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£ - partitions of unity on normed spaces.
1

Milo3 Zahradvnik

If X 1is a uniform space, denote by U =4 Uﬂ} a uni-
form covering of X , and denote by A=4f_ 3, _; a partiti-
on of unity on X, A partition of unity A is subordinat-
ed to % (we write A < % ) if the supports of £, form
a covering which refines % . The following notion will

play the basic role:

Definitipn. A partition of unity {f 3.1 18 Le

continuous (1 £ £ a) if the mapping

fx —> 44, (03, 3 X —> £, (D)

is uniformly continuous.

The simplest assertion of the type studied here is the fol-
lowing (see [2]): For each uniform covering % there ex=-
ists a partition of unity A = £f, 3,1 , subordinat-
ed to U such that the family £ f.3__; 1is equiuniform-

1y continuous. (In other words, A is £, continuous.)

We will show in Section 1 that the analongous result
holds for A4, continuity, if 41 < o < co . This is quite
elementary. The case f2 = 1 1s the most important, end it
seems to be non-trivial. Remark the assertion: s pagrtition

of unity {f‘uc}ugl is 21 coptlngous if and only if
] %’ f. 3 I’ci ~ is uniformly equicontinuous (see [11). For

fo = 1 ,our preceding result (the existence of .£, -continuous

partition of unity subordinated to given % ) does not hold



for any infini te-dimensional normed space, and this is the

main result.
To obtain the main theorem 1.4 we have to make a detai-

led study of the partitions of unity in Euclidean spaces E, -
We define a useful notion, namely integral partition
of unity. This is done in Section 2, the main result is the

theorem 2.9,
In Section 3, we refer to 2 and ehaw; bhow “the module
of continuity” of an arbitrary partition of unity in E,

depends on the dimension.

Finally, in Section 4, we use the preceding results (Co-
rollary 3.9 and Lemma 3.10). This is immediate for Hilbert
spaces. In the case of an arbitrary normed space, we use a

theorem of Dvoretzky.
1,

In this section we deal with 4£4 continuity for fo > -

> 41 and state the main theorem for o = 1 .

l.1. Proposition, Let YU be a uniform covering of & u-

niform space X . Then there exists an A, continuous par-
tition of unity subordinated to % .
Proof: see [2], p. 62.

1.2. Propogition. Let % be a uniform covering of X,
" let 4 < fr < @ . Then there exists an 44 continuous
pertition of unity subordinated to U .

Proof: By 1.1, there exists a pertition of unity A =
=4%f 3 .c1 such thgt the family {f %,y is uniformly
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equicontinuous. Define the functions

| A 1
fam = (e 20 - 25 v 0 met2,

It is clear that £f, , 3 forms a partition of unity. Fi-

nally, define (for_ some M(m) )

£ -
<. i=1,2,..., M) .

Yotymi = M(m)

We will show that the family + Qo,m, i 3,‘51',,““, ,;'_‘_ M is
the desired parfition of unity, if M(m) 18 suitadbly cho-

sen.
For x,4 e X put
@(x,y) = bf{b{lf‘(x)—fd(@)l} .

Since £, 3 satisfies 1.1, @ 1is uniformly continuous.

We have
def
N o,m, s 0 = Qaymi (B, ==
- i
LS gy (30 = G, (¥

o MY

- i
=(x M"T S g O= £ (") T
- 1
< (E M 2(meM e (x,4)™)®

(because €, (x) >0 for at most m + 1 indices

< €I ), Choose M(m) such thst 2 M.""‘(m+4)< ‘;‘R |

We get
VL, m,s O = Quym,s (9230, & @ (X, 4)
and the £, continuity of £%x,m4i ¥ 18 proved, g.e.d.

Now we will investigate the case fo = 1 .
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1.3. Definition, Let A ={f 3, e 1 be a partition

of unity on a metric space ( X, ®) . Define a function

("module of continuity")

(1) %, (t) = rup M€, (x)-£(4)30 . t=20 .
2 elx, g4t 1 : ‘

Remsrk that ¥,  1s monotone, ¥, < 2 % Obviously A is
2,4 ‘continuous if and only if ¥, 1is continuous at t=0.

l.4. Theorem. Let U denote the covering consisting
of all open balls with radius 4 on an infintte dimensional
‘normed space X . ‘Then there is no £, -continuous partiti-
on of unity subordinated to o .

Remark. This theorem answeré the problem in [1],p.107.

Proof is contained in Sections 2, 3, 4. Let us sketch
the idea of proof. Suppae, far the simplicity, that X 1is
a Hilbert space. Let X, ~be an m ~dimensional subspace of
X, let A, be the restriction to X, of some partiti-
onof urity A in X
It is obvious that

(2) ?‘fﬂ(‘lz) =¥, (t) for each t =2 0 -

d/nl

Xm is an Euclidean space. If A < U ,we will show in
Section 3 that

“ﬂgzﬁe&(t)sﬂ for each t >0 .

m

Then we use (2) to show that '36.4 is not continuous at t=0.

20

In this section we investigate partitions of unity on
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Euclidesn spaces.
2.1, Denote by E = E, an Euclidean space with

the Euclidean norm | 1 o The group G of all isometries
on E has the following properties:
(3) %) for each %,y € E there exists T e G such
thot Tx = 4 . | | |
41) for each x,,x€ E satisfying lg-zll = x-21
there exists Te &  such that Tz = z, Tx =4 . '
G is a locally compact group in the topology, defined
by all the pseudometrics of the type

e (T, T,) = o I Tx - T,xl

where F is a finite subset of E .
On G ,there exists the Haar unimodular (left and right)
measure m (see for example [4], (2, 7, 16), example T).

For sny % € E consider the mapping

(4) {T—> Tx3: 6— E

The preimsge of an arbitrary hall {2z, lz-4 Il = 13
equals to the set T, Il Tx - T xll « 13 where
T*.x = a . This is a compact set in G . Thus the i-
moge of m  with respect to { T—> Tx § exists, De-
note it by & . Since m is right-invarient, @

does not depend on the choice of X € E . Since m is
left-invariant, @ 1is inveriant with respect to G . Then

(4 1is up to a constant the Lebesgue measure.

2.2. Definitione Let A be a functionon E =< E .

We say that A 1is an integral partition o unity if the
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following holds:

(57 1) A =0
1) AC,y) e g7« E, w) for almost each

y ek
i11) fA(X,y)dx () = 1 for almost each
ek . .

If further lx-g4 Il =1  implies A(x,y4)=0 we say
that A 1is subordinated to U ( U will always dencte
the covering of all open balls with radius 1 ), and write
A < U . "Me put analogously as in (1)

(1) %, ()= sup  [1A(z,x) - Alz,g)ldz(@) -

Nx-4 st E _
~Our aim is to restrict ourselires to the partitions of the
.type (5), which are much moré convenient for the following
computations. This enables us the following lemma which is
the main step in the proof of l.4.

203. Lemmao Let -Hl = {F“_ }“e 1 be a [Brtition Of
unity. Then for each ¢ > 0 there exists an integral par-

tition of unity A = such that

areA'ct>é(4+e)areA<t) for each t = 0 .

Further, if & < U ,then A <2 U .

Prof. First we introduce some preliminary definitions

v and constructinns,

2.4. Definition. If A= 1€ 3 .1 1s a partition
ofunity, T € & , put

T
ﬂ ={fx°T;‘€I
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Analogously, for integral partitions of unity, put

AT (x, ) = ACTx, Ty)

2.5, Put
Gy L als to the preimage of 4 with respect to the

mapping £ T—> Tx § . Using the desintegration theorem
(see [3]), VI, § 3,1) we obtain:

'There exist Radon measures m,, on G',,y, such
that my, = 0 and -(fmwv,fy«e E3 form a desintegration
of m with respect to the mapping 1+ T— Tx3:

(6, m) —>(E, ) .

2.6. TFirst we describe the construction of A in a
simpler situation, namely S (instead of E ) is a sphere
S in Em+4 , anéd G is a compact group of all isomet-
ries on S . The measures m, @, /mx,y" are defined a-
mlogously as before. ¥e suppose lm ll = 4 and put

A y = = (T 'grdT(m, )

X,y ! = 1 oc Y X X
Xd X
where for each < € I  we choose x €S such that

(6)  Ngp-x | >4  implies f (y)= 0 .

2.7« In the case of E  there is a 1little technical
complication ( m 1is not finite). Choose, for each x € 1,

X, € X satisfying (6)., Let 4 be an integer. Put:

'K_is-ia‘,eﬁ,“;u,lléof.} )
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IL={oove.I, X, € K; 3 .
It 1s easy to shbw'that'_
(7) S€(x)=41 fPreah xe K. _,

I

<

% f.(x) =0 for each X 4= K,

7

o

Now we construct, analogously as in 2.6
A xoy) = = [ £, (T g)d Tlamy )
1 7’5’ = I. G, x 'y/ ’""xo‘x )
4 X _ X
K
Notice that A < WU implies A; < U .
, \ 1 .
I. 1is countable, fG | £ (T (,,,))d ™My (o) is w
X ()
integrable function (according to the desintegration theorem).

Then we can write

(8) fZ_Fx(ac)oLo(((u,) fz (T%) dT(m)

N %1, '(G

-1
=z );( fc (T ry.)oLT(m&x))du(y,) -

e X - fex ] f e (T ) d Tlom,  Nelx (@) =
= fA (x,y) cL.x ()
Putting f S fe(xax () = 2g (notice that
T

<

f (¢ T'4%) dTlm) = (desintegration theorem)

1‘

&.ZM(K% ) ), we get:

4 -1

(9) —_— is an integral partition of unity.

Now estimate 'aeA , Write
4
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(10) fIA (x,x)=A;(z,y)ldz () £

f(f £, (T )£ (T ) dT(m Ndz (@)
L chtz '

= f €, CT" ot)-ﬁ‘(T""g,)loLT(m)
L%
acenrding to the desintegration theorem. Put

G, =4Te6, T'x eK, ?

\ .

Suppose || x -yt < 2 . (7) implies

A A Q| -
TxEK,, DTy d k= (T )= £ (T y) =0 .
Returning to (10), we obtain

(11) [IA, (2, x)- A, (z,4)|ldz(w) £
E
..é = f lﬁ,c(T"’ot)--F‘CT' ) lad T (m)

[ ¥ 4 ($)dTlm) = g, t) @K, )

G—i-b- 3

Combining (11) with (9), we conclude

(Ki o n) |
e, () = « r? L0t .
a—— M’ ( K o - -1 )
. w K
Obvinusly | Lum iv3) y = 1 , thus for suffici-
v =y 00 A (u,( K_"_"
ently large < -—-i"-'-——— is the desired integral partition

*

of unity, q.e.d.-

A.‘,. }

4

Rémark. It is possible to show that the family { A
is _equicnntinuous. Taking limits, we can prove the lemme also'

for 5=0 .
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2.8, Lemma. A_: from the preceding lemma satisfies

‘the property AI = Ai for each T € G- ( A; is
"symmetric").,

Proof. Remind that

T A
ALixg) = 2 [ £ (U Ty dUlm L)

T X G‘Tx

Consider the diagram ‘
fU—>ToU} {U—>1x § (x—=>T%3
(G,m)— (6,m) ——== (E, ) —= (E, )

(the mappings will be shortly denoted by @4, P,, ¥ ).

The following holds: -i/m«x‘x 4 is the desintegration of

m with respect to 9y ° Py ° 9 then 494 ('m')g‘_x )¢
is the desintegration of /m  with respect to Gy P, . But
£ ’mx«Tx ¥ is also the desintegration of mm with respect
to @, o g, .Then ve have for almost 211 x « (E, w)

mm T™x = c?'t (’m')gcx’

xt‘.
and
T . -1
A cx,f,uig&mgcu Ty)d U Cm, )
= 2L e Wyprdlig (my ) =

1 X Tx *

A A

= i .r fx(u, rg,)oLU(m&x)z A_;(O(,%) » qQ-.e.d .

Summarizing Lemma 2.3 and Lemma 2.8, we obtain:

2.9. Theorem, For each € >0 , and for each partition

of unity A there exists some symmetric integral partition
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sf unity A  such thsat

&A(tﬁ £ (4+¢) ZCa(t) for each t+ = 0

and A < U ircplies A < U .

Remark. Using the remark 2.7, one can prove the theo-

rem also for € = 0

3

Now we will study the sy,minetric integral partitions of
unity. With the help of (3)kwe can say that A 1s symmetric
if and enly if thefe exists a locelly intégrable function
f:<0,00) —> E_, such that

(12) ACx,n) = fCllx-nl)  for aluost each x,4 €

3.1; Definition. Let A be a symmetriec integral par-

tition of unity. Let 4 = » >0 . Put

( llxs-q.ll)

A (x, ) = €

3.2, Lemma, The following hol¢

1) [AS(x,g)dx(w) = 87
E

S

Sﬂ‘b

(then is an integral partition of unity)

i) ’aeAS t) a-'&eA('E') ¢
s™ '

The proof is easy (consider the mapping
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{x—> pox3%3s E—E )

3.3. Definition, Let A be an integral symmetric par-
titinan of unity. Put

2ty = ff‘(—' —oLb )
Rix,g) = Flllx-ng ) .

PA
It is easy to show that A is a symmetric integral parti-
tion nf unity.

1 t
3e4e Lemma, ﬁeﬁ (t) £ j‘; %A (-Z)d«/bc
Proof. Put lIx-g4ll =1t

_(;IA(z .x)-A(z ry,)ld.z £

1, AS A®
‘f(fl—(z x)— —(z ,y)lds)dz= f *, ( )ds

according to 302, ii), de.eodo

- A
3.5. Lemma, f is a decreasing and differentiable
function on (0, @) .
Proof. Let t' =2 t ., Obviously

t
F(t')—_ff‘(— —-aL,s _(-E-')”M fo‘{:({.) .73.; s

< j;f'(;) %’,;d-b =-f’(t) .

Analogously one can compute

$'Ct)=-(u~PCt) fee) ) ,

" t“”"' qee.de
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6. Definition. Define a function ¢ 3 ¢ (x,4) =0

for each X,y satisfying lx-¢4l =21, & (x,4)=1 for

each X, 4 satisfying lx-a4 ll < 4 .
"e suppose that the @ volume of the unit ball equsals to

A,Then ) 1is an integral partition of unity.

3eTo Progo,eitioh. Let A be a symmetric integral par-

tition of unity, A < % . Then

1) Alx,g)= — j:q)"'s(x,@) F'tA=-mrds
11) 4 =-["U-5" #F1-m)dn
o .

| 4 X4
11) %, (t) =-j; ae¢,_,<t) £ (1-mdns

Erﬂgfo
1) write lx-ngll=

Then f(t):-—f ¢<Mawa..-_r £1- Sds =

g-j; F1-516""(x,4)dn
11) follows easily from i).

i11): f | ﬁ(x,x)-z(z,fy,)ld.z (W)=

=[] "0 "z, %) - 0"z, 4)) B (1= 5 dn |dz

A < 4-/
j;(fof-"(4—/a>l¢4 4’(z,:‘c)- ¢ /‘Cz,@“d/b)dz
1

‘ A .
B ALAEECL RSNLIE T Q@ e.ds

3.8, Combining ii) with 111) we obtain
32‘%(1:) € 'Eez Ct) for some A< 1 .
2 ‘

But it is obvious that de¢ (t) € u%_(t) .
| s
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Then 7€¢ (t) & ’aea (t) holds for each t = 0 . Using

Lemma 3.4, we obtain

1 t
(13) Ry () £ J; 2, (Z)d» -

An application of Theorem 2.9 gives:

3.9. Corollary, Let A be a partition of unity, let
A < U . Then

' t
By (L) 2 f R, (=)ds
holds for each t = 0

In order to emphasize the dimension of E = E,, write

t
(14) H,-) = f (—/;)d/, .

3.10. Lemma. om 3‘€¢ (t) =2 for each t >~ 0 .

m —» co n

- Proof. Denote by

m

K, =ixeE_ ,lIxl=

2

K" = fxeE,, ,Ix=Ct,0,...,000 1%,

ym t E
K} = 4xe Egp, li‘x—(-i-,O,...,O)“é 1-
It is easy to check K:’ N K: c K: o We obtain

(15) ’3€¢(t)=(u,(K:AK )= 2 - @ (K A KD )

m

~m’ tz’ o
>2- @ (K =2-(1=-—)7

Z 3 q_.c.d .o
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4,
In this section we prove 1.4, using the following theo-
rem nf Dvoretzky:
Let (X, I) be an infinite dimensional normed space,
let m be an integer, let € > 0 . There exists some m -
dimensional subspace X,, of X and an Euclidean norm

I 18 on X, such that

(16) b IE< 0l eA+e)N 15 nolds on X -

(see [51, p. 123).

Now we can finish the proof of l1.4. Let A be a par-
tition of unity on X ,» let A < U. Denote by A, (resp.
WU, ) the restriction of A (resp. of U ) to Xp o Ob-
viously A, < %, . Each e_lehzmt of U, has the I | di-
ameter less or equal to 2 . Using (16), we obtain that

1
W, refines the covering of ell - Iy open bulls
with radius 4 . e use (14) and (15) for X, ,provided
o1 E |
with ‘Z N and obtain

t2 1
2-(1- )% <[# (3)ds ,

E
where ¥ denotes the module of continuity in

(X %._n' 15 ) . (16) tuplies F (£) £ 3(2(1+8)t).

mir

Thus ,
1 (2(14-2)1:

m A >d’/b ]
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- Using (2)
2 +£)
(4 t )m 5;1 (2(4 e)t ) !

for each m .

2(1+e)t

——)de = 2, then R, (£) = 2

1 .

This implies | ¥ (
P f o TR

for each t > 0 , q.e.d.

I thank to dr. L. Zajiéek fa valuable suggestions,
which contributed very much to the simplification and correc-

tness of the whole text.
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