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Injectivity of polyhedra
Je Pelant, J. Fték

This small note is no discovery - we put it in just for
the combPleteness of the whole text in this publication. We
show the possibly known statement that each finite dimensio=-
nal polyhedron is an injecctive unif'orm space. We have not in-
yrstigited polyhedra of indinite dimension. rfor the definition

of uniform polyhedra sce [11].

Statement: Each finite dimensional polyhedron P is injec=

tivee

Proof: By Isbell’s resalt,[IJ, p. €2, P is an uniform
stsolute neighbourhood rctract. Let us embed P “canonically"”
inte the 1=ball B oi £,(d). Let i: P—» B be the embedding.
ivain by Isbell,[Il, p. 42, the ball B is injcctive and so we
have a mapping j of a closed € -neighbourhood H of P onto
Psuch that ji = idP. As any rctract of an injective space 133“ 
injective as well it suifices to rind a retract r: B -—> HIB ¢«
berine a mopping @ ¢ B—»R such th t (£} = max{k | keR,
hore HE 3 . This mapping is uniform bccause, by an casy com-
mtation, if suplf = gl<ea then l@(f) - @lg)l= '8'4.
do we can put r(f) = (min(g@(£),1)).£ and the proof is comple-
te.
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