it is important not to change
the total number of cars. Following [5], we also apply limiting to treat spurious
oscillations near discontinuities and sharp gradients in the numerical solution.

4.1. Numerical fluxes at junctions

Since we wish to model traffic on networks, the numerical fluxes at junctions
must be specified. The basic requirement is that the number of cars at the junctions
must be conserved. Moreover, we wish to prescribe the traffic distribution according
to the traffic–distribution matrix (3).

At the junction, we consider an incoming road Ii and an outgoing road Ij. If
these roads were the only roads at the junction, i.e. if they were directly con-
nected to each other, the (numerical) flux of traffic from Ii to Ij would simply be

H
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
, where ρhi and ρhj are the DG solutions on Ii and Ij, re-

spectively. From the traffic distribution matrix, we know the ratios of the traffic flow
distribution to the outgoing roads. Thus, we take the numerical flux Hj(t) at the
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left point of the outgoing road Ij, i.e. at the junction, at time t as

Hj(t) :=
n∑
i=1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
, (6)

for j = n+1, . . . , n+m. The numerical flux Hj(t) can be viewed as the DG analogue

of taking the combined traffic outflow
∑n

i=1 αj,iQe

(
ρ

(L)
i (bi, t)

)
from all incoming roads

and prescribing it as the inflow of traffic to the road Ij.
Similarly, we take the numerical flux Hi(t) at the right point of the incoming

road Ii, i.e. at the junction, at time t as

Hi(t) :=
n+m∑
j=n+1

αj,iH
(
ρ

(L)
hi (bi, t), ρ

(R)
hj (aj, t)

)
, (7)

for i = 1, . . . , n. Again, this can be viewed as an analogue of the traffic flow∑n+m
j=n+1 αj,iQe

(
ρ

(R)
j (aj, t)

)
being prescribed as the outflow of traffic from Ii.

It can be shown, that our choice of numerical fluxes conserves the number of cars
at junctions, similarly as in (4). However, this choice does not distribute the traffic
according to the traffic–distribution matrix (3) exactly, only approximately.

Theorem 1 (Properties of the solution). Let us use the method described above.

a) Our solution ρhi, i = 1, . . . , n+m satisfies the discrete analogue to the Rankine–
Hugoniot condition (4):

n∑
i=1

Hi(t) =
n+m∑
j=n+1

Hj(t).

b) There exists an example such that our solution ρhi, i = 1, . . . , n+m, does not
satisfy the property 2) in Section 2.1.

Proof. a) From the definition of Hi and Hj, we immediately obtain

n∑
i=1

Hi(t) =
n∑
i=1

n+m∑
j=n+1

αj,iH(ρ
(L)
hi (bi, t), ρ

(R)
hj (aj, t))

=
n+m∑
j=n+1

n∑
i=1

αj,iH(ρ
(L)
hi (bi, t), ρ

(R)
hj (aj, t)) =

n+m∑
j=n+1

Hj(t).

b) Let us take the situation with one incoming and two outgoing roads. We want to
show that H2(·) 6= α2,1H1(·) or H3(·) 6= α3,1H1(·). Assume the Riemann prob-

lem (cf. [2, Definition 4.2.1, page 72]) with ρ
(L)
h1 (b1, 0) = 0.5, ρ

(R)
h2 (a2, t) = 0.2,
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ρ
(R)
h3 (a3, t) = 0.6, α2,1 = 0.25 and α3,1 = 0.75. We use the Greenshields model

(with vmax = ρmax = 1) and the Godunov flux (5). Then

H2(0) = α2,1H(ρ
(L)
h1 (b1, 0), ρ

(R)
h2 (a2, 0)) = 0.0625

and

H1(0) = α2,1H(ρ
(L)
h1 (b1, 0), ρ

(R)
h2 (a2, 0)) + α3,1H(ρ

(L)
h1 (b1, 0), ρ

(R)
h3 (a3, 0)) = 0.2425.

Since H2(0) = 0.0625 6= 0.060625 = α2,1H1(0), we find an example, where the
property 2) in Section 2.1 in not satisfied.

A method how to obtain an admissible solution satisfying properties 1)–3) in
Section 2.1 is described in [2] or [7]. As an example, we take a junction with one
incoming and two outgoing roads. In [2, 7], maximum possible fluxes are used. If
there is a traffic jam in one of the outgoing roads, the maximum possible flow through
the junction satisfying the distribution condition 2) is 0, thus the whole junction is
blocked by a traffic jam in one of the outgoing roads. On the other hand, the cars
in our approach can still go into the second outgoing road according to the traffic-
distribution coefficients. So our choice of numerical fluxes corresponds to modelling
turning lanes, which allow the cars to separate before the junction according to
their preferred turning direction. In our case the junction is not blocked due to
a traffic jam on one of the outgoing roads. Since macroscopic models are intended
for long (multi-lane) roads with huge numbers of cars, our model makes sense in this
situation. The original approach from [2, 7] works for one-lane roads, where splitting
of the traffic according to preference is not possible.

Another difference is that we can use all varieties of traffic lights. The model
of [2, 7] can use only the so-called full green lights. Our approach gives us an
opportunity to change the lights for each direction separately.

An artifact of our model is that sometimes we do not satisfy the traffic–distri-
bution coefficients exactly. This corresponds to the real situation where some cars
decide to use another road instead of staying in the traffic jam. For these reasons
we interpret the matrix A as a traffic–preference matrix. This is also analogous to
the DG method, where even for smooth exact solutions, the approximate solution is
discontinuous on Fh with a small error corresponding to small jumps in the solution.
Also Dirichlet conditions are not satisfied exactly. Both Dirichlet boundary condi-
tions and continuity are enforced in a weak sense using penalization. Similarly, the
traffic distribution is enforced in a weaker sense via the traffic-preference matrix.

5. Numerical results

In this section we present two numerical results on a simple model network. As we
mention above, we use the combination of the explicit Euler method and DG method.
We can compare our results with the approach in the paper [7] where the authors
use the maximum possible fluxes. We calculate the piecewise linear approximations
of solutions and we use two Gaussian quadrature points in each element.
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Figure 1: Test network with Road 1, Road 2 and Road 3.

5.1. Simple network

Now we demonstrate how our program computes traffic on networks. We define
the simple network from Fig. 1. This network is closed, so we can show the con-
servation of the total number of cars. We have three roads and two junctions. The
length of all roads is 1. At the first junction we have one incoming and two outgoing
roads. At the second junction we have the opposite situation. We use a different
distribution of cars at the first junction: 3

4
go from the first road to the second

and 1
4

from the first road to the third. This corresponds to the traffic-preference
matrices A1 = [0.75, 0.25]T and A2 = [1, 1].

We define different initial conditions for each road. The initial condition for the
first road as a piecewise linear “hump” which is defined by

ρ0,1(x) =


5x− 1.5, x ∈ [0.3, 0.5],

−5x+ 3.5, x ∈ [0.5, 0.7],

0, otherwise,

while the second and third road has a constant density of 0.4, cf. Fig. 2a. The
total number of cars in the whole network is 1. We use the Greenshields model on
all roads. We use the Euler method with the step size τ = 10−4 and the number of
elements is N = 150 on each road. Since our primary aim is the solution at junctions
and resolution of shocks, we choose a very small time step in order to avoid the time
error and satisfy the CFL condition with a large margin. Our aim has not been
computational costs yet, we chose such τ and N which give us stability in a wide
range of examples.

We can see the results in Fig. 2. Road 1 distributes the traffic density between
the other roads. We have too many cars at the second junction, where we have two
incoming roads. Thus, we create a traffic congestion on Road 2 and Road 3. We can
observe the transport and the distribution of the jump from the first road through
the junction in Fig. 2g and Fig. 2h. The result converges to a stationary solution.
The traffic density in Fig. 2i is close to the stationary solution. The amount of cars
is conserved.

We note that our program can compute traffic on bigger networks and we are not
limited by the number of incoming or outgoing roads at junctions.
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Figure 2: Traffic density on network from Fig. 1 – Road 1, Road 2 and Road 3.

5.2. Simple network – comparison with the maximum possible fluxes

We consider the same network as in Section 5.1 with different initial conditions:

ρ̃0,1(x) =

{
0, x ∈ [0, 0.5],

1, x ∈ [0.5, 1],
ρ̃0,2(x) = ρ0,1(x) ρ̃0,3(x) =

{
1, x ∈ [0, 0.5],

0, x ∈ [0.5, 1],

where ρ̃0,i is the initial condition on road number i.
We compare our approach with that of [7] which uses the maximum possible flux.

In both approaches we use the Godunov flux and the explicit Euler method. A right
of way parameter q must be prescribed for the junction with two incoming roads in
the case of the maximum possible flux, cf. [2, Section 5.2.2]. We use q = 0.5, so the
roads are equal. In our approach, we do not have a defined right of way (in the sense
of yielding rules at main or side roads), so the roads are equal as well.

We can see the comparison in Figure 3. Our approach is in the top row while the
approach using the maximum possible flux is in the bottom row. We point out the
different behavior in both junctions.

First, we notice the first junction with one incoming and two outgoing roads,
i.e. x = 1 in the figures. As we mention in Section 4.1, the maximum possible flux
through the junction at the time t ∈ [0, 0.5] is zero because one of the outgoing
roads (Road 3) reaches the maximal traffic density, cf. Figure 3b and 3c. Our
approach has nonzero traffic flow through this junction at the time t ∈ [0, 0.5] because
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Figure 3: Comparison of network with Road 1, Road 2 and Road 3

the numerical flux is nonzero between Road 1 and Road 2 allowing the cars to go
from Road 1 to Road 2. For times t > 0.5, the maximal traffic density is not
attained on Road 3 and the traffic flow is nonzero through the junction in both
cases, cf. Figure 3d, 3e and 3f. If we compare both approaches, we see completely
different results on Roads 1 and 2 while the results on Road 3 are almost identical.

Now we focus on the second junction with two incoming and one outgoing road,
i.e. x = 0 and x = 2 in the figures. At first glance, there is no difference be-
tween the two approaches. Let’s compare ρ

(R)
1 (0, 1), i.e. the limit from the right

of traffic density on the outgoing Road 1 at x = 0 and t = 1. Our approach gives
us ρ

(R)
1 (0, 1) ≈ 0.4 while the approach using the maximum possible flux gives us

ρ
(R)
1 (0, 1) ≈ 0.5, which is the maximal traffic flow. The reason for this difference is

that we do not have a defined right of way in our approach. Road 2 and Road 3
push too many cars into the junction congesting it slightly. The approach using the
maximum possible flux takes into account the whole situation and selects the best
solution for both roads. From a real point of view, this approach could be viewed as
simulating the behavior of communicating autonomous vehicles which optimize the
traffic situation globally, while our approach could be interpreted as simulating the

157



behavior of human drivers without the right of way. We note that both approaches
converge to stationary solutions which are not identical, see Figure 3f.

We would like to implement right of way into our approach and introduce it in
future work.

6. Conclusion

We have demonstrated the numerical solution of macroscopic traffic flow models
using the discontinuous Galerkin method. For the approximation in time we choose
explicit Euler methods. For traffic networks, we construct special numerical fluxes
at the junctions. The use of DG methods on networks is not standard. We have
described the differences between our approach and the paper [7] by Čanić, Piccoli,
Qiu and Ren, where the maximum possible flow at the junction is used.
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[7] Čanić, S., Piccoli, B., Qiu, J., and Ren, T.: Runge-Kutta discontinuous Galerkin
method for traffic flow model on networks. Journal of Scientific Computing 63
(2014), 31.

158

https://www.scribd.com/doc/316334815/Traffic-Flow-Theory
https://www.scribd.com/doc/316334815/Traffic-Flow-Theory

