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SE INAR UNIFORM SPACES 1975 - 76

Unifcrm atoms on o

Petr Simon

In 1973, J. Felant and J. Reiterman wrote a paper con-
cerning atems in uniformities [PR]. It scems that there is
a little investigation only in this direction till yet, though
the problems in this area are worthy to be studied: Any result
cn unirform atoms tells something about the lattice of all uni-
formities,rorcover,it tells somcthing about the properties of
points in the Cech-"tone compoctificntion or discrete space,
tooe.

The aim ol the present paper is to construct, assuning
continuum hyrothesis, some ultraiilters on @ in order to
obtain examples ol unitorm stoms whose nature is e..sentially
dissimilar to thosc ones described in [PR}. We also give a
nroof oi ncn-published thcorem duc to J. Pelant, which shows
some properties orf non-O-dimensional atoms on W It remains
an open questions whether such atoms exist at all.

O. General background., Consider the lattice of all uni-
formities on the set 4, the order given by the uniform conti-
nuity of an identity mapping: Y 3 UV iff 1d,: <4, Y% y—
>4, V> is uniformly continuouse. Atoms in this lattice will
be cglled uniform atoms.

Let us give a brief review of the main results from [PR].

Let q be a filter on the set X, denote by Oa a uni-
formity on X defined as follows: A cover §U;: ie I¥ belongs
to OZL iff there is some i€ I with Uje q.

(a) Proposition. <o, 0;_) is a uniform atom if and
only if q is a selective ultrarilter on w0 .

The uniformity will be called proximally discrete i’ the
induvced proximity is discrete.

(b) Proposition. rfor any proximally discrete atom
there is an ultrafilter q such that U =3 0’9v .
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If % is a uniforrity on X, dencte by Ny the Lamily
of all subsets Bc X such that <B,%/B Y i3 not uniforml;
digcrete. for the prooi of (b) one must check that if %
is a prcximally discrete atem, then Ng i3 an ultrafilte:

Suppoae £¢ Xy ’2L1> : 1eI % be a family of uniforn
spaces with Xi po2irwise disjoint, let q be an ultrafilter
on I. The family oi covers

L4x3txeVUX; 50V -i@'i:ieV}
(Ve q, P, is o uniform cover of <Xy, %;> ) form a base
of a uniformity %4 on U Zi which will be called an ul-
traproduct of unifermities U and denoted by % =

z v

(¢c) Proposition. I U; are ztoms, so is %;r U

i?

{d) Proposition. No atom QYU which is an ultraprocduct

cf atoms is of the form dﬁ .

{e) Prcposition. Each atom on @ has a basis consist
ing of point-~finite covers (see alsn [ V]).
For the details and procfs, see [ PRI,

le Up to now, we have no example of a proximolly dis
crete ntom on @ other than Q% with a selective ultra-
filter ¢, and ultraproducts of such q;'s. There are
kncwn, of course, other atoms. Let q be a non-selective
ultrafilter on «w whose type is minimal in Rudin-frolik s
order (abbr. Rf-minimnal, see [R] or [CN1), according to
(a), O;, is not an atom. Let A -3 0 be an atom and we
are tc show that A is not an ultraproduct of atoms. Sup-

pose A = Em A s, then the equality q = N, = = N‘Ai

contradicts the essumption that q is Ré-minimai.

Thus, we shall construct several ultrarfilters ¢ and
study 0&' and atcms below it. Let us start with the
3impleat one:

2. Theorem. Assume [ CH]. Then there exists a P-point
q on ¢ such that there is precisely one atom A <3 (}, ,

-
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A £ O;v.

Proof. Let R =4R;: n<w3} be partition of @
such that all R, are finite and sup IRni =w o Let A be
a subset of «w . We shall call A to be & -unbounded, if
sup § IR ANl . ncwd = .

Let J3 be a family of all point-finite covers of w ,
let ¢ =B v P(w). since |G| = 2% |, assuming [CHJ,
we may well-order it in the manner (@ = { gy i < wtj.

I. The construction of q goes by transfinite induction.

For each ¢ < @t we shall define a filter base 3;‘6
such that:

(1) F,=4U4{Ri: i>ni:in<wi};

. s + _ .

(ii) if c <™, then | E | = @

(iii) if o < B < ¥, then 3‘;}::3&;

(iv) if « < et and if F ¢ %, ,. then F is J-un-
bounded;
(v) if ¢ < wt is a limit ordinal, then & >

DrsLi{c fﬁu{HZ with |H = Fl < <0  for each Fe ﬁL‘)‘tﬁﬁ";

(vi) if B =x+1, g, =M € P(w), then either
MeF g4 orlw-MeF;

(vii) if B =+ 1, g, = € e B , then there exists
an Fe &.,.4 such that
either |FAC| £1 for every € € <€ or there ex-
ists a sequence {x,3 with x e R, and »t(x,,€)n R 0 Fn R,
for every n< w .
O-th step is precisely described in (i).
Suppose =< < @t to be limit. o is countable, all
Fs s with f3< oc are countable, thus BL<jec 8y =4Fgs
tn< ws o,
By an induction over @ , let us find a sequenc:
-inJ.: j< w3} such that n<n<n,<. . and

I FoﬁFlﬁ ooonthanl >j for all j‘f w ° Indeed, if

no,‘n]_,...,nk_l be defined, then by (iv) the set
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Fon Fn ceenFy 1is R -unbounded, thus there is some
n>ny _y with |F nFin..cnFpn Rnkl > ke

Let H = (Fon Rno)u(Fon Fin Rnl)u... v
u(Fon Fln...anank)u..., and let
Fe ={FaH: Fe J F,%u (.;Léloc% .

F. 1is obviously countable filter base. Let f €

& ﬂ% Fs . Then HnF, is H -unbounded, because
|EAF, AR, | > m whenever m>k.
m

The set H - I-‘k is finite, since Rn is finite for ever;
3 b > J e N ( nl 1 )
n< e and since H - ¥ c(F n Rno)u (F n £1n Rnl) v
N R JcR. R, U ... uUR .
R A N | R-1
Let @3 =cc+ 1, suppose g, = Mc w . Then either
MnF is R -unbounded for all Fe ¥, or (- Mn & is
R -unbounded for all F e & . (Suppose the contrary: The-
re are F, ¥ € 5, and r, s natural such that |FAMAR |
4 r for each n < @ , 1#°A (o= WA R n| £ s for cach
n< w .ThenanFan£r+srcreachn<w , @

contradicticn, since % satlsi‘les (iv).) In the first ca

U eeoe U F f'\Flf\‘.-ﬂl‘K_

se, define &, = F udMnF: F e F 3%, in the sc-
cond, Z'MH.—_-?;U-{(@-M)AF:FG‘?,}%.
Let 3 =« + 1, suppose g, = € B For every seque

ce 4x,% such that x,€ R denote by S{x,% the set
U4 st (xn,‘f)an: n< % .

Two cases are possible:
a) There exists a sequence 4x,% , x & R, such that
S -{xn} A F is AR -unbounded for every F e ?'ac . In this

case, let %"+4= FoiFn S4x,3%: Fe 7,3 .

b) There is no such sequence. In this case, we shall
proceed by induction as follows: & 1is countable, % =
={EJ.: Je w ¢ . Let us define natural numbers j,, ny
and finite subsets Hk of @w such that 'jo = 0 and for eve-
ry k < w the following holds:
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(1) D<€ Dy J.la:<"jk+1' ch H1(4»1’

(2) 1 H.~n Rp N Fon By o eee nfy | > x and
(3) for every yeHy, st(y,€)nH = 4y3 .
F, is R -unbounded, thus there exists some n, with

| F AR, | > 0; pick a point ye # nR_ and define H_ -
0 o 0" “ng o
=4y3%.

Let ny, Jy, H be defined. The cover € is point-fi-
nite and H. is finite, thus the set €, = 4C € € :
: Cn Hk#ﬁf is finite. ror every C e €, let -S.x % be so-
me sequence chosen as follows: If R nH.n C+8 , then, ac-
cording to (3), this intersection contains precisely one
point which will be denoted by xo. If R n H n C is empty,

but R n C is non-empty, pick *{g from R n C arbitrarily. ri-

n

mllv, if Ryn C = @&, let x; = Min R_. le one such sequence

-ix t for eVery C e €y; as we assumc, that a) fails, there

is some J such that j > j, and F, n U <« S-ix $:
k+l k+l k Jk+l

: Ce<€y? is not & -unbounded. Denote by G, ., the set
N 4P 02545, 13- U4 $4x5%:Ce€,. 3.

The set G, ., is obviously .’R—unbounded and there ex-
ists natural N> Oy such that G contains k + 1

nk+1
distinct Points ¥, ,¥yse-e ¥y with y ¢ Ut(y €) if p*q.

(If not, then for every n> . there are y, n), yi(n),eee,
Yy-1(n) such that U 4§ pt (yp(n) <€): Oépék -13 >

o) Gk+ln R_. Define xg = yp(n) for O£ p£k -1 and n>n,

xp Min R, for O£p<£k - 1 and né&ny. Then the finite uni-
on U{S{XPZ O%£p£k - 13%v U{S{x i Ce€ t

covers some member of 3’ , namely F N Fln eeeNF: N

Iy
N(U £ Ry: i>nk§ ), which contradicts the assumption that
a) does not take place.) Let Hy ) = H ULy ,¥1,eee,¥ 3

Obviously, (1), (2) and (3) are satisfied for Hyo

Let F= Ui H:k<w}, let F

o+ 1
U{FOFOFG.%;.

In both cases, the filter base & 4, is well-defined:

= q; v
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AR, -unboundedness of its members is clear in a) and a con-
sequence of (1) and (2) in b), &, ,4 satisfies (vii), too:
The added set equals to some S{xn} in the case a) and
reets cvery C € € in at most one point in the case b),
as can be deduced from (3).

Now, having the whole inducticn verified, it remains
to define q = U F, : x = v+ 3 The filter q is
an ultrafilter because of (vi), it is a P-point by (v) and
it cannot be selective, since its members are 3L -unbounder
by (iv).

II. Let A be a uniformity whose base consists of
all cover3 R A P (= 4{RAP: Re A , PeP ), where

® is a uniform cover from O, . The following facts ar:
clear: A is not uniformly discrete (all members of q are
R -unbounded), A # O‘;. (no member of R, belongs to g
and R 3 0, -

A is the unique uniform atom below 0% : Let A b
a proximally discrete atom, let €’ be a uniform cover be
longing to A’ , let € be a point-finite cover from R’
which star-refines <’ (the existence of such ¥ is imp-
lied by Proposition ( )). Since € belongs to B , € =
= g, for a suitable « < % . We know that &, _, c q ar
that there is some F & Fy 4 satisfying the condition
(vii) from the induction. Let >, be a cover consisting
of F and oif all one-point subsets of w .« Supposing
A’ 3 0y , we obtain (Po A€ e A’ , so it cannot ha
pen that | FAC | £ 1 for every C € € , because then
P, A € =4{{x%: xe &3}, which is impocssible - KL’ 1is
rnot uniformly discrete. Thus there is a sequence {xn§ ’
x & R, with at (x ,€)5 FnR_; in other words, P A R
refines €7 .

We have shown that every atom A7 3 O’Q is uni-
formly coarser than A , thus A’ = A , which completes
the proof.
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3. It may be instructive to analyse the proof of Theo-
rem 2., We needed to construct a non-selective ultrafilter,
hence the starting point with some partition R where the
non-selectivity should appear, was necessary. It was suffi-
cient to assume that |Rn | « w and sup {IRnI i n<ws=
w , since we were looking ror a P-point. (Such partiti-
ons will be called admissible in the rest or the paper.)

There were three essential steps in the proof: verifying
of {(v), (vi) and or (vii). Only the property (vii) was cru-
cial for uniform propertics of the desired atom, (vi) was
necessary to obtain an ultrarilter, (v) implied that the
future ultraiilter would be a P-point. We wanted all mem-
bers of q to be A -unboundcd - let us say, we wanted all
members of q to have some property [P . The property

"M is R -unbounded" was, morecover, of very special kind:
There were, in fact, a countable collection 4P (k)§ of
properties of finite subsets of «& , narely " | M| > k",
and it was suftficient to verify, whether MaR_  has TP (k)
for arbitrary k and somc n « @ , depending on K.

Now, let us return to (vii) from the proof of Theorem
2. It was, in fact, a collection of w* properties %
of subsets of @ (each was described using some point-fi-
nite cover), and we wanted to satisfy this: "For every
« < @t there is at lecast one feq which has %

In order to avoid unnecessary repeating of some steps
given in the proof of Thecrem 2 we shall prove the follow-
ing lemma, which is some kind of recipe, hcw to obtain ul-
trafilters.

4. Lemma. Let R =4R;: n< w$ be an admissible
partition of @ . Suppose that for every k < @ there
is a property TP (k) of finite subsets of w such that

(0) there exist a k< w such that & has not

P (x);

(i) ir M e Py (@) satisfies P (k) ror som k>0,

then M satisfies P (k - 1);
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(1i) for every k< @  and every n < & there is
some n>n, such that R, has P (k)

(iii) there exists a mapping f e w® which satis-
fies:

given k< e and M, M e P oiplw), if Muil® has
P (£(k)), then either M or M  has TP (k);

(iv) for every k < @  and every li, 3 € 5"1,,1
if M has P (k) and McQ, then § has P (k).
Let the property TP of subsets of w be deifined by the
rule

al@),

{v) M has TP iff for cvery k <« @  and every n, <
there is an n>n_ such that MK, has P (k).
Then the following holds:

A. If F 1is a filter on <« with a countable base,
if M e P(w) and if cvery Fe€ F has TP , then there
exists a filter G, with countable base, G o F , all
members of G have P and either M € G or (w- 1) €
e G .

B If F is a filter on « with a countable base
and if every Fe F has TP , then there exists a subset
M of co such thit MAF has P anmd |M - Fl< @ , for
each F e F .

Co Let 4 2 x < 2 ¢ be a collectien of proper-
ties of subsets of @ . Suppose that ftor every filter F
with countable base consisting of sets with P and for
every o <= 2% there exists an M € @ such that M,
has 5°c and M. n F has [P for every F e .

Then, assuming [CH], there exists a P-point q such
that Ue g has P and for every o < 29 there is a set
Ue € q satisfying %, . If, moreover, each M with P is
A, -unbounded, then q is not selective.

Proof. A. Let G, (G,, resp.) be a filter genera-
ted by Fu4{M3 (Fu {(w-M3%, respectively). By
the method of contradiction, let us suppose that neither

%’l nor 9,2" has the desired properties. Then there exi st
Fi1, F, € § and natural numbers kp, k,, 0y, n, such that
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F) nMAR has not P (ky) whenever n>n) and ,n (- ¥)n
R, has not P (k;), for n>n, (a consequence of V).
Let ny = max (ny,n,), k= max (k,k;). Fjn F, belongs to

3 , according to (v), there exists an n>n, such that
Fin F,n Rohas P (r(k ). By (iii), either Fyjn FponMARy
has P (k) or " Fyn(w-MnR has P (k)), thus by
(iv) and (i) either FyAMAR, has [P (k) or F,nlw=- Wn

NR has P (k,), a contradiction.

B, Let {FJ.: j< @3 be a base of F ; we may assu-
me that FOD.FlD.FZZ)... o The proof goecs by an obvious in-
duction:

F, has P ; vy (v) there is some n < @ such that

F,n Rno has TP (0).

F) has P ; by (v) there is some n) > n  such that

Flanl has TP (1).
Let no< nl< r1»2< coa<nk be defined. -E‘k+l has TP ’

thus, applying (v) once more, there is some Ny~ Dy such
that F, ., has TP (k + 1).

Let M = U 4 Fsn Rt is @w?$ . The set MnFiank

satisfies W (k) whenever k=i, thus Mn #; satisfies T ,
and M - FyC Rngu Rnlu)..sLJRni_l, thus M - Fy is finite.

C. The proof of C. is a mere copy of the proof of
Theorem 2 and may be left to the reader. Use A., B. and
the assumptions of C. for inductive steps, 0 th step is
guaranteed by (ii).

5. Theorem. Assume [CH], let L be a natural number.
Then there exists a P-point g on @ such that there are
precisely L distinct uniform atoms below Oa’-

Proof. The special cases L = 0, L = 1 have already
been shown (Proposition (a), Theorem 2). The proof for
l<« L< ¢ 1is divided into four sections. At first, the
notation used throughout this proof will be given. Then
the assumptions of Lemma 4 will be verified with help of
two combinatorial statements. #finally, it will be shown
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that the ultrafilter q constructed by Lemma 4 has all the
desired properties.

I. Let Ay, A2,...,AL be finite and pairwise disjoin
sets, lAll = lAz‘ S eee = lAL\ = n, where n< @ . The
set Ayx Ay e.exAp will be called an L-cube. IT Ayx by x

eee X Ay is an L-cube and if Byc Ay for 1 =1,2,...,L,
lBll = IB,l = ... =B | , the cube By By oo By will
be called a subcube of Ayx Ao X eeexAp. If no special emp
hasis on the coordinate sets will be needed, we sh2ll use
for an L-cube a notation Q(nL), where n is the cardinalit
of coordinate set; or Q(nL"l)xAL, if A; is the only coor
dinate sct we are interested in. Similarly, if AUnl) =
= A= A< .., xA; and 1f a€ A;, then the sct A£>_<1A2>< coe
eeexAp 1% €23 will be often denoted as QUn" ") =< {a3}
and called to be an a-th square; if Q(kL-l) is a subcube
Q‘(nL"l), then Q1 1) x £ a3 will be called a subsquare o
Unt < £a3 .

Given L<w , L21, and a countably infinite pairwi
se disjoint family {Q(nj): i < w3 of L-cubes with
sup n; = @ , we may identify the set ew with
U $ Qnf): i< w3} and thus we have a partition R =

={Q(n1i"): i< w& of @ consisting of L-cubes; in accor
dance with the notation of Lemma 4, we shall also write
R=4R :n<wy . Clcarly R 1is an admissible parti-
tion.

Given a partition R of «w into L-cubes, let ({, t
a family of L-cubes defined as follows: Q € ¢,  iff Q is
a subcube of some R, € R . Thus the family @, is compl
tely determined by g .

Let R be an admissible partition of @ into L-cu
let ie{1,2,...,L%¥., For an R, € R , R, = A;>x Ay >...
eoexAr, and for <a),855000585_71 85,1100993 2 € 4) %A,

cos RAG 1% A5 ) XeeeXAp, let T = 1€ a1s855000985 1, t,
CHRERERNT: >ER : € A; % . Define J°; to be a family ¢
all such T s with n and <a;,85,e00585_778;5,750293], 7
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varisble. Obviously ach Ti is a subpartition of R ’
G'i A Tj' = {{x}: x e @¥ whenever i4Jj and the par-

titions 71, Toyeees .7'L are uniquely determined by

R . surther, ir T e T, it Ajx ...x 4y = AUn™) e R and
ir Tc (nL), then [T (n® 1) % 4a3] =1 tor each 2 €A,

If i41L, then there are n” ° memb rs T of J’'; which are
contained in At < fa3 .

Let € Dbe a cover or w , let xe@w , let Mc .
Denote by st2(x,‘€) the set st(st(x,€),¥€) and call a
set M to be <€ -discrete ir ror cach xell, Mast (x,€) =
=4{x3.

In order to apply L-mma 4, let L>1 be a natural num-
ber, let R ©be on -dmissible partit on or into L-cu-
bes, let ¥k « w .

The set M e Pp; (@) has P (k) iff there is some
2D € d  contained in M.

Let € Dbe 2 point-finite cover of w , let M c & .
The set M has B iff cither M is <€ -discretc or th -
re exists an 1€41,2,...,L % :nd a scquence ixp: T € T3,

woere Xp€ T, such that st‘:(xT,‘C)DMr\T for each T e T 4.

II. It is clear that the fomily ol properties
{P(x): k<w? satiszri s (0),(i),(ii) and (iv) from
L:mmo 4. To prove (iii), w» nced to find a mepping f e w®
with the desired vroperties. The existence of such a map-—
ping follows immediately from the fcllowing combinatorial
statement (take the value 2 for m):
(%) Ffor esch L=1 there exists a mapping Trw x>
such that every -ubset Xc:Q(fL(k,m))b) with X =
2 (fL(k,m))L = —— . contains some subcube 2D,

Though this statement is a well-known cembinatorial
.esult (see e.ge Erdos-Spencer s book LES], Theorem 12.2
and Corollary 12.5), it will not do any h-rm to p.ove i
here,

Induction: £j(k,m) = km + 1 is clearly better th.n a
satisfactory mapping for L - 1. Su pose fL suit b ¢ stite-
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ment and fy(k,m)> ka. L

Let n = £ (k,2m), p = 2" and define £, {k,n) =
Lo Lyl

= np = N. Obviously fL+l(k,m)> km. Suppose Xc (N7 7) =

NL+1
= Ayx Ay eeex o, X1 Z « Let 73 be a parti-

e
tion of Ay x By Xaee xAp into pL pairwise disjoint subcubes

Qi(nLi, we have Q(N'*1) - U4 Qi(nL)x Ayt 1 =1,25...
eee gD ; such that
N.mb

anQi (n) < a | 2 .

5 L+l

Let X, = 4< 8),85,00058 V€ ANt
4 31’32""’3L’a> € XnQy (n)=<4a? . Obviously X, c

1 ; T
& Qio(n ) and XnQio(n )< Ap g 0= U4ix,: aehp 3% -
mt
Define D =—{aeAL+l: lXal Pg 2 mm 3 , tfrom the estim tion
L

. L L _ . _m L
|XnQio(n )by 1 £1D 07+ lay 4-Dle o— < IDln

N.mb N

follows that ID|I 2 —— , thus |DI| 2
2m 2m

> g—z > pk, because n = f](k,2m)>2kn. Since p (= 2) 1

the cardinality of the power set of Q; (nL), there must be

a subset B of D, IB| = Xk such that X, = X,  whenever b,
b€ B. But every X, with beB is of cardinality at least

L .
j—  and X,c Qio(nL), thus by the induction hypothe-

)
sis there exists some cube Q(kY)c Xy. Consequently Q™) =<
< B is the (L + 1)-cube contained in X,

III. The verifying of the assumpticns of C. from
Lemma 4 needs further combinatorial propositicn:
(k) Let Lzl be a natural number. Then there exists a
mapping g € w® with the following property:

If <€ is a cover of @ , if R 1is an admissible
partition of @ into L-cubes, if § and { Firi=1,2,.
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eeey LY are defined by the rules given in I and if n =
z g(k), then each cube Anl) € &, contains a subcube
(k") which is either ¢ -discrete or contained in
U 4 stz(xT,‘C)n T: T e U"i , T Q(nL)# P 3 for some %€
€41,2,...,L§ and some suitable choice of xp€ T.

The proof goes by an induction. For L = 1 we Hhave
the case rrom Theorem 2, J°; = R and obviously the func-

tion g(k) = 1® will surfice for an arbitrary <€ .

Assume the statement (% x ) holds for LZ1l. If R is
an admissible partition of @ into (L + 1).cubes, then
each cube Un )= ALyl € R is a disjoint union of squares
AUn) < £ a3 with ae A4 let R’ be a collection of all
those squares. We may consider R’ as a partition of @
into L~cubes; if ’1, 9"2,..., V'L and @’ are the corres-
ponding partitions and subcubes, then J"’i = .7"1 for i =
=1,2,0..,L and | TAQ | £ 1 whenever T € gjL+l’ Qe @’ .
Let g° be the function from (% x) for L, let £, ., be the
function rrom (k).

For every k < «w , let us define by the finite recur-
sion:

u, = k;

vy = fL+l(ui’2);

- Ly.

U5 = 8 Cuy);

glk) = u(p,y)ye

For N = g(k) we must prove that the cube Q(Wl) con-
tains some subcube Q(k"*1) with the desired properties.
Let us write (NU'1) = A< Ay oeex Ap .y by an induction
down we shall define for i = (L + 1)k, (L + 1)k - 1,...
eeey 2,1 natural numbersLil-: nyz uy_y, distinct members

a; of Ap,, and cubes Q(ni ) = Al,ix AZ,iX"'XAL+l,i

such that Q(nﬁ'_‘) »4a;3 is a subsquare of UNY) < £ a; ¥

Q(ni':i) is a subcube of Q(n?'l) and Ap.; ;Y 1a540985 00000



.¢.,Q(L+l)kz = go
o o L+‘L\ = A ;
Let for i + 1 £(L + 1)k the cube (n; 1410 T A a1

> A, 1H.x "'XAL+1 141 and the points A,419854000 00
ceo (7,7 WETE def'ined; piclk some 24 Irom AL+1 i+1 ot-
b
her than a,,; and consider the square ;‘:(n‘i’+l)x {a;3 (ir
= (L + 1)k, pick arbitrarily A(1+1) k€ Apey 2nd conside
- wrls
a ¢ \§
the square QUNT) = § (141 )53 ).

/ . —
Since Q(n¥ .)x {aiz € @' and since n, i+1Z 04 =

i+l
4 3
=g (Wi)’ wCc may assume that there is a subgquare

Q(wg‘) * 4 a;3 such that
1) either there is some je<41,2,...,L ¢ and 2 se-
quence 4 xp: T € J.3%, %p € Ty such that

AwP =t a3 ¢ U 4 st?(xy, €)nT: T e Ty,
A Q(nIi"+l)x-( ai§-=t= g3, |
2) or the square Q(wLi‘)x{ a;3 is <€ -discrete.

F‘ = -~ > x oo >4. B 3 nhO 3 S n—l‘ f’lb ::
L 4(w) Bl 1’<Bd,1 . L,i* © ose Some S

BL+1 . C AL+1 141 such that DL+1 i contains a; i
Then Q(wa+1) = u(wg’)x BL+1,J‘. is obviously a subcube of
Antth,

i+l
If the case 1) takes place, we are done when define

ng =wy and A, ‘B iIOI‘J 1,2,004,L + 1,

Jsi
The case 2) is llttle more complicated. Let & be

partitien of the cube Q(w?'l) consisting of all non~-voi
Tn Q(w£’+l) with T € gJL+1‘ As mentioned in I, each S €
meets Q(wIi")X{ ai§ in precisely one point, thus we may
iabel the merbers of & in the menner % = { S
€wi)<x{a; 3% .

There are two possibilities:
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2a) There exists a subcube Q(v%’)c Q(w?) such that

[ st (Q(vi‘)x 1a;% ,4)n (Q(VI{)*BLﬂ,i” o 1,12—% ’

Then there must be a subset DL+1 1C BL+1 i with
,DL+1,1| = v; and

L+1
Qv = £ a3 ,€)n (@bInD - 1< F -
It (Qlvy) =4 agd ,C)n (Qlvd= Dy, 4 2
Then, since vy fL+1(u 2), there exists a subcube

uf™) of Q(vi)xnL+l ., which does not intersect the
set st (Q(v-)x{a 3 <€).

L l -

\Juppo se Q(us"") = Al, * A, ix”"(AL 3 % L+l g3 the
set AL+1 i does not contaln 1rom trivial re‘ason the point
ay . Plck an arbll,rary ae AL+1 ; and define n; = uy,

AL+1 i = ia [NV AL+1 i {a§ « It remains to write

XA2 X...KAL+1 io

2b) For every subcube Q(Vi)c Q(wli‘) the inequality

L
vy e W

2

holds. Fix for a moment one such subcube. There exists a
L

set Mc Q(vli‘)x -ia-iZ sk %— and points x € s‘Y
for ye M such that |st(x_,€)nsS > 5 (to
y? N ‘tﬂ-ﬂ‘
eQ(vi) ><{a 5

} ¢ This set M must

| st ()= Ta;3 ,€)n QUIx B, I =

see this, it suffices to take M

t st (QUvD) =L a;3 ,€)ns_ |

=4
ot
y 4

+ :‘r. v

be of cordinality at least , because

st (Qvp) = da53 ,€)n QUD=B ) )
= UA st (Q(vljj)x{aii ,‘€)msy: yeQ(in’)x{aiii , but
for each ye M the set st (Q(v‘%)x{ a;3 »€)n S:y equals to

the union of at most v; sets st (z,€)n Sy where z varies

through Q(v%)xi a;3 , thus for at least one z, the ine-

(z.,€InS. z —= -
quality st zy, n Sy Fu ‘Mri"f takes place. Pick an
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x, from st (z_,<€)n S,, obviously at? (x y€)nsS, o
y J J
:)st(z ‘€)nS)

Since this result holds for an arbitrary subcube
Q(vi)CQ(wL), we may conclude that it is possible to choose

W'
a point x_€ S with | st2 (xg,€)In S | 2 4';1_ ior at least
L i
Ur e
v members S of & , thus there exist 'a set of

points -ixse S: S e ¥F3 with

L L1
2, . oMy o 2=
| O {ot(x,,€)n S: S €43l 4 q_,%L.' 46471.""

. . L
Now, notice that w, = £y, (k,16v{): there must be a

cube Q(kY*1) contained in U 4 st2(x y€)lns: se I3 -
Since ¢ was a relativization of 3'- +1» We have obtained

that if 2b) will occur, then the statement hclds for L + 1
and we may stop with the inducticn from (L +1)k to 1.

Suppose that the only possible cases during the whole
induction from (L + 1)k to 1 were those indicated in 1)
and 2a). In the final step the cube Q(.n]I_’) = A 1% A2 1% e

3 9
"'XAL+1 1 was obtained, nl... = k. Choosc some subsets
Byc Ay )1 for 1 =1 329000 ,Ls w1th I B; | = ko The set 81135,
oao,a(lﬁ_l)k can be divided into L + 1 SUbS(’tS N[l,h?,oo.
eeesMy 4 A point a; belongs to My, if Q(ni) =ia;3 is
<€ -discrete, a; belongs to My (je{1l,2,e..,L3%3) if there

is a sequence{x.r‘ T e S"' ¢ with xpeT and U-i.stz(x,r,‘e)f

NT: T T and TnQ(n )>< {a;3+ @  contains a square
L
Q(ni) x {ai .

Since ILJ{M i

=1 2,...,L +13%31 2 (L + 1)k, the
re is some i_ with l l z

ke Let By c M , IBLy | =k,

and define W(K*1) = B.lx ByX eaex Bp,j+ Now, if i &1L, it
is clear that

Q™) € Udet(xg,TnT: Te &5 , T hs g3
O
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for some choice xp&T, if 10 L + 1, then ALY s
‘e-dlscrete, because Q(kY) <4a;3 is <€ -discrete and
st (Q(k)*{aIS @) n (k) = £ aj?v © for any i#J, ay,

aj IL+1 as a consequence of the ract that

st (Q(ni‘)x 1a;3 ,‘-C)nQ(nI{)x‘L aJ§ =g for j>1i.

The statement (% * ) is proved and we are able to ve-
rify the agssumptions of C. rrom Lemma

Let & be a filter on @ with a countable base, sup-
pose that each F € ¥ has PP , let <€ be a point-finite
cover of w .

If there exists an i€ 41,2,...,L ¥ and a sequence
{xp: T € J;t with x-€ T such that U 4 stz(xT, )N T:
: T e T3 }n I hJs P ror cach F e & , it suffices to
write M = U 4 st (XT,‘C)nT Te T;3%.

If no such i exists, then there is some F ¢ & and
natural m < «w  such that for every i ed{1l 2,..;,L} for
every sequence {xp: T e U’ § with xpe T and’ for every
n<cw the set U{,ct (x,I.,<€)nT TeTi{¢n FnR has
not TP (m). We are to find a ¢-discrete set M such that
MAF has P for every i e F . Suppose -iF : j<€ 3% be
the base of ¥ eand Fof I F3F, ...

Inductlon I‘ has P » SO there is a system
-ﬁQ(k) 1<w§c:q and & sequence 4 (O 1).14w}
of natural nurbers such that F ”Rn(O l)DQ (2 77 sup ky -
= @ and n(0,i)# n(0,i”) whenever i%i’, Let i< @

be such & naturel number that k; = g{m), where g is a
1o
function irom (x % ). Then there is a ‘ﬁ-discrete set

X cQ, ((c(m)) ) which contains some cube Q(m" ), other pos-
31b111t1es be1no excluded by the assumption F c F Set
n, =n(0,i ), M, = X_.

Suppose N < Nj< Ny < oo < Ny and M c M, ...ch_]_\

be defined w:Lth mp y finite and < -discrete, M, n E;n an
having P (n+L) for £ =1,2,9..,p - 1. The sct Mo
is finite, the cover <€ 1is point-finite, thus Fyon

r\st(Mp_l,‘f) cannot have TP = the idea is the same as in
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the proof of Thewrem 2. Thus G, = F, - st (Mp_l,‘e) has

P ; it follows that there exist a system {Qp(ki‘): i<
< e $c @ and a sequence 4{n(p,i): 1< w3} of natu-
ral numbers such that G,n Rn(p, )3 Q (k¥ i), sup k; = w
and n(p,i)# n(p,i”) whenever i i’. Let i, be a natural

number such that n(p,l )> n,_y and k; Z glm + p). Using

(X %), we can find a <€ -discrete set X cQ (¥ ) whien

p <3
P
contains a cube Q((m = p) )e Let n, = 'l(p,l ), L‘p =
Mp—-lv Xp. The set Xp is contained in Rnpn kp and the
set M_ is ¢ -discrete: Xp is ¢ -discrete and XI‘) c w -

- st %Mp 1,‘6’).

It remains to define M = U{M P=w§$ . Mis €-
discrete and MAF has TP for each E e F.

IV. We have verified that the properties TP and

are good enough to use them in Lemma 4. Let q be
the ultrafilter from C. of that Lemma, it is g P-point
-and it is not selective.

Let A; be s uniformity with a base

{Ti/\ P : P is a uniform cover of 0'q§.

Clearly each ﬂ“i is uniformly non-discrete and
A F ﬂj whenever i% j because 95 A 03 =§{fx : xc¢
€ @3% . Thus we have L distinct uniformities below U,
and it remains to prove that each of them is an atom and
that there is no other atom belov 0’q. Indeed, it will
suffice to show that any uniformity 4, below 0’q is eit
her coarser than some J; or uniformly discrete.

Te this end, let U be a uniformity below 0;1: If
there is an i€ 41,2,...,L § such that every uniform co-
ver € of @ Dbelongs to A4, then AU 3 A, so sup
pose the contrary. We can find then uniform covers 61,
€ 4000y E e with €; ¢ A, for i =1,2,...,L
Let ¢ and Q be uniform covers from % , ¢ point-fi-
nite and suppose that € 3 2 & 61/\ 82 A eee A QL.
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According to Lemna 4 there exists a set Meq having % _ ,
let P, be the cover §Mju {4x : x€ @§ . Since
@I.i 3 O’q and 9 is riner than 0’q, Pyec .

If there exist an i€ 41,2,...,L3 and a sequence
{xp: T e J3§ with xpe T such that st2(xT,‘C)n ToMnT,
then the cover &P, A T, would refine &£, A 82,\ cee A
cesA 8L which is impossible by the choice or € ;. Thus
M is ¢ -discrete, consequently, SPMA € ={$x}:x €
€ @w¢ and the unirormity U 1is uniformly discrete.

The proof of Theorem 5 is complete.

Let u3s consider the atoms constructed in the previous
proofs Ifrom another point of view. We gave some examples
of P-points in [5(w ) @  which indicate that there is
a classification of types in R(w) @ completely dif-
ferent znd in some sense finer than the classifications ob-
tained with the topological approach. Let us say that an
ultrarilter q belongs to W. ( o cardinal) if there is pre-
cisely o distinct uniform atoms below 0’q. We have pro-
ved that (under [CHI) W_ # O for o« < @ , we are able to

prove that W % @, too (Theorem 7); an open question is

non~voidness of W, for w £ oc < 2 « Another question
arises if we reaslize that all the described atoms were na-
de sinply by sdding onc partiticn to O/Q: is this a gene-
ral principle, how tc makec atoms? As may be expected this
is not true, not even in the case of P-points, this result
is stated in Theorem 6. What may be surprising is the fact
that one needs only countably many partitions to obtain an
atom below this special O’q.

6. Theorems. Assumc LCH]. Then there cxists a P-point
g on w  such that for each partition R of @w a unifor-
mity with a base {R A P : P e qu is never a uniform
atom on w . Moreover, there exists preciscly one atom be-
low 0'q.

Proof. Let = {R : n<w} be a partition of
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such that lR | = n®. Then we can easily consiruct a se-

quence 1 ":5’2, ¥35++ of partitions of » such that
Re 9 s—if & ..o and, if S € ¥ and ScR, then

| S| = Max (l,nn oy,
Similarly as in Theorem 5, we want to use Lemna 4.
The properties P (k) are defined as follows: A finite
set Mcw has TP (0) iff M%@, and M has TP (k) iff
14s(1) e F3: 1s(2) € Fy: s(@)cs(1) & {£5(3) e F4

£ S(3)cS(2) & ooe & 14 S(Kk) € S’k: S(k)e S(k - 1) &

g1Sk)AMI=>k3%l>% eeo 3l>k3l>k3|>k.
(Thus M has P (1) iff |{S(1) € ¥; | s(L)n N | >

>1%|>1, Mhas T (2) iff 1{sS(1) e ‘fl:l{s(e) €

€ %’2: s(2)es(1) &ls@)AaMI>23%]1>23%]> 2, and so
on.)

All the conditions (0),...,{(iv) from Lemma 4 are sa-
tisfied. We shall show the validity of (iii) only and lea-
ve the rest to the reader.

Let £(k) =2k = 1, suppose MM has P (£(x)), M =1Iyv

v My, Since M has TP (£(k)), there are somc members from

C"?Zk-#l which meet M in at lcast 2k + 2 points, so there
are some S(k)’s from F with [ MAS(K) 1> 2k + 1, becaw
se T,y refines ¥ . Denote by

F0) = £sk) s L2 [NnASK) | =2k + 1},
F(i) = £s(k) e £z T ns >k}, i =1,2.

Suppose ‘.fl_,_l(i), i =0,1,2, be defined for 1< £ +
+ 15k, then

H©0) =4£s(L) e Fp: l{s(L+1) e, (0): s(L+ 1)
cS(L)¥|=2k +1%;

Ipli1) = 4s(L) e Fp s 1 {s(L+ 1) e &, , ()
:8(e+cs(L)il> k3, i =1,2,

The inclusion F,(0) c¢ F,(1) v F,(2) holds for
each £ =1,2,...,k: This is obvious for £ = k and Lor
£ < % we obtain the result simply by a finite induction
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down using the fact that M has TP (2k + 1). Thus ?l(o )c
c ;1) v $,(2) and, since M has P (2k + 1),

| c5'1(0) \> 2k + 1 and we conclude that e.g. | (1=
> k. But then it can be quickly deduced tfrom the defini-
tion of ¥(1) that Iy has TP (k).

Let P be the property rrom Lemma 4 (where we use R
as an admisgible partition). Let € be a point-finite co-
ver oI w , let 5‘6 be the following property of a set
Mc

"The set M is either < -discrete or there exist some
me <« and a sequence of points -ixses Se ¥ % such
th t st (xs,ce)ns:nms for every S € ¥ .

We have to verify the assumptions oL C. from Lemma 4.
To this end, let & be a tilter with a countable base
-iFJ-: j< 3 congisting ot sets with T and assume that
FOD Fla F2:> F313... . |

If there exi st and m< ¢ and a sequence -{xses Se€
e ¥ o § with U 4 st? (xs,cﬂ)no: Sed ¥ N FJ having s
for each j<w , then we may dcfine M = U £ st (xs,cf)n
NnS: S e ¥ § and the assumptions of C. from Lemma 4 are.
satisfied for this M.

So, suppose the opposite: No such m <« «w and no such
sequence -&XSG exists. We must construct g <€ -discrete

set M such that Mn Fy has P for each j< @ .

Induction: Let Jo = O, pick arbitrarily a point YeF,,
let Xo = Mo = 4y% and let n, be such a natural number
that yOE Rnoo

Let k < @ and suppose that the natural numbers n, <
SN < eeel Ny gy ‘jo’ ,jl,...,jk 1 and finite sets M 0? Ml,...
ceesMp g XO, Xl,...,Xk y be defined such that M _, is € =
discrete, My = M;_,v ¥, X;c F N Fsn Ry~ and X; have
Ji Ny
™ (1) f‘or i=0,l,. .,k - 1,
By the hypothesis, there is some natural j, such that

U ¢ st (xﬁ €)nS: S e ¢ }nFJ h~s not P for each
k
choice xse S. Thus we may assume that ther 1is some lk< w
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and natural N>n, ; such that for every n>N and for eve-.
ry sequence £ xgeS: S € S 3 the set UL stz(xs,‘e)n

:S e Fpin FJ-kn R, has not P (£,). The set M, _, is
finite and ¢ is point=finite; similarly as in previous
proofs we conclude that the set Gy, = FpnF; - st(Mk_l,‘lf
has P .

By the repeated use of (iii) rIrom Lemma 4 we can fin
o natural h such that if a finite set Q has P (n), if 7
is a family of cardinality (k + 1X*L gna i Uy =q,

then at least one Y € % has TP (Max (k, £,)).

Jx

Since the set Gy has P , there is some n >N such
that Gyn R, has T (£(h)) (the function f was defined

above). Let S"k be a family of all S € ‘J’k, ScR, such
k

tha}t there exists a set Dsc Sn Gk with a property that

stz(x,‘f)n Dg = 4 x 3 whenever x€Dg and of cardinality
IDgt=(k+ DX, Let L= Udsed,: SeRp
S & 93N Gy. The set L cannot have P (h): Notice ths
we _can choose a set Dgc SnG) for each S & '\ such that
st?(Dg, €)2$nGy, | Dgl < (k + 1)E*L, Thus it is possibl
to find one xg€ Dg for cach § e ¥ - ¢’; such that the

get {stz(xs,‘e)n S: S ¢ &P'kgr\Gk has P (1), as @
consequence of the definition of h and S"k.

Thus the set Rnkn G - L has TP (h), and one can

find the following families of sets:

-fsil: €3£k +13c F, Sj,c Ry for 1&i)4k + 1;

P
2 1£4i),i,£k+1%c ¥,, S
13

-isi.

c S for 1«1
12 2 il 1l?
+»~

1 11
1,k

iliz.'.ik-l
Ss : : c S: . for 1€£i,,i55ece,1
11120 o0 1k—21k—1 1112¢ e lk_l l’ 2 ’ ’ k"z
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i, 1€k * 1
s 144, 4 s 2 4
{Sll 2...lk l-—ll,l ,.ol,lk-—-k+ lgcgk’
ST . cS. . ) and | S. .AnG . l>nh
111200011(_111{ 111200.11{_1 ll 2.0.lk k
fOI‘ lé il, i2,.o-,ikél': + l.
Since S . € ¥, let D. . be a subset of
11350003y k? 11 2...1k
S. - A G, which satislics st2(x €)n Dy . =4x}
for each xeD; ; s wmd D 5 5 1= (k+ 1),
1/2°°°*"k 172°°° "k

Let T =42: 1£2z£(x + ¥ ¥ be some well-ordering
of the set of indices T = {< 1sdspeee,ip > 1£ 4,15,

eeeyip £k + 1% . By qn induction we may efine for each
z e{l 92ye0egtk + 1)k } o rinite <% -discrete set E,c D,

such thet | E,| = k + 1 and pt(E,,€)n L w = @ for z&w.
IL E, have bcen dciined TLor 1"-w<z‘-(1< + l)}‘, then
| U 4T, 1euse 312+ 1L - (k+ 1), and from the

\

observatlon,&t (2,€)n D, :)/bt(y,“e)nb (whenever xeD, N
N ptly, <€) and ye U £ E 124 wez 3) together with the
fact that /:vt (x, <€)nD = -ix} (for xe DZ) follows that
there is a subsct E ¢ az —st (U4 B : 1£wez 3,€)
with cardinality k + l.

Let us derinc 4, = U4 E,: 14z£ k + 1)1{3 Clear-

ly L is € -discrete, . cG cs J.kn £en I"nk’ AoF (Mk-]_’ce)”
n¥, =@, thus M =M _,u ¥ is <-discrete, and X, has

P (k).
It follows that the set M = U4 My: k < @ ¢ is the
set needed in Lemma 4, C.

Now, use Lemma 4: Wc have g P-point q and we must pro-
ve that there is at most one atom below 0’q and that his
atom cannot be obtained by adding ocne artition to a uni-
formity O qQ The uniformity A on e« will be th unifor-
mity whose. base consists of all P A F with e 0,
n<cew . By the definition of th prop rty P , every
set belonging to q is ¢ -unbound d for each n = @
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thus A is not the discrete uniformity; obviously

We shall show that A is the unique atom below (O
Let 2% be an arbitrary uniformity below 0'q, suppose
Y not to be uniformly discrete. Let &€ be a YU -unizor
cover. We can find covers <€ , & & 2 such that
€ P E with < point-finite.

I If is the sct of q satisiying S‘C , then M canrc
be € ~discrete, for this together with P, € U  (wher

={i{xt: xewiu {M} e O’) implies that A% i

a dlscrete uniformity on w . But 1¢ M is not € -disecre
te, then there exists an m = @ and a sequence {xse S
'S € $ 3 such that st7(xg,€¢)NSoMAS for cach S & 9
in other words @, n ¥ refines € , thus € € A ,
which shows that A& is a unique atom below O'q.

Finnlly, suppose that there is some partition T
@ such that {TA P : Pe 0’q§ is a base for A .
Let 1% be the sct from q having %4 , then the cover
.’/3M A ‘:fm rclfines 7 for some suitable m < @ . Consi
der the cover ‘fPM A ‘S’m+l. Assume th t there is scme £«
€ q such that T A P, rerines ?M A ‘:fm_l, thus
J’ A °r A c.f refines Cp A gm+l‘ But this contra-
dlcts the condltlon that bnm has P : Consider the sect
R, € &  such that RN Mn¥F has P (m + 1). There is 2

set S € ¢, ScRy, and a point xe€X , NSAMnF such that
/;»tz‘(x, Py A ?FA ¥ )NS = MAFAS intersects at least
m + 1 members of <« This contradiction completes
the proof.

m+l1°

We have promised to show an example of an ultrafil-
ter q such that there are 2 atoms below 0q. It is
possible to arrange the proof of it in such a way that
the q obtained will be a P-point, but it scems better
to describe the main idea of the construction on the
simpler case of non-minimal (in Ri-order) point of
Blw) - o .
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By Theoremr 5, for each L « @ there exists an ul-
tratfilter qQy, with precisely L distinct uniform atoms be-

low O'QL.

The proof of Theorem 5 gives alightly more than stated

in the theorem: each qr, is an ultratf'ilter defined on a
unicn K of a disjoint ramily .’RL ot L-cubes and every
Feqp contains arbitr-rily large L-subcubes of cubes from
CR,L. Let p be an arbitrary free ultrarilter on a set
w=4L:L<cw’ , lct qg= % q;, be defined on K =
= U4 K: L= « 3§ , the union is, of course, disjoint.
We claim that q is the desired ultrafilter.

Fix L for 4 moment. for every set Ye 4I1,2,...,L%
we may define a partition TL y of K; as follows: T e
€ 3' LY irff there is an Alx Azx ...xAL € RL and a
point <yl,y2,...,yL > € Ay A2>< eee > Ap such that

T={<Zl,22,.oo,ZL>6 Alx A2>< .OOXAL: Z‘ =yi fOI' eaCh

i
ietl,2,...,L8 =73,
Thus ‘TL,{i} = J; in the notaticn used in the proof of
Theorem 5. Obvicusly TL v A 7L , is a discrete cover
{4 x}: xeX ¥ if and only if YA Z = £.

Considcr the set ¥ =4<{L,i» : L<w , i=1,2,...
ceeyL$ . For Zc¥, let 2y = 41i:<L,i> € Z%. Having a

partition ¥, ., of KL, we may deiine a partition .‘TZ
.LJ’L:L
of K simply as U 4 3’ .z : L=@ 3§ ., It is self-evi-
L
dent that

(+) the uniformity with a subbase {3" § U O’ is uni.
formly discrete if and only ir {L: 2y = g%e p.

Finally, let & be. a filter on X such that F e &
iff there is some Pe p with ¥o{<L,i) :i=1,2,...,L%
"whenever Le P, Let M be the family of all ultrafilters
on X containing & , cbviously |"m| =2 . Thus, ac-
cording to (+), for t € M , the romily {JT,: Zet
of partiticns of K together with O’q is ccnt;ined in
some atom A .
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We have a sufficiently large Camily of atoms on K
and we need to prove that A, # A, for t4+t . But
this is clear since for Zet, Z'e t with Zn2 =@ the
common refinement of ¥, A J,, is the discrete cover
{4x%y: xeK%.

Thus we have proved

7. Theorem. Assume [CH]. Then there exists an ul-
trafilter Q on @ such that there is 2 distinct uni-

form atoms below 0'q.

8. Remarks and problems. a) It is possible to
strengthen Theorem 7 by the condition that q is a P-poir
The proof is similar to the proof of Theorem 5, one star
with some partition of into cubes Q(nl) where both n
and L are increasing. The choice of n (depending on L)
needs some care, but this is the only difficult step -
the rest is a mere amalgamation of methods used in the
proofs of Theorems 5 and 7.

b) Theorem 5 can be sharpened to this form: Under
LCH], there is a P-point p on @ such that there are on
ly L + 1 uniformities below (Tp, the uniformly discrete
one and L atoms. If R is a family of L-cubes used in
the proof of Theorem 5, we can map U R onto w sut
that the image of the q from Thecrem 5 will be the desir
ed p. To describe the mapping f, visusalize each Q(nL) e .
as $1,2,...,n%"c ¥ let £, be a mapping which splif
together any two points < aliaZ’“"an> and {b;,b,,..
eceyby? from 41,2,...,n%" such that by = a; =1 for
all i<n. Then £ is the canonical mapping from U R
onto the disjoint union = fnl'.Q(nL) l.

¢) I do not know whether the results obtained wit
{CH] will remain valid under any other set-theoretic as-
sumption which implies the existence of P-points.

d) Up to now, all atoms described in this paper w
re O-dimensional, i.e. their base was a family of parti-
tions. It is an open question whether there exists a no!
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O-dimensional uniform atom; this problem seems to be pret-
ty hard. Ve also do nct l'now an answer to this, perhaps
easier, guestion: If T F;xc is the lattice of all O-dimen-
sicn2l uniforritics on @w , if A 1is an atom on w and
if the unifermity B has a base or all A -uniform parti-
tions, is then B necessarily an atom in UNIFb T

e) Th <rollowing is the purely set-theoretic probl m
concerning the prepertics of Ri—order of B (w) ~w
Suppose that t 2%‘ q, Lor some ultrqultcrs t, p, ql,
Qpyees o Is it true thcn that t = :E qn for some p , whe-

re all ultrarilters é are HF—minimql? The motivation for
this problem is hidden inthis - maybe too feneral - ques-
tion: Suppose onc knows cverything about atoms below C7q
for an arbitrar; Rf-minimal q. What are the consequences

orf this knowledge Ltor atoms below 0; with p non-minimal?

) Faybe there arc seversl readers satisfying the
rolloving two conditions: They are - in spite of reading
the present paper till here = fresh enough to solve some
of our prob enms, and thecy believe that at least one non-
C-dimensional atom on existg. Thosc rcadcrs are preci-
sely those on¢s who need the following description cf ncn-
OC-dimcnsional atom,dus to J. Pelant,

Recall that a component oi a cover ¥ is the smallest
non-empty set L ¢ UV such that At (X,?) =X, or,
equivalently, if x, y€ X, then there iv a finite sequence
C15Cyyeee;Cp of members or U such that x€Cy, yeC, and
CinCyq# % for i =1,2,..0,n 1,

¢. Theorems (Pelant) If A is a nen-O-dimensional
uniform stom ¢cn w , then A has 2 base consisting of
point-finite covers with finite components.

Proof. The first step is to prove that there is a ba-
se B Tfor A such that cach <€ € J3 is point-finit
and each C € <€ is liritc.

Suppose U to bec an arbitrary A -uniiorm cover. hc-
cording to Propositicn-(e) we may assume that there is a
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couple U, W of point-finite covers from A such that
wE UVE Y . By indexing members of 7 we cbtain
V=4V : c< A 3§ for some ordinal number A . Then
the family { R, : <« < A § , where Re=4x: At (x,W)c
cvV & »tx,W)¢ Va for B< o , is a partition or
@ o Clearly {Igci refines 4 , and by the assumption
that A 1is non-O-dimensionsl there exists a couple 7
W such that WX v & and {R,3 & A . But
A 1is an atom, so there is some point-finite X € A
such that »t (x,Z)AR, = {x 3 whenever xe R, and

of < A . '

The cover W A Z is point-finite and the set Wn
(We W ,2 € Z) is always finite: If xeW and if y_ € Wan
ARy , then x e nt(y, ,W); by point-finiteness of ¥,
W meets only finitely many R, . Since Z mecets every R«
in one point at most, WnZ is finite.

Now we are ready to prove the theorem. Let U e A,
let VY be a point-finite star-refinement of % , let
every V& ¥ be finite. Pick a point Xa from each compo
nent C of V' and define by induction M  =4{x;: C is a
component of %% , M = At(M __,,¥), H =M -M _, ro
l¢€n< @ . Notice that &% (x,¥)nH #+9 implies x €
€H _,UH UH ,.Let G, = ULH tncwi , i=
= 0,1,2. If Ny 1is the ultrafilter of all uniformly nor
discrete subspaces of < w, A > (see [PR1, p. 76),
then one Gi’ say Go’ belongs to Ngq .

Since the cover W =44{x§: x€ w3udi GnV: Ve vi
obviously belongs to A and W %2 9% , we need only
to prove that W has finite components. To see this, re
alize that H nC is <finite for each n < @  as a conse
quence of point-finiteness of % and of finiteness of

its members, and use the fact that each component D of

W 1is either one-point or contained in some H3nn C, whe
re C is a component of 9 .

G. Choquet [CH] has defined an ultrafilter q on @
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to be rar , ir’ Jor ev ry partiticn R of @ nto fini
te sets th re is a2 set Feq uch tht | FAR| £ 1 when-
ever R € B ., ilenc the theor m h's imm diate

1C. Corollary. Suppose g to be a rar ultrafilt r
on @ . Then cvery :tom below 0& is O-dimensional.
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