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Four functors into paved spaces

by Zdenék Frolik

Four refinements of uniform spaces are studied, each genersa-

ted by a functor into paved spaces. The functors are closely re-

lated to cozero-sets, Baire sets, hyper-cozero-sets, and hyper-

Baire=-sets on uniform spaces. The results of "Three technical

tools" are assumed.
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§ 1. Cozero—sets and Baire sets on uniform spaces

lel. A cozero set in a uniform space X is a set
of the form coz f ={X |fx%0 j where f € U(X). The
collection of all cozero sets in X is denoted by coz X,
and a coz-mapping is defined to be a mapping f: X —= 1Y
such that

f-l]: coz Ylcecoz X.

The class of all coz-mappings forms a category coz
which is a refinement of U. lMoreover, we have

Uy pescoz<s— 1t -

A Baire set in X is an element of the smallest
6 -algebra which contains coz X. The set of all Baire
sets in X is denoted by Ba X, and a mapping f: X—> Y

is called a Baire mapping if
£ 1IBa Y)c Ba Xu

We have (Ba is the class of all Baire mappings)
U

coz &> Ba <> Set" .

As in the case of t, one can show that coz-coarse,
and hence Ba-coarse uniform spaces are Jjust the set—
coarse spaces. - '

Investigation of coz=fine 3paces wer.t. various
classes of spaces leads to spaces useful in various
applicaticns.

If we assume that p is familiar, then by a gene-
ral method the investigation of coz-fine &pnaces reduc-
ed to a study of objects X of p which are coz~fine

(the last sentence means p({,Y) = coz(X,Y) for each ¥).

1.2, Coz-spaces., It is obvious from the defini~
tion that coz X = coz p.£ , that means, coz X i3 uni-
quely determined by the proximity structure. On the
other hand, the moximity structure is not determined
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by the coz-structure; e.g. if X is a metric space thocn
coz X = coz t,oX, however, usually X:th. , and hence
ch:;épc X (me*rlc spaces are proximally fine). Obvi-
ously:

Ye coz X iff there exists a sequence 1Y, % such
that U1Y § = ¥, and ¥ is distant to X - Y for each n.

This condition is restated as follows:

Let & be a basis for uniform covers of X. Then
Y € coz X iff there exists a sequence 44U n} in o¢
such that

Y ‘U{U%VIVEH , star (V, 2 )c¥33 .

The CDndlthF is not yet convenient, because
star (V, A% ) appears in the formula.

A collection % is called completely Y- -additi-
ve, if the union of any sub-collection of ¥ ©belongs
to Y . If X is metric, then coz X is the topology, and
hence coz X is completely additive ( = coz ¥-additive).
It follows that, for every space X, the completely
coz X=-additive uniform covers form a basis for =211 uni~-
form covers; use the fact that every uniforiz space is
projectively generated by mappings into metric spaces.

-

Since clearly coz X is alweys closed under count-
able unions w2 obtain:i

Let X be a basis for uniform covers of X, ard
assume that each wmenber in & is completely coz-addi-—
tive. Then Y€ coz ¥ iff iLhere ewists a segusnce {Un}
in & such that

Y =U4v|veUiv 3, ver 3 .

In conclusion we note an intrinsic charscteriza-

tion of (U)coz.

Clearly Y e(X) if coz X = coz Y.

& paved space is a pair KX, %> such that X is a

set, and X is a2 cover of X. The category of all pa-
2 o
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ved spaces has f'or its mcrphisms the mappings f3
: X, X>—><Y, Y > such that £ IYIec® . So

(£: %>, —><¥)> ) —>(r:{DX,coz ¥r»—=-<®Y,coz Y))

is a full embedding of {U7,,, into paved spaces. If
there is no danger of confusion, the functor will be
denoted by coz, hence coz X is a collection of setsy as . ..
well as the paved space {1X, coz X7 . ‘

Using the Urysohn Lemma for paved spaces (an ob-
vions version of the usual Urysohn Lemma) we obtain that
<X,%> = coz Y for some Y if and only if the follow-
ing two conditions are fulfilled: '

a) . ¥ is finitely multiplicative, and countably
additive. .

b} % is co-normal , that means: if
U; € ¥ such that DU T, = X then there exists v, €
e £ , VNV, =0 such that - V,c U,.

Since bounded uniformly continuous functions ex-
tend, it is easy to check that the functor coz preser—
ves embeddings (this will be used without any reference).

In conclusion note that X <Y >Ba iff Ba X = Ba ¥,
The paved spaces {X,Ba X > are distinguished among the
paved spaces by the property that the pavemenis is =
6 -algebra. '

l.,3. Products of coz-spaces. We shall prove that
the category of coz-spaces (see 1.2) has rroducts, and
show exactly which products are preserved by the func-
tor coz.

Lewma le coz XX coz ¥ = coz (plXx Yj.

Proof. iet % Dbe the structure of the space on
the right-hand side. It is enough to show that ¥ is
the smallest collection of sets such that
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1. ’Igr is closed under finite intersections and count=-

able unions
24 'g, contains the preimages under the projections of

coz—sete.

Then it will be obvious that ¥ is the structure
of the space on the left-hand side.

Clearly €5 Y . Assume G &€ £ . Hence (see
1.2) there exists a sequence {7/ n% of countable uni-
form eocz-covers of plX, and a sequence {Wn} of com-
pletely coz=additive nniform covers of ¥ such that

G =lULu=w | <V, w> eU{T, x & 3 VxWcG.

For each n, and each ¥V € ¥V, set
G,y S\ULV=W]|We W, VxWcGT=Tx\MW]| W e U,

b

Clearly {complete coz-additivity) Gn,\l €Y , and

since
6 =Ule,yiver i,

G belongs to 2 (the index set is countable.

By a routine argument we obtain from Lemma 1 the
following result:

Theorem ls The category of coz-~spnces hag pro-
ducts, and

4 coz X&§ = oz 114 pOXa'} = coz 114 pl}{a’i

Lemma 2. If K 1s sequentially regular and
pFEEX, p¥Y4:Y, then

coz (¥w ¥4 coz(p® Ixp*y),

Corollary. IFf p“ﬂ'X-i:X, I?Hl’f:é:.l’ then

coz (XX Y)# coz (p&+lX;& pd*'}“ Y).

Proof of Lemma 2. /e may and shall assume that X
and Y are set-fine spaces of cardinal %, , X = Y, Tho
diagonal A is a cozero set in X=X (coz = exp), how
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ever, if we take a cover U of X, with cardinality

less than % , then the set
AW) =\Jiu=xW|jUxwcd , U,Wwe U}

has cardinal less than &_. . Hence, if ..&’;#_ is sequen-
tially regular then no countable union of A (U)’s
may be equal to A , and hence, by 2.1, 4 is no co-
zero-set in p¥ X=p*X. |

Remark, If K is not sequentially regular, and
if X is a set-fine space of cardinal 5. , then

coz(X=X) = coz(p®I=pxI),

In addition:

Theorem 2., For any spaces X and Y,
coz (XxY) = coz (DXXDY).

A proof follows from:

Lemma 3o If X is a metrizable space, then there
exists a homeomorphic uniformly continuous identity ma-
pping of X onto a metrizable distal space. .

Proof of Lemmz 3 follows from A.H. Stone theorem
which says that every open cover, and hence, every uni-
form cover of a metrizable uniform space has z & -uni-
formly discrete open refinement. Indeed, for & uni-
formly discrete family o< =4U_| aeA} taks an equi-
uniformly econtinuous family of fumctions §{g,, ¢ such
that U, = coz ¢, , and fC_p"”ai = 1 and consider the
uniformity projectively generated by all ¢¥: X —
—> RplA), with oc '3 corresponding to a countable
base for the uniformity of X,
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§ 2. Inv(coz)

Recall that Inv(coz) ig the class of all concrete
functors F of uniform spaces such that

coz (FX) = coz X

for each X. Further, Inv_ (coz) consists of all positive
elements of Inv(coz), and Inv_(coz) consists of all
negative functors in Inv(coz). The functors coz, and
‘coz_ are defined as follows: | B

coz X -=_/\‘{FX lFEI_nv_._(coz)} >

coz X = V { FX l‘FeInv_(coz)} o
It was shown in "Tools" that coz =P, € Inv(coz), and
that coz_ is the coarsest functor in Inv(coz).
| Here we show in 2.1 that coz_ is the finest func-
tor in Inv(coz), o

coz_ = (¢o£“2>f

and

coz_ is the metric-tp functor.

One should try to understand that the concept of the
minus functor is "globally" categorlali in comparison.
with fine functor (one canndi evaluate the value of the
minus functor at cne space disregardlng the values of
other spaces).

In 2.3 several characterlzatlons of coz_ are given,
1ndicat1ng that coz_ may be a very useful functor. } '

In 2.3 the basic propertles of Alexandrov spaces
(coz=fine w.r.t. the closed unit -interval) and inversion-
closed spa_ces (coz-Tine Wero.t. the space R, of positi—
ve reals) are recalled, for details we refer to "Three
uniformities”. . : |

In 2.4 the basic results about coz~fine spaces are
stated. , : :
 In conclusion (2.5) it is indicated that coz_, is
the distally coarse reflection.
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2.1, coz_ . If R is a refinement of U, we de-
fine R*? as follows:

AX(X,Y) =4f: X—> V| fxf e R(XxX, Y=xY)}
Certainly the products are taken in U. Clearly
U8 s & .
Note that if R _<€ Inv(R), then necessarily
‘ R_<s 59‘2 ;
that means
U(R X, R_Y) e &%%(x, 1)

for each X and Y. Indeed, if f: R_X —> R, _¥ is uni-
formly contlnuous, then '
fxf: RXfowX—-—f:RYK-R Y

is uniformly continuous, and since R_ is a3 negative
functor, the maps

R_(XxX) —> R_X» R X—> X=X

are uniformly continuous, and similarly for Y, and hen-
ce
R_X x R_Y and X=X

are identity R -isomorphic, and hence fx<f €
e R(XxY, ¥xY),

It follows that -
| R_= (R,

whenever R*2  is fine-maximal (i.e. ‘R"Q') genera-
tes the refinement R*2 ). We shall show that this is
the case for R = coz in thlS section, and for R = h coz

in § 5. .

This is f‘ormulated in Theorem 1 whlch is st ated so
that all constructs are exp1101tly described in the
statement of Theorem 1, and hence the proof consists
just of checking. .

Theo rem l. For any X let mX be proaectively gene-
rated by all f: X —>Y such that fe co?*%(X,Y), Then:
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(a) The collection of all cozero sets G in Xx X
which contains the diagonal is a basis for uniform vi-
cinities of the diagonal of mX, and mX is projectively
generated by all f: mX-—-}th such that f: X —»S is
uniformly continuous, and S is metric.

(b) coz (mXx<mX) = coz(XxX),
in particular, .
coz mX = coz X.

(¢) feUlmX,Y) iff fe coz™2(X,Y).
(d) feU(mX,Y) iff f e c0z™*%(mX,Y).

(e) m is the coreflection on coz""z-fine spaces,
and coz>*2 is fine-maximal. |

(f) If feU(mX,S), S metric then f e U(mX,t.S),
and m is the coreflection on the spaces with this pmo-
perty.

Statement (e) implies: ._

Corollary. coz"2(X,Y)' = U((coz"‘z)fX,Y)‘

And Corollary implies immediately:

Theorem 2, coz_ ='(coz"2)fe1nv(coz).

For the proaf of Theorem 1 we need the following
two obvious facts: - - _ |
| Lemma 1. "Lét vi‘fai X—* Xal a€A3 be a project-

ively generating family of onto mappings which is
"count ably dire cted" _, (i.e. each countable «ifa\& < B¢
factorizes through some vf‘b). Then every uniformly con-
tinuous mapping of X into a metric space factorizes
through some fa,‘én'd hence each cozero-set in X is the
preimage under some f, of some cozero set in Ya‘

Remark. If 4f_ % 1s just finitely directed then
each cozero-set in X is a countable union of preima-
ges of cozero sets under fa'a.
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Lemma 2. The family 4fxf: XxX —> S%S |f &
€ U(X,S), S metric, f onto¥ is a countably directed
projectively generating family. '

Proof of Theorem 1 (Hint). To prove (a) one on-
ly neceds to know that if S is metric (or more gene- ;
rally paracompact) then each neighborhood of the dia-
gonal is 3 uniform vicinity of the diagonal of th
(and this is proved in almost all textbooks in topo-
logy). For (b) one uses Lemma 1, and an obvious fact
that

coz(thxth) = coz(SxS)
for S metric. The rest is easy, and if one wants to
understand the material, he must do the proofs with=
out any further comment.

Remarks. (1) The spaces in Theorem 1, State-
ment (f), called metric~fine or»metric-tf, were in-
troduced by A. Hager, who studied them in the catego-
ry of all 1-distal spacss (= subspaces of products of
separable spaces) where everything is greatly simpli-'-
fied by the fact that for this category the coz refi-
nement is finéfmaximal. It was proved by M. Rice and
the present author that the coreflection on metric-
tf spaces is obtained in one step. It is easy to see
that if K is a class of spaces, and if c is a core-
flection then the class of all spaces X with the pro-
perty fe U(X,K) implies fe U(X,eK) for each K in ¥ ,
called X -c spaces, form a coreflection class. This
general situation has been studied by A. Hager, M.
Rice, and in quite general categories, by J. Vilimov-
skye.

(2) Actually we proved that coz_ is the finest
functor .in Inv(coz).

In conclusion we state a description of coz_ by
means of uniform covers. (A note on metric-fine spa-
ces):
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Theorem 3. For any space X the 6 =uniformly

discrete completely coz~additive covers forﬁL basis
for uniform covers o coz_X.

Proof. By A.H. Stone theorem t.X has such a ba-
gis for X metric. Hence we should observe that each
of the covers is uniform on coz_X.

This 1is easy: each of these covers can be reali-
zed by a uniformly continuous mapping into a metric
space. ‘

Corollary. coz_ Dé = coz_ (i.e, D, € Inv(coz_)).

Proof: coz DX = coz X, and the uniformly dis-
orete families in the two apaces X and D X coincide.

2.,2. Alexandrov and Inversion closed spaces.
Denote by U(X) the set of all uniformly cont inuous
functions on X (i.e. U(X,R)), and denote by U (X) the
set of all bounded uniformly continuous functions on
X In this section we shall discuss two corefle ctions .
which are closely related to U(x) and Uy (X). For most
of the proofs we refer to the author’s "Three unifor=-
mities associated with real valued functions" which
will appear in the Proceedings of Conf. on algebrés
of continucus functions held in Rome in November of
1973, and which was the starting lecture presented in
Seminar Uniform Spaces. On the other hand, the reader
will profit from making the proofs independently of
the paper referred to. Everything is fitting toget~-
her so nicely that just the statements of the re-
‘sults suggest the proofs. '

For convenience of the reader we shall prove the
results which are not listed in the paper referred
to above,

The spaces with the equivalent properties list-
ed in the following Theorem 1 are called Alexandrov
spaces (because A.D., Alexandrov studied extensively
coz~gpaces during early forties).
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Theorem l. The following properties on a space X
are equivalent: o ,

(1) Ub(X) consists just of bounded coz-functions,
i.e. X is coz-fine w.r.t. the closed unit interval of
the space of reals.

(2) 1 Z, and Z, are two disgoint zero-sets in
X, then there exists a uniformly continuous function
which is O on Zl’ and 1 on Z,.

(3) 1f f n”8&h,y £y b n€Up(X), then chb(x)

(5) If U is a finite coz-cover of X, then there
exists a partition of unity -ifU |U é U % such that
f‘UeU(X), and U = coz (f‘ ) for each U, :

(6) Condition (4) wrhh 4/ countable. |

(7) 1r ifgd is an £, -partition of unity, then
if,y is unlf‘ormly continous. o

(4) 1If f converges strlctly contlnuously to f',
f is bounded, and £ € U(X), then fc U(X). |

The spaces satisfying the equivalent ‘condition in
the following Theorem 2 are called mverslon-c_losed..

Theorem 2. The following conditions.on a space X
are equivalent: 4 _' . .

(1) U(X) = coz(X,R), i.e. X is coz-fine w.r.t.
the space of reals. ) ‘ ;

(2) X is R -t, where R, is the space of positive
reals, i.e. if f: X—->R+ is uniformly continuous then
so is f: X —» t.R, . |

(3) If feU(X), and coz f = X, then _l/fe,U(X).

(4) 1f£4r L% converges strictly continuously to
£, and {f 3} ranges in U(X), then £e U(X),

(5) If' £Z 0, min(f n)eu(x), then f€ U(x).

(6) Ir 1zt \ C, then if' } is equi-uniformly
cont inuous.
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The most interesting result is that (6) implies
(1). This was proved first by D. Preiss, and a beauti-
ful proof by M. Zahradnik followed in a few houra.
The following result is useful:

Proposition 1l If X is inversion closed (or a
subspace of an inversion closed apace) then every uni-
formly continuous function on a subspace of X extends
to a uniformly continuous function on X,

The proof follows immediately from the following

lemma. If 2 is a zero=set in X, then every coz=
function on Z admits an extension to a coz-function
on X.

The proof of Lemma is just a version of P, Ury=-
sohn’s proof of the theorem that in a normal topolo~-
gical space continuous functions on closed subspaces

extend continuously to the whole space.

Theorem 3. The class of Alexandrov gpaces is
coreflective, and the coreflection a is described as
follows: aX 1s projectively generated by the identity
aX —» ¥ and all bounded coz=functions on X.

The class of all inversion-closed spaces 1is co-
reflective, and the coreflection H is projectively
generated by the identity HX —> X, and all coz=-func-
tions.

Both coreflections preserve the cozero-sets
(i.e. a, HeInv(coz)).

Proofs Clearly the space HX projectively genera-
ted by HX —> X, and all coz-functions is coarser than
coz_X (use Condition (2) in Thearem 2), and hence
H e Inv(coz). Since a is coarser than H, necessarily
a€ Inv(coz). It follows that H° = H, aé =g , and ob-
viously aX is Alexandrov, and H is inversion-closed,
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~In gome considerations the spaces in the follow-
ing theorem ‘are useful: '

Theoren 4. The following conditions on a space
X are equivalent: = ‘ '
| (a) X 4is coz=-fine wer.t. Separable metric spa=-
ces. - SIS | , | | o
(b) If £f: X =S, S metric separable, is uni-
farmly continuous, then so is f: X —»teX. |

The claés'ofréll“spacea with these properties is co-
reflective, and the coreflection, designated by By,

is. proJactively generated by mg X ~—3»X, and all coz=
N

mappings into s;parable metric spaces,

Proof. Obviocusly (a) imnliea (b), To prove (b)
dmplies (a),it is enough to show that if £: X —> §
is a coz=mapping onto a aeparable metric apacé,'then
there exists a uniformly aontinunus topnlngical home-
omorphisms g of § onto a separable metric space T such
that ge P! X > T is uniformly continuous, And this
ls routine. The reat is esay.

Remark., The equivalence of (a) and (b) in Theo=-
rem 4 is due to A. Hager {in faot, he assumed that X
ia l=distal but this is irrelevnt).

It should be noted that the follewing condition

ls equivalent to thoae in Theorem 4:
{e) 1irf P € u(x), £, N0 then {f,} 18 equi~uni=
formly contlngouu.

In coneludion note several eusay relations:
(1) pal =apX

(2) plx:. LTS pl

(3) paX=pHX =pmksp ooaX,

(4) plm‘wo =Dy, pl'
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(5) If X is projectively generated by U(X), then

HX = H PX = D coz_¥.

2.3. More about metric-t, spaces. Most of the
results are taken from "Uniform maps into normed spa=—
ces", Ann. Inst. Fourier 1974, 43-55.

Theorem 1. The following properties of a space
X are equivalent:

(1) coz_X =X (see 2.1)

(2) If S is a metric space, then U(X,S) is clo-
sed under taking strictly continuous limits of sequen=
ces.

(3) U(X) is inversicn-closed, and U(X,B) is a
U(X)-module for each normed (or Banach or £,(A)) spa-
ce B.

(4) If {£,% : X —> £,(A) is uniformly continy-
ous and #% O at each point, then {coz £} is a uni-
form cover of X.:

(5) Every £, -partition of unity is ,31 uni-
formly continuouse.

(6) For any normed space B (or Banach space, or
£,(a)) U(X,B) 1is scalarly inversion-closed, i.e. if
f: X —> B is uniformly contimuous and fx % O for each
X, then

{x =—>1Ujpg* - Tx3: X —>B

is uniformly continuous.

Proof. Just Condition (5) is new. Clearly (1) im-
plies (5). We shall prove that (5) implies that any
5'-uniformly discrete completel y coz-additive cover
is uniform. We need the following observation.

Lemma 1. If {fn} is a countable partition of
unity of X ranging in U(X), then there exists an £y -
partition~ﬁgk} such that each g, is a multiple of so-
me fn .
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Proof. Rerlace cach fn by a finite sum of func-
tions with norm at most 1/n . The resuliing sequence
18,3 has the property that hg, by —> O, and certain-
ly such a sequence in U(X) is equi-uniform.

From Lemma 1 we cbtain (see 2.2, Theorem 2(b))
that (5) implies that ¥ is inversion-closed, hence
Alexardrove. By Theorem 1 cach countable coz=-cover of
X is of the form 4coz £,¥ with £ in U(X). By Lemma
1, we may assume that 4f,} is an 4£,-partition, and
by Conditien 5, 4f } is £, uniformly continuous.

It follows that every countable cowu—-cover is uniform,
and of the Torm fcoz f ¥ with -i‘f‘n'} a .£1 uniformly
continuous partiticn of unity.

Finally, let U =\H %} be a comrletely additi-
ve coz—-cover, each Ql,n heing unifermly discrete. Let
U, be the union of %, and let i } be an £ | -par-
tition of unity such that Un = coz f‘n.

- Choose a uniformly continucus pseudometric d such
that each %, is uniformly aiscrete w.r.t. 4 . Assume
that the distsnces of sets in U, are 22 L €W,
Then there exists sn &£ p-lipschitz Family -igu j U eU,t
of non-negative functions such that i gyliq € 1, and
each &y is 1 on U, and zero on the union of all remai-
ning members of U . Then replace each gy by £,
functions 1/ .2, . gy, And denote the resulting family
-’i.hbl be Bni. How the partition of unity

{f,« hy|lneew, ,beB ¥

is Ag uniformly continuocus, 2nd is subordinated to
W . By Condition {(5) this partition is Ifl-uniform-
ly continuous, =snd hence the class of members of U
in U forms a uniform cover,

Since each cover of the form U is star-refi-
ned by a cover of this form, we get that each cover
of that form is uniform. This concludes the proof.
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2.4, Coz-fine spaces. Recall that X is coz-fine if coz (X,Y) =

= U(X,Y) for each Y. The first general result says (A note on met-

ric-fine spaces)

Theorem 1. The following conditions on a space X are equiva-
lent:

(1) X is coz-fine.

(2) X is proximally fine, and Alexandrov.

(3) X is proximally fine and coz_X = X.

Note that coz,4¢ Inv (coz). Indeed, if coz, € Inv (coz) then
necessarily cozp = COZ_ and this is. absurd:
if X has an uncountable discrete family, then coz_ pcx 'is not
finer than X by 2.1, Theorem 3, and of course, coz pcx = coz X,
A straightforward example: Take an uncountable set-fine (= uniform-
ly discrete) space X and consider the space Y = pcxxpc " Theh
cozeY = Xx X (because the two projections Y —> X are coz-mappings),
but coz Y$coz XxX,
In general, if a refinement R is not fine-maximal (i.e.,
fR.;, does not generate W' ) the following two questions are basic
A. For which spaces X, ReX = R_X7?
B. For which spaces X, JZ*. X e VV‘J?, X
(i.e. :FL;X is isomorphic to X in R under the identity mapping).
For R = coz these two questions were answered by the mresent

aithor as follows (A remark on coz-fine spaces, Seminar Uniform
Spaces, March 1975).

Theorem 2, Each of the following conditions is necessary and
sufficient for coz_X ='cozfX-
(1) Ir {G,|acA } is a completely coz-additive disjoint fa-
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mily in X, then the union of {G_=<G,} is a cozero-set in X=X.

(2) 1f -{Ga ‘ acA} is a completely coz-additive disjoint fa-
mily in X, then there exists a completely coz-additive family
4G,y 3 such that |

6, =UgcIne 51 ,
and each 4G_ | a ¢Al is uniformly discrete.
(3) If f: X~» Y is a coz-mapping, and if Y is a hedgehog,

then £: coz_X —> X is uniformly continuous.

Theoren 3. co'zfx ~oozX (iee. the coz-fine coreflection of
X is coz-équivélent to X, i.e. coz (cdzfX) = coz X) if and only if
for each two .cdmpletely coz-additive di’s,joint fahiiliés: {Ga % and
{H %, the family {G,nH,} is completely coz-additive.

For the probf the: following result is‘»heeded.

Lemina 1. If ‘(Ga;‘ ach § is a compllevtely coz-additive family
in X, theﬁ there exists a‘coz-mapping £: X —»H(A) (the hedgehog
- over A) such that each set G, is the preimage of the a-th spine,
i.e. .

Ga=f-lf{aé')O<ofé 137 .

For the probf of Lemma 1 we need the follo.wing property of

hedgehogs. '

Lemma 2. The following three proximities on H(A) coincide:
a) the proximity inherited from Ly s e |
b) the proximity inherited from .Z,, with the wéak topology,
¢) the proximity generated by all functions
Zi{n,d, |aca} |
with m, attaining just values O and 1.
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2.5. coz_, is Dc‘ For the proof of the result in the title

we need to know more about the cozero=-sets in products. Probably

the result will find further applications.

Theorem 1, The ,follbwing three conditions on a disjoint fa-
mily -(Va,l acAl in X ére equivalent: |

(1) w=U< va.:-xva}‘g is a cozero-set in X xX.

(2) For each n in ¢), there exists a uniformly discrete fa-
mily 4V, |ac A} such that

Vo=U{V, |neayl
and '

v, =U{V, |aer?
1s a cozero-set in X for each n.

(3) There exists a uniformly continuous mapping of X into a
metric space S (which can be taken distally coarse) and a disjoint
family 4G, | acA% of cozero-sets in S such that v, = £ G,
for each a.

We are ready to indicate the proof of the main result:

Theorem 6. (coz"2)+ =D,

Proof. We already »knov.: that D, € Inv (co2?). Assume that
Fe Inv+(co§2).v Then D oF is also in Inv_,_(cbﬁ‘?) and 8o we may
and shall assume that ] c® F =F. Since Fe Inv, it i»s enough to
show that FX is finer than X for each distally coarse space X, and
since every distally coarse space 1s projectively éenerated by
uniformly continuous mappings into hedgehogs, it 1is ehough to pro-
ve that FX is finer than X for each hedgehoge. The pr.oof of this
 fact is just technically more involved that ‘the prbof of the fol-

Iowing statement which is needed in the proof:
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if D is a uniformly discrete space (i.e. set=fine in the

terminology of refinements) then FD = D.

The first observation is that it is enough to prove the sta-
tement just for some D’s of arbitrary large cardinal, because F
preserves subspaces (being in Inv ).

Let D be of a sequentially regular cardinal. Since

FDx FD and DxD
have the same cozero-sets, the diagonal A of DxD is a cozere~
set in PDxFD, and hence, by Theorem 1 the set D is uniformly
6 -discrete, and hence D = U{D“} with each D uniformly dis-
crete. Clearly FD, = D for each n (again P€ Inv ). Since the car-
dinal of D is sequentially regular, one of the sets Dn is eqﬁi—*
pollent to D, and hence uniformly isomorphic to D, It follows
that FD =D,

The rest of the proof can be found in Cozero-sets on uniform

spaces, Seminar Uniform Spaces, March 1975.
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§ 3. Her and sub functors

If ¢ 1is a class of spaces we denote by sub¥? the class
of al subspaces of spaces in € , and by her €  the class of
all spaces X suéh that each subspace of X belongs to ¥ . The
cless sub € seems to be quite useful (if < is coreflective
then so is sub¥ , and even if ¢ 1is not understood well the
class sub¥ may be quite reasonable, snd in some theorems if
€ suffices then so does sub¥ ), on the other hand her ¢
seems to be quite "bad" even if € is very reasonable. It should
be remarked that ¢ coreflective does riof imply that her € is
coreflective (e.g., hereditarily Alexandrov spaces in 3.3).

3.1, Hereditarily inversion-closed spaces. Here we. present
Just two theorems, and two lemmas which might be more useful than
the theorems.

Theorem l. The following conditions on a space X are equiva-
lent: |

(1) Each subspace of X is inversion-clesed (see 2.3), f.00 X
is hereditarily inversion-closed.

(2) Each coz=function on each subspace of X is the restrie-
tion of a uniformly continuous function on X. |

(3) X is inversion-closed, and coz X = Ba X.

(4) Each countable partition of X ranging in Ba X is a uni-
form cover of X,

(5) X is Baire-fine w.r.t. separable metric-spaces.

(6) X is Baire-fine w.r.t. the space P of reals,
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Proof. Clearly (2) implies (1), and by Lemma 1 below (1)

implies (2). So (1) and (2) are equivalent. By basic Lemma 2 be-
Iow (1) implies (3). It is quite routine that (3) implies (4),
and (4) implies (5), and it is obvious that (5) implies (6).
Finally Condition (6) implies (3); it is enough to show that

coz X = Ba X, and this is easy (for a cozero-set G consider uni-.

formly continuous function f such that G = coz f).

Lemma l. If Y is a subspace of an inversion-closed space X,
then each uniformly continuous function on Y extends to a uni-
formly continuous function on X.

Proof. Let £ be a uniformly continuous functiom on & subspa=-
ce Y of X. First observe that f always extends to & uniformly con-
tinuous function on a subspace Z of X,which is a zero=-set in X .
Indeed, choose a uniformly c¢ontinuous pseudometric 4 on X such
that f is uniformly continuous on the subspace Y of < X,d ) ,
Since the space R of reals is complete, £ extends to a uniformly
cont inuous - function defined on the closure Z of Y &n < X,d> .
Certainly Z is a zero-set in X. The proof is concluded by the fol=

lowing version of the Tietze=Urysohn extension theorem:

‘Lemma 1° . If Y is a subspace of X, and if Y is a zero=-set
in X, then each coz-function on Y extends to a coz=-function on X,

Proof. Routine.

Lemma 2 ( the author’s Measurable uniform spaces, TAMS 1974).
If a cozero=-set G in X is an inversion-closed subspace of X, then
G is a zero=set in X,

Proof. Let G = coz f, where £ is a uniformly continuous func-

tion on X, and choose a uniformly continuous pseudometric 4 on X
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such that f is uniformly continuous on <X, ay y and llf is uni-

formly continuous on the subspace G of <{X,d > . The function llf
" extends to a uniformly continuous function & on the closure C of
G in {X,d) . If xeC - G then gx must be 1/6, and hence cC=a,

and so G is a zero-set in X.

Theorem 2. The clasé of all heredita:ily inversion-closed
spaces is coreflective, and the coreflection of X has all the
covers of the fdllowing fprmlfor'the basis of all uniform covers:

LUT n AB,Y vi'neré U is a uniform cover of X and 1B,} is
a countable partitioh of X ranging in Ba X.

Corollary. The coreflection in Theorem 2 preservea the Bai-

re-gets.

Remark. (a) Lemma 2 holds (trivially) for sub—inversion—clo-‘
sed spaces. | . |

(b) Condition (2) in Theorem 1 suggests the following condi-
tion: each coz-function on a subspace of X extends to a éoz—func-
tion on X, Clearly this condition is satiafied if and only if the
inversion-closed coreflection of X is hereditarily invefsionrclo-
sed, and this is equivalent to coz X = Ba X, These results may be
worth of stating for further references.

Corollary. The following properties of a space X are equiva-
lent o

(1) the inversion-closed coreflection of X is hereditarily
inversion-closed., ; |

(2) Each coz-fuhction on any subspécé of X extends to a coz-

function on ¥,
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(3) coz X =Ba X.

3.2. Measurable uniform spaces. Following the paper "Measu-
rable uniform spaces" the spaces satisfying the equivalent condi-
tions in the following theorem are called measurable. We refer to
3.4 for further poperties which may suppart the definition to use

the term for this class.

Theorem l. The following properties of & space X are equiva-
lent:

(1) If S is a metric space then U(X,S) is sequentially closed
in pointwise topology (in all mappings).

(2) coz_X =X, and coz X = Ba X (see 3.1 Corollary)

(3) Por each subspace Y of X, coz_Y = Y

(4) Each 6 -uniformly discrete completely Baire-additive par-

tition of X is a uniform cover.

Here we shall recall just the proof of the equivalence of
(2), (3), and (4), which is needed in the sequel. The reader
should compare this section with 3.4 where Baire~fine and Ba_
functors will be mentioned. It should be noted that M, Rice pro-
ved (independently) the equivalence of (2), (3) and something
similar to (4) (which is more convenient for the proof).

Proof. According to characterization of coz_X = X in the
concluding theorem of 2.1, Condition 2 is equivalent to Conditiom
4. By Theorem 1 in 3.1 evidently (3) implies (2). The rest of the
proof, e.g. (4) implies (3), is specific for this situation. Per-
haps the simplest proof consists in showing that Condition 4 is
hereditary, and in addition, each cover of the form in Condition
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(4) of a subspace Y of X is the trace of a cover of this form of

X. Assume that J3 1is such a cover of ¥, and B =U4 T, ¢ such
that each 3, 1is uniformly discrete. Let B, be the union of
33”‘ o« Choose Baire sets B; in X such that B;r\Y = B,y and we
may assume that the sequence {Bé'l, is disjoint. Finally, since
Jh“,is uniformly discrete in Y,'hence in X, there exists a uni-
formly continuous pseudometric dn on X, such that

{B(d,c,1} | Ce Ny 3
is disjoint. For C € %3, put

¢’= B N B(d_,c,1). |
Clearly <€ =4C°|C @ 73} 1s a @ -uniformly discrete complete-
1y Baire-additive disjoint family in X, and J> is the trace of
%€ onY. AdAd X -U€ to €. ‘

Theorem 2. The class of all measurable uniform spaces ié
coreflective, and the coreflection, designated by M, is deséribed
as follows: The covefs in Condition (5) form a basis for all uni-
form covers of MX.

Proof. Coreflectivity is clear from Condition 1. It is very
easy to check coreflectivity, and the description of the coref-
lection directly from Condition (4).

Corollary. M e Inv(Ba) (i.e. M preserves the Baire sets), and
M is metrically determined (i.e. MX is projectively generated
by all £: M{ —> MS, with £: M —» S uniformly continuous, and S

metrizable).

3.3, Hereditarily Alexandrov spaces.



Theorem l. The followiﬂzgconditiona on a space X are equi-
valent: _

| 1) Each subspace of X is Aléxandrov, i.e. X is hereditari-
ly Alexandrov.

2) Each bounded coz-function on any subspace of X is a
restriction of a coz-function on X.

3) X is Alexandrov, and the p coz X is normal (it
means, for each two disjoint cozéro-sets Gliand Gé in X, there

exist disjoint zero-sets Z, and Z, in X such that Zi:>Gi;'see

4) X is Alexandrov, and if YcX, 2Z,, Z,€ zero Y; anc_'i Zln
I\Z2 = @, then there exist disjqint Zero=-sets Z{ and Zé in X
such that Z;Z,. | |

Proof, By definition of Alexandrov spaces Conditioms 1 and
2 are equivalent (each bounded uniformly continuous function ex=
tends). Condition 2 implies Condition 3 because the characteris-
‘tic function of G, on Y = G,V G, is a coz-function on Y. Condi-
tion 4 implies Condition 2 by Urysohn Extension Lemma. It re-
mains to show 3) implies 4), and this follows from the following:

Lemma 1, If Z, and Z, are zero-—sets in X, then there exist’
disjoint cozero-sets G1 and G, such that Gla 2, - Zz,'Gz:DZ2 -
- zl‘ | ‘
Proof. Choose non-negative uniformly continuous functions
£y such that 2; = zero fy, and define

Glaix|§x>ﬁ;},

G, =4x | flx';fzx} .
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Corollary. Each of the following conditions is necessary
and sufficient for X to be hereditarily Alexandrov:

a. The precompact reflection pX of X is hereditarily Ale-
xandrov.

b The Samual compactification X of X (the coreflection of
pX) is hereditarily Alexandrov.

Remarks. (a) The hereditarily Alexandrov compact spaces
are usually called F-spaces. For example, extremally disconnect-
ed compact spaces are hereditarily Alexandrov, and so their sub-
spaces; N = N is hereditarily Alexandrov but is not extremally
disconnected.

(b) The class of all hereditarily Alexandrov spaces is not
" coreflective. For example for s compact space X let EX —> X
be thé projective progeny of X; i.er EX is extremally discon-
nected space, and the mapping is perfect and, this is not impor-
tant, irreducible. Then the mapping is a quotient mapping w.r.t.
the unique uniformit ies induc ing the topologies, EX is heredita-
rily Alexendrov by (a), but X does not need to be hereditarily
Alexandrof (é.g. if we take an infinite compact metrizable spa-
ce for X).

~ (e) The coreflective hall of hereditarily Alexandrov spaces

consists exactly of spaces such that each finite partition by
Baire sets is uniform. Hence the coreflection on the coreflective
hall of hereditarily Alexandrov spaces has the following covers
for a basis:

the meet of any uniform cover with a finite partition into

Baire sets.
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3.4. Some sub functors. We want to consider the subfunc-

tors of functors we already studied. However, a general approach
may be useful. Recall that a space X is injective if for any uni-
formly qéntinuous mapping of a subspace Z of any space ¥ into X
extends to a uniformly continuous mapping of Y into X. Every uni-
form space can be embedded into an injective space (Isbell).

Theorem 1(Vilfmovsky, partly Rice, idea of the proof Isbell).
" If <€ 1is coreflective then so is the class sub¥€ of subspaces
of spaces in € . If ¢ is the coreflectioh on ¢ , then the
coreflection sub ¢ on sub<¥ is obtained as follows :
If Y is injective, and X < » Y then
sub ¢ X «—> ¢ ¥,

particularly, sub ¢ Y = ¢ Y for injective‘space&

Theorem 2. If ¢ is a metrically determined coreflection then

so is sub ¢, and

sub ¢ is (injective-metric) - c.

Theorem 3. Let ¢ be metrically determined coreflection such
that if X «<>Y with both X and Y complete metric implies ¢cX <— cY.
Then

sub ¢ (complete metric) - c.

Theorem 3 is an immediate consequence of Theorem 2. On the
other hand, a straghtforward proof, without any use of injections
is based on the following modification of Lemma in A note on met-

ric-fine spaces.

Lemma l. Assume that ¢ is a coreflection, and M is & coun-

tably productive class of metric spaces such that M is heredi-
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tary, or M is closed hereditary and all spaces in 4 are
complete.

For any X let X’ ve projectively generated by all f:
: X’—> ¢S, Se 4 , such that fe U(X,S). Then X°* = X’,

Corollary. (a) sub coz_ = (complete metric) = t,
(b) sub H = (complete metric) - H

Remark. Sub-inversion closed spaces seem to be qui-
te useful. Recently J. Pachl showed that for these spaces
one gets perhaps the most natural statement of Shirota -
Katétov theorem and theorems connected with "completeness"
and "measures". The paper will appear in Stud. Math.

We turn to the refinement Ba. As far as I know it is
not known any description of Ba. On the other hand, it is
quite easy to show that Ba_€ Inv(Ba) (i.e. Ba_ preserves
Baire sets). In this situation the following result (hig-
hly non-trivial) seems to be basic

Theorem 4. sub Ba, = sub Ba_ = M,
Theorem 4 follows from the following result:

Theorem 5. If X is the product of a family of comp-
lete metric spaces then

This is a corollary of the fact that Theorem 5 1is
true for complete metric spaces (Baire sets are complete
metric spaces, the proof was connected by a lemma by D.
Preiss in Comment. Math. Univ. Carolinae 1974) and the
following simple but extremely useful

Lemma (Tashjian) Every Baire mapping from a pro-
duct into a metric space factorizes through a countable
subproduct.

Remarke The formula in Theorem 5 is true for in-
Jective spaces.



- 56 =

§ 4. h coz-sets.

First theré were hyper-Baire sets in uniform spaces (in-
troduced for the purposes of non¥separable descriptive theory
of sets in uniform spaces in the present author ‘s "Uniform
and topological methodé in measure ﬁheory ahd the_théory of |
measurable spaces", Proc. 3rd Prague Symposium 1971; actually
R. Hansell had already studied them in metric spaces). Then
there were introduéed hyper-coz séts, simply h coz-sets, to
make the theory of hyper-Baire sets'elegant, and perhaps to
underst and the squect (Interplay of méasuréble and uniform
methods, Proc. 2nd Yugoslavian Int. Top. Symp.,Budva 1972,
and Locally e-fine measurablevspaces, Trans. Amer. Math. Soc.,
196(1974),237-247). The reader is recommended to look first
at these three papers. Nothing new has happened since then in
the theory of'hyper-Baire sets, and therefore we restrict our
attention to h coz-sets, and mdreover, we Jjust try to expla in
the main ideas of several new results. For detailé see the

informal notes "Seminar Uniform Spaces 1974-5".

4.1. Generalities. Following "Basic refinements", the
collection of all hyper-cozero-sets in a uniform space X, de-
~ signated by h coz(X), is the smallest collection of sets
which contains the collection coz(X) of all cozero-sets in
X , and which is closed under uniformly 6 =-discrete unions.

A hyper-coz-mapping of X into Y is a mapping of X}intb Y such
that the preimages under f of sets in h coz(Y) are elements

of h coz X. Clearly the class of all hyper-coz-mappings is
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a refinement  h ccz of uniform spaces.

We also denote by h coz the corresponding functop into
paved spaces. Hence h coz X 1is the set X endowed by the
collection h coz X of all h coz-sets in X .

Note: _

h coz (X) = h coz (DX)
and hence
D, € Inv (h coz) .

It should be remarked that one can prove (and this is not
easy) that D, = h coz, .

In what follows we shall need the following classifica-
tion of h coz-sets. Put h%coz(X) = coz X, and if h B coz(x)
are defined for [3< o€ , then h%coz(X) consists of uni-
formly 6 -discrete unions of sets in the union of all
B coz(x) , [3 < ¢ . The elements of h%®coz(X) are called
the hyper-cozero-sets of X of the class at most o¢ .

Clearly

hcoz X = ULh%coz X3.

6r

4.2. (Compact % metric)-tf =(D AN h coz)f °

For a classification of hyper-cozero-sets we need a new
characterization of metric-tf locally p-fine spacea introdu-
ced by the axthor (Locally e-fine measurable spaces) for the
studying of hyper-Baire sets. First we note the equivalence

of the three new conditions.

Theorem 1. The following three conditions on a uniform

space X are equivalent:



- 58 -

(1) 1If S is metric, and K is compact, and if f: X —»
—> Sx K is uniformly continuous, then so is f: X —>
—> tp(Sx K) .

 (2) Condition (1) for K = X (the Samuel compactifica-

tion of X, i.e. the completion of PX ). |

(3) If S is metric, and if f: X—>S is uniformly
continuous then the'identity

X —> t, ( ¥1lrsy)

is uniformly continuous (here F:vf-——P'g is the continuous
extension of £ ). | |

Proof. Clearly Condition (1) implies Condition (2), and
the converse implication follows immediately from the elemenw
tary fact that every uniformly continuous mapping into a com
pact.space;factorizes through the Samuel compactification,
Conditions (2) and (3) are equivalent because \1"-1[8] is
homeomorphic with a closed subspace of S x.f ,_namely with
the graph of the perfect mapping

£ Flisi—s,

and because S = X is paracompact (if P is paracompact; and
if F 1s closed in P , then t,F is a subspace of t,P ).

Condition (1) suggests a name for these spaces: (metricx

-;t.compa’.:ct)-tf .

Theorem 2, Each of the conditions (1) - (3) in Theorem
2 is equivalent to each of the following conditions

(4) X 1is metric-t,, and h coz X = coz X .

(5) X is metric-t,, and each uniformly locally uniform-

ly continuous function is uniformly continuous.
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(6) X is metriec-t,, and locally p-fine.
(7)4 X 1is nietric-tf, and locally p]'-fine. |
- This is a theorem from the paper referred to above. The

equivalence of (4) - (7) is poved from the characterization
of metric-‘l:f spaces by means of the: property that & -uniform-
ly discrete completely coz(X)-additive civers form a bssis
for uniform covers. Conditions (1) and (3) imply Condition
(4) because, if (1) holds, then taking a singleton for K we
get that X is metric-t,, and if (3) holds then the uniformly
discrete union of cozero sets in X is the intersection of X
wth a uniformly discrete union of cozero sets in tf \f’-l{ $]
for some f: X —>S , and this union is a cozero set, becsu-
ge if th'--Y then h coz ¥ = coz Y,

It remains to show that some of the conditions (4) - (7)
implies one of the conditions (1) - (3). Condition (6) impiies
Condition (1) because for any compact space K , and any para-
compact spaée Y

A te (T K) |
is the coarsest uniform space finer than thx K with the
property that it is uniformly locally p-fine, This follows
from the following simple result:

Lemma 1, Let f: Z—> Y be a perfect mapping, and Y
be paracompact. Let z°. be the set 2 endowed with a uniformi-
ty such that f: Z—> th is uniformly continuous and
tfz' =t,Z . Then t,Z is the coarsest uniformly finer than
2’ and with the mroperty: it is uniformly locally p-fine.

Proof. Let ¥ be an open cquer of Z . Let ’w_’ consist



- 60 =

of finite unions of elements of 7 . By perfectness of f ,
WY is refined by £l U2 where U is an open cover of
Y , hence a uniform cover of th by paracompactness. Hence
AW 1is a uniform cover of Z° . Now 1 is obtained by re-
placing each W by a finite number of elements of ¥ ( W 1is
a finite union of elements of ¥ ). Unfortunately, this fini-
te union does not need to be a uniform cover of W. So we
must replace each W = U{VI‘V € ¥3, & finite subset of 7V ,
by all open w'e W such that
‘ fvAvw|ve F?

is & uniform cover of W (as a subspace of 2’). This works,
because of Kc 2 is coﬁpact, then every open (in 27) cover
of K is a uniform cover of a neighborhood of K . |

The c¢lass of all spaces satisfying the equivalent con-
ditions in Theorems 1 and 2 is coreflective (this is obvious
e.gs from Condition (1). The coreflection is constructed in
the paper mentioned above: 6 =-uniformly discrete h coz(x)-
covefs of X forn a bagis for the uniform covers of the core-
flection. Assume now that we want o get the coreflection by
applying step by step Condition (1), and we want to describe
the intermediate constructs). Then the following result is

crucial (it follows alsc from Lemma 1).

Lemma 2, Assume that S is metric, and K is compact. If
G is an open Fg -set in S = K then G is a 6 -uniformly
discrete (in S > K) union of cozero-sets in Sx K (in ad-
dition, rectangular cozero-sets). Particularly,

coz tf(S>< K) consists of & -uniformly discrete (in
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S K) unions of elements of coz (Sx K).

Proof. Let §F,} be a sequence of closed sets in S x K

such that
¢ = U4F ¥ .
We may and shall assume that iF, % is increasing.

Fix n €@, . We shall find a 6 -umiformly discrete
union G, of cozero-sets in $3X K such that

F,& G,€ G .
To this end we need to show the crucial property:

if xe€ S then there exist an open neighborhood Ux of
X , and a cozero-set Vx in K such that

FO (U >V.)=F n (U %K),
Once the property is verified, then the conclusion of the
proof is routine: The collection of all {'Ux}. is an open co-
ver of S ; take a 6 -uniformly discrete open refinement W
of {U_}, and for each W in W 1let V(W) be any V, with
¥c U . Clearly the union G, of all WxViw), we W , con-
tains Fn and is contained in Gn by the crucial property.

It remains to check the crucial property. Firstly by com-
pactness of K , for each mZ n there exist and open neighbor-
hood Um of x , and a cozero=-set Vm in K such that

U,>v,c G,
and
((x)> K)n F c v, e
We may choose Un such that the dia meters converge to O , As-
sume that no Umx Vn has the property
Fon (U V) )=F n (U x K) .

Then we can choose a sequence {< xm,ym)} in F, such that
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Xp € Up s ym¢ Vi
for each m « Since ‘ixm} converges to x , and since -iym?,
has a cluster point y in the cdmpact space K , the point
{x,y> 1is a cluster point of -i(xm,ym>} in S»X K . Since

the sequence ranges in Fn , and Fn is closed, we have

{ x,y) € Fn °
On the other hand, y is in no V_, hence <x,y> does not
belong to G , and this contradicts to Fc G.

Lemma 2 follows also from the following lemma.

Lemma 3. If S is metric, and if K 1s compact then
tf(Sx K) has 6'-uhiformly discrete (in S» K) coz (S x K)=-
covers for a basis for all uniform covers.

Proof: }follows;f,‘rom the .proof of Lemma 1,

Recall that a mapping f: X — Y belongs to QGr'(X,Y)
if for e‘verr& uniformly discrete family 'iY'a} in Y the family
{f_l [Y&J} is © -uniformly discretely refinable, shortly

6 adr , iee. ‘there is a 6 -uniformly discrete family {'Xb}
in X which refines g7l ¥,J3, and |
TX 3 = U I )3,
in other words, there exists a family {Z, % such that each
{Zan| a§ is uniformly discrete in X for each n , and
£y, 1=04z_|n € o} .
Clearly @61- is a refinement of the 'cgt_egory of uniform

spaces.

Theorem 3. Let R = & grn h coz « Then R -fine spa-

ces are just the spaces in Theorems 1 and 2,
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Proof. Assume that X is  -fine. If f is any uniformly |
continuous mapping into a pr,oduct,: Kxx 'S with K compact, end
S metric, then | o
£: X—> to(kxs)e R
which follows from Lemma 3. Since X is R, -fine, the mapping
is uniformly continuous. | ' | | |

Now assume that X hae'the propertiee in Theorems 1 and
2. Then each €fJuniformly diserete' h cozécover is uhiform,
and hehee every 3L-nmpping into a meﬁric’space is uniformly
continuous (even with the topelogicei fine uniformity on the

range).

Problem. Is coz =,(D6br\ coz)f

In conclusion we shall try to express h*®coz X as co-
zero sets in some coreflection. To this end we define for each

space X two spaces: xl and~x(l) as follows:

| xt ie'projectively generated by all f: X1—+¢ tp(S » K)
such that f: X—> S» K is uniformly continuous, and S is

a complete metric space. ,
Similarly X(l) is proJectively generated by all f: X (}247
—> t,(S% K) such that f£: X—>S =K is uniformly conti-
Vnuous, and S is metric (not necessarily complete).
By induction we define |
X0 = X(°? =X,
and

-Uim{XB|(3<aﬁ)l
(°"’?- (Lm 4% B | @<ac})‘1’
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Clearly {X—> X¥%, and {X— X(")} are concrete negati-

ve functors of uniform spaces.

Theorem 4. For each space X ,
coz X¥ = coz x®) - h*coz X ,
all X% and x y €>0 , are (complete-metric)-t, , and

g coz_ x) - coz_ X% ,

In consequence,

lqi:l_l X% 1s the (compact compil.ete-metric)-t:f coreflec-
tion,

lim X

<

©) 1g the (compact metric)-t, coreflection,

and

1im X% - coz_ lim X% .,
~— -

Proofe I. The <first assertion follows from the case
o6 =1 by transfinite induction. Clearly

coz X(l):a coz X(l) ’
and from Lemma 2 we get
coz X(l)c hl coz X .

On the other hand, if G is the union of a uniformly discrete
family {G,|ae A} in X, then we choose uniformly continu-
ous mapping f of X into a complete metric space S such that
if tGa]} is uniformly discrete in S . Then we choose & uni-
formly discrete family 4U,} 4n S such that £ LG JcU, for
each a .

Consider the reduced product mapping (of f and the iden-
tity)
(%) X —>sSsxX .
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If 4H,} is a family of cozero sets in X such that Hy N
NX = Ga for each a , then each Ga is the inverse image un-
der (x} of U,> H, , and G is the inverse image of the uni-
on V of all U,> H, « But ¥ is a cozero set in to(8 > X) as
a uniformly discrete union of cozero-sets in S f .

II. All X% and X(«’) are (complete metric)-tf . Again
we check just the case oco=1, If S is a metric space, and

(l)—r S (or f: XX—»S) is uniformly continuous,

ir £: X
then there_ exists a uniformly. cont inuous mapping g: X —=>T ,
T metric (complete metric, resp.) such that £ is uniformly
continuous with respect to the uniformity project'ively gén‘era-
ted by the map | '
X —>t, (T = X) ,

and hence f factorizes through this map with the range rest-
ricted to the image of X . Since S is complete, the functor
uniformly continuously extends to the closure of the image of
X , and since the closure is topologicél f_ine>, the mapping re-
mains continuous if the uniform structure of S is replaced by
teS o Hence f: X(l)——> tes (f£: x> teS ) is uniformly
continuous. |

Remark to II: _Technic.ally it may be easier to work with
tf(g-l CT).

1. x)

the definition by transfinite induction, and coz_X% =
(e0) |

—> coz_ X(°.°) follows immediately from

= coz_ X follows by induction using the first assertion

in the theorem.
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IV. The remaining assertion follow from the previous
ones.

With every space there are associated the transfinite
sequence {X%§ of (complete mc-ztr:i.c)-t:f spaces, and the se-

X(oo) -

quence £ coz_ = coz_ X* ¥ of metric-tp-spaces such that

h"coz X = coz X¥ = coz(coz_X%) .

We know (3.4) that (complete metric)-t, is just sub coz_ .

Theorem §. The space co0z_X° has 6'-uniformly discre-
te (in X) completely h%® coz(X)=-additive covers for a basis
for all uniform covers.

Proof of Theorem 5. It is easy to show that every cover
in question is a uniform cover of coz_X“’ (by constructing a
partition. On the other hand,

(a0

= 1im coz_X* has 6 -uniformly dis-
-—

crete (in X or in itself) h coz X-covers for a basis of the

Corollary. lim X

uniform coverse.

Problem. Is 1lim X° the subfunctor of lim coz X =

<
= 14m x99 ¢
-

4.3, hcoz_ =coz_o A = (h cozz)f

The result in the title seems to be quite non-trivial.
At least our proof is long and prhaps tricky. It is based on
the concept of a hyper-distal space, and by controlling the
step-by-step construction of the coreflection into hyper-dis-

tal spaces.
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Definition. A uniformspace X is called hyper-distal
(the term is bad) if the following condition is satisfied:
if {Y¥,(a€ A% is uniformly discrete, |
and if for each a ,4X,, | € B,} is uniformy discrete,
and Y = U4 Xabl b € Ba_} for each a , then |
¥, | <a,b>€Z4B,|ac A¥}
is uniformly discrete.
The main résult is coded in the proof of the followi ng

Theorem 1. Assume that X is hyper-distal. Then each
hyper-cozero=-set in X % X containing the diagonal of X
contains a cozerorset in X x X containing the diagonal.

The proof requires a more general statement:

Lemna 1. Under the assumptions on X in Theorem 1, for
each G € h coz (X% X) there exists a cozero-set U in X % X

such that
AancUCG.

" Proof. Fix X , a'nd assume the statement is true for
each Ge hfBcoz(X) , B<oc, o Z 1. We shall move that
it holds for G e h®coz(X) . By éefinition, ¢ =UiG |ne
€ Wg% , and each G, is a unifdrmiy discrete union of sets
of class strictly iess than o« . We may and shall assume
for each n , and that

| C=UAG, |aea3
where {Ga’: is a uniformly discrete family of elements of

that G = Gn

U’{hﬁcoz(x) | B<o 3 . By our assumption, we can take a

family of cozero-sets Ua‘ a 6A% in X» X such that
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dynG,cU, G,
for each a . We may and shall assume that
U, © (Aana)x (Axnca)
for each a « Now the family of all
I'd o .
v, =ix [{x,x>e€ Ua}
is a uniformly discrete family of cozero-sets in X . We have
. ’
Ua Cc Uaan
for each a .
We can express each cozero-set U, as a union
v, = w,|be U{B (a)33
- such that each family
{V,p b € B(a)d and fw,, |beB(a)}
is uniformly discrete. Put
Hop =4{x I<' X,X D € Vop * 'Wab} N
Then the family
| {Hab\ be B,(a)3
is uniformly discrete in X for each n and a , and hence the
fanily 4H , |b& U{B (a)|a € A3} is uniformly discrete,
hence |
| G, =U{H, = H,,|a€ 4, be By (a)}
is a cozero-set. Clearly
has the required properties.
Proposai tion 1., If X is hypersdistal then

h coz X = coz X ,

and coz_X 1s locally fine.
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Proof. A. Let G be the union of a uniformly discrete
family ‘iGa | ae 4% of cozero-sets in X . We want to show
that G is a cozero-set in X . First choose a uniformly dis-
crete completely coz(X)=additive family 4U,% such that
G,C U, , and also a family -if‘a"’;_ of uniformly continuous
functions such that G, = coz f, , and f_Z O for each a
Now given a positive real n consider the sets

G = dx]fx 2 a3 ,
FaIl =‘ix faX é 1/n§ .

F n is uniformly discrete, neces-—

Since each pair Gan s Fy

sarily the family of all Gan , &nd all U’an Fan is uniform
ly discrete, and hence the union of all G,  is distant to the
union of all U, N F_ ., and hence there is a cozero-set G;I
which contains
Uic, Jaeal
and is disjoint to '
.\U‘\.Ua'f\ 'Fan} 9
and hence _
. [ 4
UdGn% e Gy n{ivdvicac .
Since
U4e, Inead =¢,

G is a cozeron=set in X .

Bs Reczll that coz_¥X has all uniforzly § -discrete
completedly coz(X)=-additive covers for 2 basis of all uniform
coverse. Because of the first part of the proof it is easy to
check that these covers are stable under taking the Ginsburg-

Isbell-derivative [31 which will be recalled for the purpose
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of the construction of hyper-distal coreflectione

Definition. For each space X define
- x¥=Dp(x)’
where Y’ denotes the Ginsburg-Isbell derivative,; i.e. ¥’ has
for a basis of uniform covers the covers of the form
U~V |aea,Be B3

where 4V_3%, and & -‘wab ipve B‘a} are uniform covers of
. \

By the basic lemma, if ¥ has point-finite uniform co-
vers for a basis then Y’ is actually a uniform space, hence
X* is a uniform space for ecach X .

Define X*%® a3 follows: X*° = DX ,

and A
X*%& = ( lim x#¥BHyx
Pp<x
Proposition 2. For each & 3
coz X*% ¢ h coz X¥® = h coz X .
Proof. Assume that the relations hold for i/?j = OC ,
Clearly
hcoz ( 1im X*B )ch coz X
B=x
(any uniformly discrete femily in lim X*¥P  is upiformly

< oo
discrete in some X3, 3 < o0 ), and hence it is enoush to

show that
h coz (Y*)c h coz (DY) ( = h coz Y) ,
and this follows from the fact that any uniformly discrete

union in Y* can be written as a uniformly discrete union of
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uniformly discrete unions in Y .

Theorem 9 . Denote by X% the mojective limit of
Sx*<]oa 3 . Then

1} DX =x% ,

2) heoz X®° =cozX®° =h coz X .

3) X% is hyper-distal.

4) coz_X% is locally fine, =nd coz_X% is finer than

AX, and AX is finer than X% .

Corollary: h coz{AX) =hcozX.

Proofs We only need to show that:

Lemma 2 « h coz X = h coz (coz X) .

Proof. One shows that uniformly discrete union of co-
zero-sets in coz_X is a uniformly ¢ -discrete union of co-
zero-sets in ¥ (recall that

coz {X) = coz (coz_X)) .
This 3is 3ll we need to know for the proof of the main

Tresults.

Remark, X v X*® 35 the coreflection on the hyper-
distal spates. The functionally locally fine coreflection is

obviously finer than this one, and cosrser than A .

Theorem 2 . A. (h coz)_X = coz_(X¥X®) = coz_ AX .

Bs The collection of all hyper-cozero-sets in XX X
which contain the diagonal is o basis for the filter of the

uniform vicinities of h coz_X .

C. h coz_ = ((h coz)‘?)f .



-72 -

Proof. By Corollary to Theorem 2 we have
coz_(X*¥P) = coz_AX
for each X . Next by Theorem 2 ,
F=4X — coz X * Y §
preserves the hyper-cozero-sets. It follows that
hecoz P (Xx X) =h coz (X=X}
and hence ,
heoz (XX X) =h coz (FX XFX) .
Now it follows frem Theorem 7 that ¥X satisfies Statement B,
Hence
f: FX —> FY

is uniformly contimiouns if and only if

PARPIXIRI—>T=xTe heoz (IX X, TR .

The proof is concluded by showing F = h coz_ » Assume
that G is any functor such that

h coz (GX) =h coz X,
and show that G is coarser than F . By our assumption
h coz G(X > X) =h coz (X» X)
and hence
heoz (GXx GX)c heoz X¥xIX) .

It follows that GX has a basis for uniform vicinities consis-
ting of hyper-cozero=-sets in ¥ ® X , and by what we have al-

ready proved, FX must be finer than G .

Remark, e have proved that if G is any functor such
that h coz GX&€ h coz X for each X , then G is coarser than

h coz_ «



