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CATEGORTAL BREFINEMENTS AND THEIR RELATIQN TO REFLECTIVE

SUBCATEGORIES
Ji¥d viifmovskyY

In the genaral part (§ 1, § 2) there are discuassed
mainly the fellowing problems: When the refinement X aof
a given category gives (by the constraction X -fine) a
coreflective snbcategary, and when the given category 1is
reflective {(onder the idempotent reflector) in its refi-
nement H . Thers appears that there exists a closed
connection betwsen these two goestions. {The main reanl‘l:s
abont this are 2,3, 2.8, 2.12, 2.15) From the theory al-
Bo follows the iheorem mbout decomposition of amy idempo-
tent reflectiom into one *"fall reflection™ and cne “"refi-
nement reflsctiom? (2.14).

In the third paragraph the general theory is applied o
the case of conerete categories and étmére‘be refinements‘,
namely 1o the category of uniform spaces. It is shown in
3.3 that there exists a bijection between reflective re-
finements and coreflective subcategories and between co;
reflective refinements and hereditary epirefliective sub-
categories. At the end of the paper the ideas of the
theory are used to make some conclusidns which, I hope,
put some little more light into the structure of reflexi-

ve and coreflexive subecategories of uniform spaces,



Y

§ 1. Reflect:.ons and coreflections.

Let & be a category. We shall denote 11 ‘the ‘
class of objects and L7 the class of morphisms' of Sﬂ A
Let X, Y& )] , ve shall denote #(K,Y) the set of
all morphisms of aﬂ with domain X and range Y .

At first we recall some bas:.c concepts and propos:Ltlons
which will be frequently used‘ Por all of them we :cefer to
[91. s

1 1. Proposltn.on' Assume 3 ia a category, X Ye
el . Tet further Hom-x X, Z) e Hom,g v,2) (natural |
equivalence) for any Ze 13’«] ‘l‘hen X is $-—1scmorphic
toY.. ey

1.2. Defini‘tioﬁ; Let ;ﬁ be a subcategory of the ca~

tegory 3 and let J: & s X be the corresponding em-
bedding. We shall say that :L is reflect;we 1n x 1f the-
re ex::.sts a fxmctor F 'JC'-->:C (called reflector) which |
is a left adjoint %o J .

1.3, ‘,Propos:.tl‘og. Let éﬂ ‘be a subcategory of the ca-
tegory X, IJ: & C—-a» x the embeddlnga % is 1 refle=-
ctive subcategory of 56 if and only if for every X £ 1K)
there exist X € |&| and @' e ¥ (X,X) such that for
any Yel&!, f‘e X (X,Y) there exists exactly one
ged (X, Y) fulfilling gf(w -F' A

1.4, Definition. Assqme‘ J: 36 »;__,. X is an e*nbé‘d,—“
ding of categories, F 3 x-——-—yi the reflector. We |
shall say that & is 1dempotent1y reflect:we in C‘C o 1f
FX s 28'-isomorph1c ‘t;o ?3FX f.or any XelX v\,‘ .
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{The functor F is idempotent.)

Remark., If the embedding J: &L < X is full and
&, is reflective in X , then ¥ is idempotently reflec-
tive in X . Of course, in the general case of embedding,

the statement does not hold,

1.5, Proposition: TLet 3:_&?; X ,C_E}b, A dbe the
embeddings of categories. Suppose &L 1is reflective in
X ,X is reflective in M . Then &£ 1is reflective in
M .lMoreover, if &£ dis idempotently reflective in X
and UL, is a full embedding, then & is i.ﬂémpotently
reflective in M . -

Proof: ILet us define F = ¥, F, , where F:
:X—L, F, : M—-> K are the corresponding reflectors.
For any R s M, Y& &  there is:

LIFX, V) = LAEF,L,Y) = TLEX, V) = WILY) .

ir I"1 is idempotent and U,g_ is a fnll embedding, there
is F, U,;F, =F, and FU,=1,which immediately im~
plies FU U, F = F .

1,6, Definition. Let &£ be a subcatezory of X &

X will be called the refinement of £ , if 1 X 1=1£1.
Let & be a subcategory of the category TiL. Th-re
exists exactly one category X such that X iy » pefi.
nement of & and simultaneously a full subcategory of
M . In this manrer the general embedding can be decom-
pogsed in a canonical way into one refinement and one full

embedd ing.
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1.7. Proposition: Let &, M, I be as in the fo-
regoing remark. Let & be reflective in m,F:m—
the corresponding reflector. Then &% is reflective in X
under the reflector F|X . | s »

Proof: Let Uy: X s M , U, :Lcsn X be
the embeddings. F|X = U,F. Forany X el.'!(.\ (hence
XeiMml), there exigts g—x e X (’X, ili thx) ﬁhenever
Ye 'l'zl fe X X,y) there ex:.sts exactly one g B
e L( Fi, 7 snch that @ .._f’;,‘ hence 2 is reflect:.ve
in X under the. functar F]:&L in Vu"l:ne o;r 1.3.

1. 8. Remark.' I:n an analogons way we can detine the :
dual concepts, the right adjoint and th,e ,co:eflective sub-
category. We can prove then the du‘al"resu,lts to 1.3, 1.5,
1.7. ‘ |

§ 2. "Refinemenfs.. |

2. 1. Defim.tmn. Iet X be a i'ef:!nement of the ca-
tegory z . We say that an obgect X s X -fine, if for
any Y elZ| there iz % (X,¥) = £ (X,Y) .VWe say that X
is ’R:-—cbaise, i’f;for any Ye l£l there is K (Y, A) =
= £ (Y, X), An object X is called X -bi-extremal if X
is simultaneonsly ¥ -fine and ¥ -coarse. (The defirition
appears firstly in [2].)
The refinement W of & 1is called reflective (coreflec-
tive) if é{, is a refleétive (c'_o're’flectiVe) subcategory of

s
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2.2. Proposition: Let X Dbe a reflective refine-

ment of &, F: X —> ¥ the corresponding reflector.

An object X is X -fine if and only if ¥X = X . (More

precisely FX is & -isomorphic to X .)

Proof: Let X _:a.:- FX . whenever Yegl&1l, there
is LI, YI=LIFX,Y) = X(X,7) , hence X
is X -fine. Conversely, assume X  is X ~fine. We have
L, Y)=X(X,Y) for any Ye 1Ll . But BAKTI=LFEY,
hence by 1.1 X is & -isomorphic.te FX -

2.3 Theorem. let X be an idempotently reflective
refiremnt of & . Theﬁ X -fine (= the class of all ob=-
jects with the property X -flne taken 1like a fnll sub-

category of & ) Forms a coreflective subcategory of & -

Proof: Let F: X —=F be the reflector. We
shall show that F|% is the coreflector from % c¢n-
to X -fine.

Let Ye 1&1. F is a left adjoint to the correspond-
ing embedding, so there exist ga, e L(FY, V),

yE XY, FY) and the ig y y 4 Now we It“‘*'
P' ’ HNGQ gere is gb DEL = y * [Now we &
ke any fe £(X,Y) , where X  ie KX ~fine. In vir-

tue of 2.2 tlere is (u,yf:s &£ (X, FY) 3

(i) there iS gay (tLY‘F = 4y«F =f o

(11) for any ZelLl there is LFY,Z)X XW,2),
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F is idempotent 80 by 2.2“ F)’ is JC -fine, hence

‘aﬁ(FY Z) 3C( FY Z) : Now we obtainfrom lol that

;'Y is J{. -isomorphlc to FY Then $(X,Y:)ﬁ~ g(x FY)’\

which implies the unic:.ty. This compleues the proof‘.
. The converse is not true in general (see furthe::" § 3).
Ve shall say that a famlly {f Xa;--b Y ? -‘5 |
'inductively X -generates Y if g,a ’.'{'A'-{Y,Z) belongs
 to .sz'”’ ' provided that all g-oF belong to =™
Slmilarlv we def:me proaectlve % -generatlon. f

The meam.ng of 1nductlon X -stable and pro.)ectlon ‘.‘RZ -f

stable seems to be obvioue.

2.4. Thecrgm. Let % be a refm@t of tﬁe catego- :
ry & . The class of all 75 -flne sneces is 1nduct1vely
X -stable. |

Pro‘of:_ Assume that £ f,: Xq — Y 3@ 18 an inductl-;
vely K -generat ing family and let for any a, and for any
obaect»‘z.'i(xq’,Z) —ZTCCXQ_,Z)_ IfgeJCCY Z),
then for all o there is g of, X™ , hence 9, o f e ™,

and hence o & ™

2.5. Definition. Let & be & category, '.‘fﬁ,, ) ’3[2‘ two
refinements of & . We shall define the refinement
Ky ndy vy CHpA K™= H™ A AT, We define
another refinemert 5[,, v i, of & nq#.l}ifhe,éymbol ‘
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£: X—> Y  will be the morphism in ¥, v X, if it

is of the form £ = (f,,.--, f, ) (the finite word), such
that f; € jcf;‘u JC;" for any 4 = 9,...,@,the do-

main of f, is X, the range of f,, is Y and such

that there are no neighbours in the word which cancbe com
posed either in Xy or in I, . The composition of two
morphisms f = (£ ,-.2 , ’F@ )y @g=0(g9,,.-c,9,) i3 the
word Ja = (M, 5.y B, ) which we obtain from the word
(fyyese» Fmws Qo> +vs Um ) by composing of all the
neighbours in ¥, and in X, (if it is possible). Ob-
viously X%, v 762 is a category. If we correspond %o
every ¥ from X4 (resp. X, ) the word (f) we ob-

tain the natural embedding of IX',J, ’(resp; 3[2 ) into

tk:,, v3(2 , hence 75,, v 3{',2 is the refinement of & con-
taiming both X, am X, -

In a similar way we can define these operations for s fa-
mily of 'refineﬁem.s. One can easily see that these'two
operations form the structwre of a compleie lattice on
the class of all refinements of &£ .

2.6. Prppositign: Let &, , X, be refinements of
the ecategory &£ . Then:

(i) JC',,mc x;,’" implies Jf,] -fine > ¥, -fine.

{i1) c:e,-wnu n (%X,- £ime ) = cx,, v xz)-f'm .

Proof: (i) is evident.
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(ii): from (1) it followa that (L‘C -f‘w)n (ﬂz fime)>o

D(TlC,,v xz)-f‘m. Let X (X, ~fue) n (X,-fime), ¥ any
objecty, £ = (Fpyeesfn) € (XK,v X,)(X,Y) . We shall pro-
ve that the word f‘» has only one element., Assume m > 1.

fe (X, v X,)™ ,the domain of f, is X, hence %, 5 L™
So f', can be composed with f, either in -'x or in Xy 5

which is the contradiction. So m = 4 hence

X € (761~ y‘xz_%fm .

2.7. Definitiop. let £ be a category. We shall say

‘that the refinement XL of :ﬁ is f‘-maximal (resp. ¢ ~ma-
ximal) if'for‘ any other ref;;lement 3_'C~' ' such that XLfime =
= 7C~W.,(resp; '~?Ci-caum= JC;ooo)we.'),, we have K.

2,84 negrgm Let X ‘oe the idempotently reflective
ref;_nement o:.’.’ ;ﬁ Then X is f‘—max1mal.

Proof.‘ Let F X— &£ be the reflector, QJC' ezre.—
f'inement such that Y-fine = x-fm - For any object
X we have” 50 € gg (FX, X),‘ {a.xe: x’(x;FX) such that
o @¥= 1 . hssume feXX,Y), There is fp'e £™
It follows from 2.3 that there exists exactly one
D e & (FX, FY) . such that @+ B = oo . Further
We observe that (w o f o Sox € £™ amd moreover
gOYo (uY-’,-Pjp Qx ‘=.-f- fo be ; | hence 7 = (w’"a £ @x .

Finselly gay o ;.fﬂ"o,pcx < X™  and there is pyo 2D o (a.x =
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= 55”.(“7. f‘.@‘x- (u,x-.-«r, hence f e ™ and X is

£ -paximal.

Remark. To avoid set theﬁ#etical confusions we shall
not study the class of sll refinements of a given catego-
ry. We restrict mzr attention to "relati:ve" classes of
ré.finemem:a‘ and we shall see that there will not be any o
lack of _generality in praétiee; Fnr the resi of this para-
graph we shall fix the fundamental category &£ =nd somn
idempotently reflective refinement § of £ . We shall
denote K  the class of all refinements ¥ such that
$®c X™c £™ . Under the symbol X, v ¥, for the
elements from X  we shall not understand exactly the
refinement described in 2.5, because it peed not lay in
K . To avoid this difficulty we put two mrphim

(fprereyp )y (Ggoeney Gy ) TrOm 3134 v X, :'Lden‘tical, vhenpever

> m

they give, after the possible composition in £ ™ | the
same word,
2.9, Theorem. (K, A, v ) forms a complet: latti-

ce with 0,4 .
The proof follows immediately from 2.5 and 2.8. The
role of D is played by £ and the role of 41 is played
”»
by £ .

2.10, Proposition: Suppose ¥ is from K . Let us
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denote -2 ,

X, = VX |H'e K, X'-fine = K-ime 3 .

Then :‘Cm -fime = H-€me and .)Tlm is f -maximal
in K .

The proof of the equality is an easy consequence of 2.6,
the maximality is obvious.

Suppese X € K and let | X -fine forz a coreflec-
tive subcategory of & . Let F be the coreflector onto
K -fine, ru—x :FX—> X the corresponding morphisms (see
the dual theorem to 1.3). We define the refinement % & K
ig'?he Pollowing manner: For any X,Y e I&€| we put

X,V cE(X,Y) and FeX (X,Y) if there ex-

ists f’e€ £(FX,FY) such that tu,ys £ = {"(u,x .

2.11. Propositiop: For any X € K there is X =

,provided X -fine forms a coreflective subcategory

=X

m
of & .

Proof: (i) Let X, Y be any objects, £ € X (X,Y} .
FX is XK -fine, hence F(u,x e (FX,Y) . Let us
denote £’ = F(fow®) € £™ . Then there is
(u.ya £ = o Ffé'o(wx)z f‘o(u,x , hence fe X (X,Y) -

(i1) It suffices to prove that H-fime = KX~ime .1t
follows from (i) that H-fime = H-fime . Let Xe H-%ime,
fe X (X,Y) , there exists f'e L(FX,FY) = £ (X,FY)
such that @”sf’= ¢ , hencé Fo-fime = H-fime which

completes the proof.
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It follows immediately from this proposition:

2.12. Corollary: lLet X € K and let X-fune be
eoi'eflective in & . Then & is idempotently reflective
in K,y - |

2.13. Definition and remarke 4ssume X e K . Let
CXdy d@ta the class of all objects X’ such ihat
fc:l;,any Y there is KX, 7YX X(X,Y) -

¥ observe that <XDp is the class of all X’ X -
hmrphic tn X , hence for any X's(l)z, Ye 1X) the-
reis 3(7, X) = X (Y, X’) . Ve dencte ¥* the
categbry mhose objects are (X >4 =nd morphisams hetivéen

{X>y amd {¥>, will be exactly the morPhiszs from
X {X,¥) . It can be said that X ¥ Is obtainid from

X 1ike the factorcategory with respect to X -isomar-
phisms. | |

Suppose that X is idempotently reflective, F the re-
flector. Then K -fime is coreflective in &, X = xm,
Let X e any object. Then for any Y there is

FX e <X >:X' . Then there is obviously <X)xrs K-fae =
=4FX3%3 for any X . We can define F¥; X*—> H-Fime
like F*(( X)x ) = FX (analogously for morphisms).
One can easily see that F¥* is an iscmorphism of catego-

ries. (The inverse can be defined by G{(X) = (X),c for
X @ X-Time )
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Let us decompose the general cetegorical embedding as
in 1.6 into one refinement and one full embedding. Let £, |
X, m be as in 1.6. It follows from 1.5 that whenever
g, is idempotently reflect:.ve in 36 and ‘.‘E is reflecti-»,j
ve in ‘m . t‘hen o is idempotentl:f refleetive in M Kev
we are able to prove the converse.

2 14. heoggn. Let éﬁ X, m be ‘as in 1.6 and 1et :
g, be idempotently reflect:.ve in ’IIL ‘xmder the reflector’
F 'm,*—,. :Z Then F can be d D¢ im‘-o two reflec-t'
tors F 3{3 --->.‘£ F m—-a.x S5 FE

) Proof: Let u :f,::...,:#, 2_. ‘30 c:--, ‘EL 'be the
embeddings. In virtue of 1 7 .55 18 reflective :Ln 323 under
~ the functor. F U- T" . Hence % = L‘IC,,E- . Let X € m“
we defime:

T NFO for X & IXE
I xelXt, then F(X)e(X)x , 80 there exist oF

FX-——a-X,g: X-—-—->-FX

- both X -is omorphis&ms;
For f-‘e’m(X Y) ‘we. deflne. |
; for X,YelX|
) for X, Y& 1%
> P e f°1‘ Xe 13“-" ‘/‘F 1%
foz- X t %1, Ye m:t

There 18 @'s@’ =4, , o'’ = 4,= V. ;' for any



YelilXi . So we obtain that Fz is a functor from M

into X . Obviously F,U,F, =F, . For any X e IMi 4
Y € IX|  there 1s: .

XYY =M(X,Y) for XeiX)
BAYY 2 5hr v = LRI & XX, 9) = M (X, V)
for X g iXl.
Obviously F, F, = F and the proof 1is compiete.

2,15, Theoreme Let M be a refinement of &£ . Let
g be complete, cocomplete, locally and colocally small.

Let the canonical morphisms into coproducts remain col-
lective epimorphisms also in M end the canonical pro-
Jections from products be collective monomorphisms in
M . Further we suppose that for any f, g € £™ the
equalizer of the pair (f,g) in &£ 4s a monomorphism
in M and the coequalizer of (f,q) is an epimorphism

in M . Then for any refinement X such that £ c X ¢
cC M™ there is:

(1) X~fime 1is monocoreflective in & ,

(11)  X-evarse 1s epireflective in £ .

Proof: To prove the theorem we shall use the cri-
terion of monocoreflectivity stated in [(5]. From there

it euffices to prove that H-fuome 1s closed under co-

products and coequalizers of diagrams X /‘FN y
\9/

where Y € X-€ine .

Let £ xw; be the family of objects in X -fime
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)
4)(@_;?-*2 Xo ¥ their coproduct in & . Suppose Y e il

fe X (ZXg,Y) . For all indices a. there is f v, @

€ L(X,,Y), hence there exists exactly one

et (X, ,Y) such that £, = £y, for all & .By
fhe assumption {3, § is a collective epimorphism, hence
£’ = £ and hence f & 2™ .

Suppose the diagram X:;) Y 4in & such that

Y& X-fime .

Let V—-:"-—b C denote the coequalizer of (f,¢) in &.
For Ze &1, he X(C,Z) we have hec €« £(V,2) .
Of course, hef = Hcg , hence there exists exactly one
h'es(C,2) such that M'c = e . But ¢ is an epi-
morphism also in X , hence A'= £ and hence h eIL™.

In a similar way we can prove the dual result (ii).

We shall see later on that the assumptions of the fo=-
regoing i;heorem are often fulfilled. The following theorem

is an easy consequence of 2.12 and 2.13, (We use the nota-

tion from the revmark before the theorem 2.9,)

2.16. g;mm Let for any X € K the corres-
ponding full agbcateéory K-fume of the eategbr.y & be
coreflective. The following is equivalent:

(1) X = Xom

(11) X 41s an idempotently reflective refinement of
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(111) For any X € [&£i the coreflection xfx  of

X in the subcategory ch-fm is JC -isomorphic to X .
(iv) For any X,.:Yc i€l, feX (X,Y) if and on-
ly if f= §% ,where f'e« L™ and h is a J{ -isomor-
phism; N
2.17. _Dgﬁm Let X be a refinement of & ,
M any class of objects. We define xf-rm lM the class
of such obJecﬁ& X that whenever Ye M sy then X (X,Y)=
= 8 ¢(X,Y) .In an analogous way we can define ﬁ'—mlm .
Thus in the special case of M = I€| we obtain the defi-

nition 2.1,

2.18. Theorem. Let X be a refinement of &£, M any

class of objects. There exists a refinement M of &£ .

MecXK such that M-€me = J(-&'nu,m .

Proof: At first we define the class of morphisms
-
Mmecx .For any X, Y we put
_H(X,Y) for YeM

£(X,Y) for Yg M
Now we define the refinement M : fe M (X, V) if the-

MCX,¥)=

re exist f,,f,,..., f, € M’ ,  the domain of €, be-
ing X , the range of £, being ¥ and f=f,f ... fp ,

the composition being made in X .Let X e‘)C-f-‘im&‘M , Z

any object, fe€ M (X, Z) . There exist f,.., §,,  all
in M’, €, ranges in Z, f, has its domain in X ,



f = FO se @ fm . Let us denote Z_a the domain of 'Fi- .

_~ either Ze W , then f& £™ .
| c £(2,,2)

1. There is

\or Z&M , then.

either Z, & Mo, then g e00fn = «%m, hen-
| ce fe &£™ -
2, There is _ , |
or Z,% M , then ¢ « £CZ‘“,ZO>) 5

, m )

hence f, ¥ e & .
Obviously we obtain by induction that fe £ (X ,Z),hen-
ce Xe M-Eime .
Conversely let X € M-fine , Y€ M , then X (X,Y)=
= MIX,¥)= &(X,Y) , hence Xe A-€ime|, .

Remarks. From the last theorem we can conclude that
the theorem 2.15 can be generalized to the subcategories

of type i!"-ﬁc’m,m , M Vveing any class of objects,

~ We can also obtain the dual results, substituting
respectively ﬁC-W'M y coreflective, reflective, proe

Jective, ¢ -maximal,.., instead of X -€ime|, , Peflec-

tive, coreflective, inductive, f -maximal.

¥e shall show now that in the main theorems of this
paragraph 2,8 and 2.14 the sssumption pf the idempotenocy
éf-the reflector cannot be omitted,

2.19; Exgmple: Assume the category L(S of the Heue-

dorff locally convex topological vactor spaces over the
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field of real.numbers R and continuous linsar mappings.
On evéry_such space we have the unique translation inva=-
riant uniformity and t_he cont inuous -linear mappings are
‘:ln these uniformities uniformiy continuous., In this way
we have given the eﬁbedding J of the category LCS inte
the category Ll of separated uniform spaces and uniforin-
ly contimious mappings. Rajkov has proved in [10] that
for any uniform space there exists a free locally convex
space, in another words that the category LCS is a ref-
lective subcategory of iL .The construction is made by
giving a suitable topology on the free-vector space over
tl_;e underlying set pf the given uniform space. Let us de-
note F this reflector and LCS; the refinement of L@§
given by the embedding J . From 1.7 we see that LCS, i
& reflective refinement of LCS (but not idempotently re—
flective). One can immediately see that LCS&-W =40}
(the category involving only the null-dimensional space)e
Now it is evident that LCS, 4s not f -maximal. It suf-
fices to take the refinement & generated by all mapp-
ings which is actually greater than LCS, and still S -
~fme =403 . Thus the theorem 2.8 does not hold gene=-
rally for all reflective refinements.
The same example can serve us for the answer to the ques=
tion about the general validity of the decompositiom theo-
rem 2,14, Suppose that the reflector F: Ul —» LCS- ‘can
be decomposed into two reflectors F, :1lCS,~—s» LCS
Fp ¢ b ——> Les, . From 1.7 we know that F, is
.naturally equivalent to the functor FILCS@ . Let D
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denote the twopoint uniform space. Then FD is the two-

dimensional space RZ . Suppose dim FoD = 0 . Then

| AF:VBF.-ED ‘18 at most onedimensional, hence FD & FF,D .
On the other hand if the dimension of the space F,D is
at least 4 , then F;F; D is of infinite dimension,
which is the contradiction. Hence, the idempotency in 2.14
cannot be omitted.

Thus we have seen that the idempotent reflections are
of gréat importance for the theory of the preceding para=-
graph, But ~1n the practical cases of concrete categories

the condition 1is often fulfilled, as will be seen from
the following easy proposition:

2,20, Ppopogition: Let J:& c—5 X be the embedding
of concrete categories, F: X —>» & the reflector such
that for any X € |X | the reflection mapping ‘u,x : X —
—— FX can be represented by the identity mapping. Then
F 4is idempotent. (Analogously the dual proposition.)

§ 3. c ts'o

3.1. Definition. Let & be a concrete cate‘gory, o
the forgetful functor into the category of sets. We shall
denote Set the refinement of £ , wherves_Stzig (X,Y)
consists of all triples <€, X,Y) written f: X—» Y,
f being & mapping of o X inmto a¥ . As usual we shall
regard &£ to be a subcategory of S&t& .
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Let X be a refinement of & . We shall call it concrete

refinement, if £ c X™ ¢ Satg" B

3.2. Theorem. Let &£ be concrete, complete, 'l,o-
cally and colocally small ‘categ.ory. Let for any r_amily‘ .
Xq Of objects hqld : ntg_xa)',siax‘ ) a('-ll X,f) =

asT;oX“ . Let further each equalizer in & "‘be one to

one and each coequalizer be onto. Let 'JC be a concrete
refinement of & , then X-fime is monocoreflective
in &, X-coase 1is epireflective in & .

Proof: follows immediately from 2.15.

There is a lot of categories fulfilling the assump=-
tions (f the foregoing theorem. For example TOP (the ca=~
tegory of topological spaces and continuous mappings),
HAUS (the category of Hausdorff topological spaces), CR
(separated comppetely regular spaces), Unif (the catego-
ry of uniform spaces and uniformly continuous mappings),
U (of separated uniform spaces) and others.

We shall treat the category W of separated uni-
form spaces and uniformly continuous mappings. L ful-
fils the assumptions of the .theorem 3.2, hence for any
conorete refinement I there exist two functors AT ,
7C° s the former being the monocoreflector onto K -fime ,
the latter being the epireflector onto ¥-coawse ,Kenniw
son [7],(8] has proved that in U | every nontrivial core=-
flection is a comodification (the coreflector preserves

the underlying sets).

3.3. Theoreme Let X be a concrete refinement of
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UL . The following holds:

(1) H-tme is coreflective in W

(2) X~ coannse is epireflective and hereditary in U .
(3) Every nontrivial coreflection in U 1is of the form
X-fine , where X 1 a concrete refinement,

(4) Every hereditary epireflection in U is of the form
- coanre , where X  is a concrete refinement.

Prooft (1) and {(2) are obvious from 3.2.

(3) Let F be the coreflector in U . Let for any X
the identical mapping y'x e W(FX,Y) represent the co—
reflection. We define the concrete refinement X of W
for any X,Yeill, fe H(X,Y) if there existm
g € W(FX,Y) such that g@” = @”f . In other words
if £ 1is uniformly continuous from FX . into Y. It is
easy to seé that fhe f‘unct_ors '.‘IC“, F are equivalent,

(4) Let R Vbe epireflective and hereditary in U
under the reflector F . Suppose for &l\y-x the morphism
(u,x e WCX, FX) represent the reflection. Again we put
fe H(X,Y) if there exists g € W(FX, FY) such that
(a,yr = 9@," , Ory equivalently, if ‘u.vf is uniformly conti-
nuous. One can immediately see that R c X - coaxre . Con-
versely, let X € - coasxde . &x is an epimorphism, hence
the image of X 4in FX  under @L’. is dense. But every
uniform subspace of FX is sgain in R , hence @.x must be
onto. Suppose that (Lx is not one to one. Then there
exist two distinct points x,4 in X such that

(bx'(O() = (wx(@) . Let @ denote the space of rational
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numbers with the usual metric uniformity, d any irratio-

nal number. We define the mapping f: @ —> X . PFor '
a<d weput f(a)=X, for @ >d we put f(w)sry,-
Clearly f 1is not uniformiy continuous, but w*f 1s @
constant, herice the uniformly continuous mapping, which
is a contradiction. Hence (wx is bijective. The rest
is obvious, similarly as in (3),

Reparks. One can easily see that Set is &
(idempotently) reflective refinement, but not coreflectie
ve refinement of U . Hence for any concrete refinement
9 4ts f -maximal hull X,  must be again concrete
and may be constructed by the method used in the ;;roof of
(3) in the foregoing theorem. |

For the dual case, if we want co_natruct. ¢ -maxi-
mal hulls for concrete refinements, it need not exist in
general. For example, Sel, -~ coare is a singleton and
one can see that there exists no ¢ -maximal refinement
generating it. But if ¥ 1is s concrete refinement such
that the corresponding reflector X 1s a modifica-
tion, then there exists a ¢ -maximal hull of X ,it 1is
concrete and may be constructed by the method used in

the proof of (4) in the theorem 3.3.

We shall show that the assumption of concreteness
in the theorems 3.2 and 3.3 cannot be omitted. We give
an example of a refinement X of W such that W-eime

need not be coreflective.

3.4. Example: We shall represent the objects in U
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in the form (X, U) ,where U 1is a system of all vi-

cihitioe of the diagonal. We define the refinement & of
WL 4in the following manner: We put fe  ((X, W) , (Y, V),
A* £ is a mapping from X x X dinto YxY  such that
for any V € ¥ there is £1(V)e U . (Honoe

f1(XxX,U) —> (Y=Y, V) 1s a morphism in the ca=
tegory S( P’) ») We define thé ocomposition in d in e
natural way; obviously we obtain the category. The embed-
ding of L into ¢ may be defined, if we correspond to
each f &« U™ the cartesian power f2 , So g is from
L™ 1ff there exists f« U™  such that g = 2 .

(1) At first we show that the onepoint space {a?
s § -finé. Let (Y, V) be any uniform space. There
is h{ VivVe V3= Ay .o the diagonal, henoce for
any fe d(fal, (v, %)) there 18 f(a,a) & (X,x)
for some x & Y . It suffices to define g g (a) = x ,
g e Ulfad, (Y, ¥) oand guwgaf .

(41) Let {a, &1 be the twopoint discrete space,
We show that {a,&} 1s not & ~fine. We define

fed({a,l¥,ta,£3) in the following way:

fla,a)a (%) F(U, L) w(a,a) fla,l)x (a,b)) f(¥a)s(ba).
Obviously f ocannot be obtained as ¢ x g for some me-

pping g1 {a, &} —> {a,&1 .

Let us suppose that & -fine is coreflective in u,It fol-
Jows from (1) that the ooroﬂocti’on is not trivial. We nd-
tice that in that case the coreflective subcategory must |
gontgqin all uniformly discrete spaces, whioh is the ocon=
tradiction with (11). |
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We have noticed that .Svtu is a reflective refi-

nément, but not coreflective. The reason for it is the
fact that there exists the finest uniformity on every set,
but not the coarsest. If we take instead of WL the ca-
fegory Umif  of all (nonseparated) uniform spaces, then
Saw is aimultanec;usly refleétive and éoreflective.
Despite of the nonexistence of the coarsest separated uni-
formity on every set, we show that there exists the coar-
s:est‘ modification B in W in the foliowing sense:

For any other modification R’ there 18 R = R -

3.5. Theorgm. Let R be any modification in W .
Then Paecompr c¢ R ,where Pazeomp denotes the epi-
reflective subcategory of WL generated by all precompact
uniform spaces. ( Pwcomp is a modification.) |

Proof: Let I denote the compact unit interval,
Suppose there exists the uniform space I” on the same
underlying set and coarser than I '. Hence the identity

mapping 4+ : I — I is uniformly continuous, hence

it is a topological homeomorphism. But there exists only
one uniformity on I compatible with the corresponding
. |

Suppose R is any modification, we obtained that I e R.

topology, hence I

Hence the projective hull of {I§ in W must be conted-
ned in R . But the projective hull of { I} is Brecomn

"and the proof is complete.

3.6. Exgmples: Let C (resp. P ) denote the refi-

nement generated by all continuous (resp. proximally
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continuous) mappings. Then:

a) Sa/tum-f-‘w = Dinci (the category of all uniform-

ky discrete spaces)

b) Sa.tu—w =+40% (the singleton)

c) C--.f:i’ma, = Fime (the category of all fine spaces)
d) C-cocanre = 40%

e) P-€ime = PF (the category of all proximally fine
' spaces, i.e. the finest spaces generating the correspond-

ing proximity)
g} Set, , C oare idempotently reflective refinements

( € -maximal), P 1is an idempotently coreflective refine-

ment ( & -maximal).

Proof: a), b), c) are obvious.

d) Suppose there existe at least a twopoint ,épaee
X € C -coarse. We choose any twopoint subspace fa, &% of
X . Let & denote the space of rational numbers with ifa
metric uniformity, % any fixed irrational number. We |
define flx)=a for a< 2z and f(X)= L for @ > %
the mapping from @ into X . Obviously € 1s continu~ -
ous but -not uniformly continuous.

For e) we refer to 1 .

f), g) are obvious.

For further interesting examples we refer to [2],(3],

L41.
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3.7. Proposition: Let X be a concrete refinement

of U, M the class of spaces projectively generating
U (i.e. for any Ye iUl there exists & family {Mg ¢
of spaces from M such that Y can be uniformly embed=

ded into the uniform product TTM_ . Then % -fine =
;ﬂ—ﬁm'm .

Proof: Obviously X-fime < J[—_f‘m.m .

Let X € X-€me |, , Z any uniform space. There exist

Mg € M such that Z is embeddable into TTM_ . Let
us denote .é : Zc—» MM,  the embedding,

o, sTTM,, —> M, the projections. Let fe X (X,Z) . For
all @ we have m, 3feX(Z,My) = U(Z,M,) ,hence
there exists exactly ome g e WL(X,TIMg)  such that
for all a there is :tra;g-» = 7, 3¥ .  Hence there is

¢ = 3f , and hence ¥ 1s uniformly continuous.

Remark. Such classes _M fulfilling the assump-
tions of the foregoing theorem are for example M (all
metric'apacea), M (complete metric apaces), i"‘A
(complete spaces), _Imé. (injective uniform spaces).
We shall use the current pfinciple of the construction

of the coreflector X ¥ onto I -fine spaces in U .

3.8 Let X be a concrete re‘.finement of W, X aiur
uniform space. We define A the set X endowed with
the uniformity projectively generated by all X -morph=
isms with the domain X and renging in metric spacese.
One can easily see that this corresponding is functoria]:

and for x € X ~fine there is Xwe X . Now we define by .
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(1)
@) g Yy ~ for o

transfinite induction: X
nonlimit ordinal, for a limit ordinal @ we define

X‘®  the set X endowed with the uniformity equal to the
infimum (in the order "finer than") of all foregoing unis

formities. Obviously there exists an ordinal
”” ”o {cg gx(“.@Q‘ - X(d);

Thggrgng x(f) = xfx e

The proof is routine by transfinite induction.
The following proposition is a consequence of 2.16 and 3.8,

_ 3.9. Proposjtiopn: Let X be a concrete refinement
of & . The following cohditi_ons are equivalent :

(1) X is ¢ -meximal ,
(i1) X is an idempotently reflective refinement of U -
(111) For any X:<{ XD,  contains xR,
(iv) For any X:<X>,  has the finest element eqal
to X

| | | ¢
(v) For any Xs(X)x contains X X .
(vi) For any X: <X >'3'C has the finest element egqual
to X¥x .

1)

 Qvi1) For ém' X X"FX=-X .

| Remarke Let Peil, @ the system of all uniform
vicinities of the diagonal. For any U € &D. we set:

8

8, : Z-(Dza |z, « UN A, Dzu is a twcfpo;nt space

-(a,zu-, %u } with the indiscrete uniformity}v £ { Dy, |
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= {a. .2, 3 with the discre-
W . zM 9 zu s

te uniformity ¥ , AP, being the diagonal in P x P ,

z, € PxPNL, D,

the sum is taken in the category W .

Let us denote (@,W) = mf{G, ;L € D3 , (The infimum
is taken in the order "finer than".) It foll‘owa from [b),

37.A.8 ghat (P, &) 1is a quotient of (Q, w) . We noti-

ce that ND = A, , hence (&, W) 1is an element

from U .

I thank for the idea of the follewing lemma to M,
Hudek.

3.10. Lemps. (@, W) 4s the minimel object in
{C(@,W)>» (with respect to the order "finer than"),

Proof: Let (G ,7) Dbe a strictly finer uniform
space that (G, W) . For any €D we have.at least

one 2z, € LU\ AP such that the sets {azuh {%u"ﬁ

i
are not 7 -proximal. Of course, they are proximal in

Qu . We sef; A=4a,xua,ll£4)?,‘8-.éifrzu3 Ledd .

We can supj)ose that (@, W) 4s not uniformly discrete
(because in this case (@®,W) 1is even proximally
fine). Let % be any uniform cover of (@G ,%) ,Then
it must be {a«xul, &Rr’zu} proximal (with respect to

QL ) for some UL ¢ & , Hence the sets A, B are proxi-
mal in the uniformity U , On the other hand, one can
see from the construction of A, B that A, B are not
proximal in the uniformity 4 , and the proof is comp=-
lete. | |



3.11, Theorem. Let € ©be a coreflective subcategory

of L and let the corresponding coreflector ¢ preserve
the proximity (i.e. for any X € il| we have fekX =
= /X )oe Then € = U |

| Proof: For any X € |U} we construct @, , the
space (&, W) from the foregoing lemma. Qy & I‘C%I be=-
cause of the minimality in < @y >, . Thus X , being
the qubtient of Qx is again in |1€| , hence € = U .

3.12. Corollary. There are no conci'ete refinements
bf L simultaneously reflective and coreflective. (Ex-
cept of the trivial refinement U .)

Proof: Suppose N is simultaneously reflective and
coreflective refinement of L ., From 3.5 X -coarse must
contain all precompact spaces, hence X -fine preserves ‘

proximity and hence X-fine = L .
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