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SEMINaR UNIFORM SPACES 1975 - 76

Zden&k Frolik

§ 1. Joint continuity. If not stated otherwise, the
following notation will be used:

X 1is 4 set;

Jf is a non-void compact subset of the product spa-
ce g% where R 1is the space of the reals;

xsxis-the uniform spuce which is projectively gene-
rated by all h : X—R, hed

Xét is the pseudometric space < X,d,> where

dp<X,y> = sup {lhx-m’] {hedﬂ} .

In what follows we say simply uniform to mean uni-
formly continuous. This applies to various derivatives,e.
g+ equi-uniform family of functions. The assertions in
Proposition 1 are self-evident (from the definitions).

Proposition 1, Xy is the coarsest uniform space
on X such that & is equi-uniform, the identity XJ,C—*
sz is uniform, and

Hc U(Xg, ) U(Xg) o

further notations:

?CJ is the mapping of X into C(X) defined as
follows:

~J

dx = {h—»hx}: X—R .
Of course, C(¥ ) has the sup-norm. The set C(&£) with

uniformity projeetively generated by the identity embed-
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ding into r% is denoted by cs(x). It is well known,

and easy to see that C(&) is dense in R¥* .

Proposition 2. The mappings JZJ P Xy CB(JC)
and & : Xx—-C‘(JC) ~are uniform embeddings.

Proof. The first statement is self-evident, and for
the second note:

N/ %

dp <Xy > = Il £x-Lyll .
Here I |l stands for the sup-norm on C(&).

Theorem 1. The topologies of sz and X, coincide
(i.€e X, 8and X, are topologically equivalent) if and
only if K is pointwise jointly continuous, i.e. the eva-
luation mapping

KX LR
is continuous (the evaluation mapping assings to each

<h,x> the value of h at x).

Proof. It is well known, and easy to see that the
evaluation map

HrXy—R
is continuous. Hence, if X, and X, are topologically
eQuivélent, then & is pointwise jointly continuous.,

Conversely, assume that H is pointwise jointly
continuous, and sz and X, are not topologically equi-
valent.
There exists a positive real r and a net {xa} , and an
xe X such that »{xa} converges to x in l(a‘z » however,
| dx<xa,x) >r _for each a. There existe a family {ha}-
in & such that |hx -h. x| > for each a. Since &
is compact, a subnet of {h } convergea to an heJC we

may and ahall assume that {ha} convergea to h. CIearl.Y
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Ihgx=h x| £ [ h x=hx| + |h x -hx| .

Since h,—sh in a , |h,x-nx|—> 0, and since £ 1is jo-
intly pointwise .continuous, Ihaxa-hx]——'o. This contra-
dicts the inequality lh&xa-haxl> r > O,

The following Theorem 2 gives an important example
of pointwise jointly continuous families.

Theorem 2. If d4{ is a lattice (in the pointwise
order), then # 1is pointwise jointly continuous.

Two self-evident lemmas are needed for the proof.

Lemma 1. If 4 is a lattice in a pointwise order,
then 4 is a complete lattice in the pointwise order.

Proof. Let ¥ c 4 , and let £ be the smallest
among all sub-lattices containing KA. Let k be the point-
wise supremum of & , or equivalently, of X .

Cleary X is a net in the up-ward pointwise order,
ana converges to k in 4 . Hence ke X , and k=sup £
in the pointwilse order on all functions, and hence in the
order of £ . Of course, supA = sup i in both meanings.

Lemna <. Let {ha} be a net in & . Put
a = sup{hb (b%a},

h’ = inf §{n_loza}.

=3
1

. ) . I- N

Then {ha} converges if and only if the net {ha ha}
pointwise decreases to zero.

Proof. Obvious by Lemma l. It should be remarked
that {h;} decreases to the upper limit of {ha} , and

[ . o s

{ha} increases to the lower limit of {ha)} .

Proof of Theorem 2. assume that & is a lattice
in the pointwise order. By Lemma 1, & is a complete lat-

tice in the pointwise order, and Lemma 2 holds. Assume



- 9Q0-

that {ha} converges ;go'h in &, and {xb} converges
to x 1n sz'. We must/that {haxb} converges to hx,
! n N o : / 4
If ha and ha are defined as in Lemma 2, then {ha-ha
is a net of continuous functions on sz’ decreasing to:
ro pointwise, and it is enough to show that
! ¥ ’
{ h.x,-hyX, } —0
because
§ /
haxb < Haxbé haxb
for each a and b. And this 1s quite easy. For convenie
ce of the reader we shall state what is needed exactly.
Lemma 3. Assume that a net {fa}' of functions on
X decreases to zero pointwise. If xeX, and {xb} is @
net in X such that
lim faxb = fax
b
for each a. Then

a,b a”b

Note the following interesting corollary to Theorems 1 an
2.

Theorem 3. A topological space T is metrizable!
and only if T 1is projectively generated by a pointwise
compact lattice of functions (bounded if you want).

Proof. If T is projectively generated by a point
wise compact lattice & of continuous functions, then by
Theorems 1 and 2 the pseudometric d, metrizes T .

The converse is qQuite obvious. Assume that a pseu”
dometric d metrizes T. Put

@(a) = {feRT\ l<1, £z0, |fx-fy|lsd<x,y>

for each x and y in T}‘.
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1t is well known and obvious that.

Lemma 4. &(d) is a pointwise compact lattice, and

dx(d)<x,y> = min (1,d<x,y>)
for each x and y .

Hence & (d) projectively generates T, because
Tss(’,(d) and Ts(;(d) are topologically equivalent by
Theorems 1 and 2.

Remark 1. Let <X,< > be well ordered, and let

h y O if y+#x

l if y>x .
Then the set & of all h , xeX , given the pointwise
order, is order isomorphic to < X,4¢ > , the isomorphism
being {x—»hx}: X—H . Thus if <X, <€ > is the space
of all ordinals € («!1, then J is compact in the order
topology (note that the order is the pointwise order). On
the other hand, & ié almost never compact in the point-
wise topology. also note that dg is uniformly discrete
(d <x,y> attains at most two values, namely O and 1).
Remark 2. A pointwise compact 4f is pointwise jo-
intly continuous if and only if there exists a pointwise

compact lattice £ Do such that X , = X4 -

§ 2. Metrizability of X.

Without any additional assumptions on # we have
jJust the following simple result.

Theorem 1. The following four conditions are equi-
valent:

(a) dU is metrizable
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(o) Xi)f is a separable topological space (i.e.
X4 has a countable dense set).

(c) X&x is a separable topological space.

(d) There is a countable set Yc X such that the
projection of & onto H/Y is injective.

Proof. (a) (b)) : If & is metrizable, then C({
is separable, and hence ‘X‘x 1s separable (because X,
embeds in C(J ) by Proposition 1,2).

(b)=(c) : Because the identity Xx—* Xy 1is co
tinuous.

(c)==>(d) : Let Y be & countable dense set in
Xgx + Since all functions in & are continuous on Xy
if two of them are equal on Y, they are equal at all.

(d)=>(a) : Let Y be a countable subset of .
such that the projection &L —H[Y is one-to-one. Since
& is compact (and X |Y is Hausdorff) the projection is
a homoemorphism. Finally, &Y is metrizable as a suvsps
ce of a countable product of metric spaces, namely us &
subspace of RY .

Remark : J.P.Lavigne, approximation des fonctions
uniformément continues. J. de Math. pures et appl. 51
(1972), proved that a uniform space X 1is separable if
and only if each uniformly equicontinuous family 4 on X
is metrigable in the pointwise topology.

Corollary. If # 1is metrizable then there exists
& G -additive probability on sz (in fact a Radon me&-
sure on X endowed with the discrete topology) such that

no two distinct elements of J{ are equal almost every-

where.
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Proof. 3y Theorem 1 there exists a countable set
Yc X such thuat the projection X —¥[Y is one~-to-one.
Arrange Y in a sequence {yn} and put
(“=2_1/2n Jyn

where 5y is the Dirac¢ measure at Yn» 1iee. the evalua-
n
tion at Yn» that means

(u,(h) =§1/2 n.hy, .
Obviously two functions h and k on X are equal al-
most everywhere if and only if h|Y = k|Y .

It is an open problem if the metrizability of &
is implied by the existence of a probability on xsx dis-
tinguishing the elements of & . It is easy to see that
the answer is yes if ’ is sequentially compact, and it
has been proved by aA.J.Tulcea-Below [5] that the answer

is yes if &K is convex.

§ 3. Ascoli Theorem.

The main result says:

Theorem 1. A set YcX is precompact in X4 if
and only if the uniform convergence in ¢ /Y coincides
with the pointwise convergence in d (Y, and each function
in & is bounded.

Corollary. Xx is precompact if and only if every
pointwise converging net in # converges uniformly, and
every function in & is bounded.

One part is an immediate consequence of the follow-
ing Ascoli Theorem.

Lemma 1. Let X be a uniform space, and let & be
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an equi-uniform set of functions. Then if a net {ha}
converges to h pdintwise, then {ha} converges to h
uniformly on each precompact subset of X.

It should be remarked that one may replace R by
any uniform space in Lemma 1,

It remains to show that Y is precompact in ) %)
if the pointwise convergence implies the uniform convergen-
ce in J|Y and each function in X/Y is bounded. Since
d /Y is a restriction of dy, , it is enough to show
that X, is precompact whenever theqpointwise convergence
implies the uniform convergence in & , and each function
in & is bounded.

Let T Dbe a completion of the uniform spaces xsl'
Since each of the functions in & is bounded, Xy 1is
precompact, and hence T 1is a compact space. Since T is
a completion of X_, , each function in & extends uni-
quely to a uniform function on T; let X be the set of
all these extensions to T. Since the pointwise convergen-
c%owict.jfzd%%e uniform convergence in J , the same is true
for X , and the projection X=X is a homoemorphism.
Since the pointwise convergence coincides with the uniform
convergence in X , necessarily X is pointwise jointly
continuous, and hence by Theorem 1.1 Tx' is topologically
equivalent to Tax « But Tsx is the topology of T, and
‘hence, Ty, is a compact metric space. Since Xy is a sub-
space of T, , X, is neceesariiy precompaci. This con-
cludes the proof.

Remark. In the proof we used completions of uniform

-apaces which are not necessarily Hausdorff. If one does
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ot want to do that, he may assume that & distinguishes
points of X.
It may be worth noting:
Corollary. If d& is a pointwise compact set of
ontinuous functions on a compact space, then X is equi-
continuous if and only if the pointwise convergence coin-

tides with the uniform convergence in o .

§ 4. When compact metrizable sets of uniform func-
tions are equi-uniform.

The main result says:

Theorem 1. The following three prqperties of a uni-
form space X are equivalent:

(a) If Jc U,(X) is pointwise compact and metri-
able, then dJ is equi-uniform (i.e. dg is uniformly
continuous on X).

(b) Every countable partition of X by Baire sets
is a uniform cover of X.

(c) If £ : X—Y is Baire measurable (i.e. the
freimages of the Baire sets in Y are Baire sets in X),
ind if Y 1is a separable metric space, then f : X—Y
is uniformly continuous.

The easiest part is (b) implies (c): One just uses
the fact that every uniform cover of a separable metric
Space is refined by a countable open cover, and hence by
% countable Baire partition. We assume the definition, and
the elementary properties of Baire sets in uniform spaces.

The implication (c)==h(a) follows from the follow-
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Lemma 1. Assume that K 1is a compact metrizable
space. Then the Baire sets in C(K) and Cs(K) coincide
(recall that C(K) has the sup-norm, and CS(K) is a
subspace of Rx).

Proof. Since the identity C(K)—-CS(K) is uniform,
and since C(K) 1is separable (because ' K is compact me-
trizable), it is enough to show that every open ball in
C(K) 1is a Baire set in Ca(K).Chooae a countable dense
set ¥ in K. For each y in Y 1let f)y be a continu-
ous pseudonorm on CB(K) defined as follows:

g4p = Inyl .

Clearly

Iny = sup fp hlyex].

It followa that the sup-norm is a Baire measurable functi-
on on C_(K). And this implies that the balls in C(K)
are ‘Baire sets in C (K).

Another proof of Lemma 1. Choose a countable dense
set Y .in K, and let C be C(K) endowed with the topo-
logy of pointwise convergence in the points of Y. Then
the identity mappings

C(K)—C,(K)—C
are uniform, hence Baire measurable. Since C(K) is ana-
lytic (because C(K) is a separable metric space) and C
is metrizable, the identity mapping

C(K)—C
is a Baire isomorphism by & deep theorem of N.Luzin. Hen-
ce

C(K)—’CS(K)
is a Baire isomorphism. It should be noted that the theo-



9% -

rem used is much deeper than Lemma 1.

It remains to show (a) implies (b). The main step
is in

Lemma 2., Condition (a) in Theorem 1 implies that
the indicator function (= characteristic function) of each
Baire set is uniform.

Proof. One checks immediately that it is enough to
show:

There exists a compact metrizable ¢ c C(X), where
X is the unit interval [ 0,11, such that the indicator
function of the singleton (0) is uniform.

and this is easy. Construct a sequence {fn}' ol
continuous functions such that {coz fn} is point-finite,
and f = sup {fn} is O at 0, and % 1 otherwise.
Then {fn:} converges to the zero function pointwise, and
the indicator function of (0) is 1l-min (1,f), and this
is uniform on Xx, because all fn are Lipschitz functi-
ons on X4 , and so f is.

The most important example of spaces with the pro-
perties in Theorem 1 (culled X -measurable by the author
in (2] ) is the following:

Take any G -algebra (. on a set X and consider
the uniformity on X which has all countable partitions
ranging in A for a basis of uniform covers. The resul-
ting space is denoted by u, @ in [2] . These measurab-
‘le functions on <X, > coincide with the uniform func-
tion on Uy, a - This space can be used in studying measu-
rable functions. For example, Theorem 1 says that every

metrizable compact set of measurable functions is equi-



- 98-

~ uniform on uaqd. . As an application we shall prove the
P.Meyer generalization of the Jegorov theorem [6] .
Theorem 2. If & is a compact metrizable set of
bounded measurable functions on < X,4 > angd if ld is
a 0 -additive probabpility on A, then there exists a dis-
joint sequence {An} in 4 , such that
(1) m(X-Uja ) =0.
(2) Pointwise convergence implies the uniform con-
vergence in each |4 .
Proof. Consider u, A defined above. By Theorem
& is equi-uniform, and hence 9’2 2 uy, & — C(X)
is uniformly continuous. Hence rw is a G -additive pro-
bability on a separable metric space Xy, and hence a Ra-
don-measure (Q on the completion X; . of Xy . Hence
there exists a disjoint sequence {Bn} of compact sets,

such that its union supports (Q. Put A = ann, and ap-
ply Theorem 3.1.

§ 5. When compact metrizable lattices are equi-
- uniform ?

The main result says:

Theorem 1. The following four properties of a uni-
form space are equivalent:

(a) 1If J(c;Ub(X) is a pointwise compact metri-
zable lattice then Jf is equi-uniform.

(b) If Y is a separable metric space, and if
£ : X—Y is a coz-mapping (the preimages of cozero sets
are cozero sets), then f : X—Y is uniform.

(c) Bvery countable cozero cover of X is uniform.
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(d) If Y 4is a separable metric space, and if

f : X—Y is uniform, then so is f : X—t,Y (where tY
is the finest uniformity topolog cally equivalent to Y).

The equivulence of the conditions (b), (c) and (4d)
is essentiully due to a.Hager [4], for an obvious proof
see e.g. [1]1 or [3] . Here we are going to prove that
(a) is equivalent to (b). We start with more important
part (b) implies Va). For the proof we need the follo ing

Lemma 1. If J is a compact lattice then the open
balls in the matric space Xy are cozero sets in Xgy o
Consequently, if Xy is separable (i.e. & is metrizable
by Theorem 2.1) then

coz Xy = coz sz .

Proof of (a)==>b) (using Lemma 1): Assume (b),
and let & be a compact metrizable lattice. By Lemma 1
the mapping & : X—X, is a cozero mapping, and Xx
is separable, and hence, by Condition (b) the mapping
f : X—Xy is uniform (because

coz Xs coz X

C
X
in general), and this meuns by the definition that # is
equi-uniform.

Example. If Xx is not separable, then
coz Xy # coz b o)

in general.

Let X be a linearly ordered set, and let & be
the let of all non-decreasing functions with the values

between O and 1.

Since the indicator functions of intervals [x,—]

are in & , d attains just two values, O and 1, and
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hence Xy 1s uniformly discrete. Thus coz X, = exp X.

On the other hand, it is easy to check that
coz sz consists of countable unions of intervals, and
therefore

coz X o # coz X &
whenever X 1is measurable.

It should be noted that in many cases the equality
holds even in the space Xy being not separable. 4 gene-
ral example is the set of Lipschitz functions (with res-
pect to a pseudometric). I do not know of any condition
which 18 close to being necessary and sufficient. It may
be a wrong question, anyway.

The proot of Lemma 1 follows easily from the fol-
lowing basic

Theorem 2. Let & be a compact lattice, and let
xe . For each r>0 there exists a finite subset X of

# such that

qa‘ < X,y> = dJ‘C< X, y> +r
for each y in Y. Hence, all functions {y——d:,c<z,y >}
ze X, are uniform on Xg5 -

Remark. Theorem 2 implies that if & is a compact
lattice, then X& = XS& topologically.

Proof of Lemma 1 (using Theorem 2): It is obvious
that if & is a finite set then

C(¥) =C (&)
uniformly, and hence

coz C(&) = coz CS(K),
and hence

coz x“ = coz Xsn o
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Hence, if & 1is finite subset of & , then

coz XJC C coz xs#( .
It follows immediately from Theorem 2 that every ball in
Xy 1is a countable union of balls in various X, , Xc £
finite, and hence, each ball in Xy 1is a cozero set in
Ly -

femark. Legma 1 follows immediately from the last
statemant in Theorem 2.

Proof of Theorem 2. The set [9(]:: of all hx,
he & , 18 compact because # is pointwise compact. Hence

[#1x is contained in a compact interval J. Sub-divide

J into a finite number of intervals, say {Jnlnik} such
that the length of each Jn is less than r. Put

&£ ={nlhed , nern} .
1Ir H_ # 8, put

h)’a = supéfn, h; - inf étn .
Let X be the set of all hy and h’ with & #4 . It
is obvious that if he ?fn then

| hx-hy! € r + max(| hﬁx'hzlly] , |nfx=hyl),
~for each y in X , and hence

dy <X9> 2 dy <xXy> +rT
for each Yy.

This completes the proof of (D) implies (a) in The-~
orem 1. For (a) implies (b) we need the following

Lemma 2. Condition (¢) in Theorem 1 implies that X
is inversion closed (every cozero function is uniform).

Proof of (a) implies (b) (using Lemma 2): Let &
be the set of all Lipschitz functions on Y between O

and l. Since Yy =7Y uniformly, and since Y 1is sepa-
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rable, the compact lattice & is metrizable. Let & be
the set of a1l Lo f, LeX . Then & is a compact metri-
zable lattice of functions on X, and each of these fune-
tions is a cozero function. dy Lemma 2, all these functi-
ons are uniform. Hence o is equi-uniform by Condition

a, this means that X—-vxx is uniform, &and since

£ : Xy—Y (=X, ) is uniform, necessarily f : X—Y is
uniform.

Proof of Lemma 2. If {f ]} is a sequence in U (X)
pointwise decreasing to zero, then {fn} is a compact me-
trizable lattice, and hence, {fn} is equi-uniform by
Condition (a) in Theorem 1. This statement implies that X
is inversion-closed (in fact it is equivalent), see, e.g.,

[7] . This completes the proof.

In conclusion we state a problem (which may be
wrong) :

Under what conditions on of the uniform space xx
is distal ?

A sufficient condition is given in [3]:

> {Inxl he X}
is a bounded function.

This is a consequence of the result [3] that the
unit ball £, is a distal subspace of A .

Another example:If X = {hnvo} » €1, then Xy
is distal, implicitely in [7].

This text will be followed, and essentially comple-
ted, by a paper on uniformly weakly compact sets of uni-

formly continuous functions.
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