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SEMINAR . UNlFORM SPAÓES ·_·1975 - 76 

POINTWISE ·coMPňCT SETS OF FUNCTI0NS 
--��-�--�--�-------�-----�------·-----�

Zdeněk Frolík 

. § 1. Joint cont inu i t.y. If. not stated otherwise_, the 

following noťati.on will be used: 

X is éJ set· 
. '

Je is a nori-void compact. subset of the product spa

ce HX ·where rl is the .space of_the rea�s; 

X8�is·the uniform spuce which is projeGtively gene-

rated by all h : x--.H, hE:� 

X
J(

is the pseudometric space (
_
X,d

df
> where 

a
1

<x,y > · = sup {1 hx-hyj /hedf} • 

In what follows we say simply uniform to mean uni

formly co'ntinuous. This _ap·plies to· various derivatives, e. 

g. equi-uniform family of functions�- The assertions in

Proposition 1 are self-evident (:ťrom the deťini tio.ns-).

Proposition l, X
Je 

is the coarsest uniform space

·on X. such that � is equi-uniťorm·, the identity X
JC,

..........,. 

X
8

� is uniform, and 

Jť,c U(X8ac,·)c U(X
ae

) •

�urther nototions:

l ·is the mapping of X into C ( Jl) defined as

to+-lows: 
I\J 

l x = { h--+ hx } : X - R •

Of_ course, CC-JC) has the .sup-norm. The set C(�) ·with 

un�t_o�_ity projeetively g�nerated ·by: the jdenti-ty embed-



. ďing 

and 

into .R� is. denoted by

easy to see·that C( Z) 

C (Z). 
s ·. 

is denae

It 

in 
,v. 

is well 

RJt • 

known,. 

Proposition 2. The mappings Jt, : X
8.it� c

8 
( K ) 

and Jt .. : X Jt--+C·( H, ) . are unif'orm embeddings. 

. . Proof'. The first statement is self-evident, and for 

the second note: 
"V . ,v 

d�·< x;y > = li Zx-Zy li • 

Her.a f
t • li stands for the. sup-norm on C ( � ) • 

Theorem 1. Th� .topologies of" . Xu �nd X Je coincide

· (i.e. X
8� and X� are _topologically equivalent) if and

only if Jt · is pointwise jointly continuous, i.e. the eva

luation·mapping 
.. · .. � .,. Xsx,

__. R

is continuous (the evaluaťionmapping assings to each 

..c::: h,x > · the va1Ue · .of' h at x). 

Proor.· it. is well .known, and easy to see thát the 

evaluation map 

·X," X -·R.· . . . i . · . .  · 
. . . 

is continuous. H,el)c:e, if X
8

� and X
.t; 

are. topologically

équivalent,· the.riJe.. is'.pQintwise jointly continuous. 

Conversely, assume that J(,. is · pointwise jointly 

. continuous, .and X
sJl 

and . X� �e. not topologically equi· 

valént. · 

Therf,f exists· a positive real. r .and a riet { x8} , and an.. 
XE X: such that {x8 J eonverges to X ·in· X8� ,. •however, . 

. d 3t <�a, x > > r _for .each a. There �xis�ts � t'amily :{li._} · 
.. in .Z. . au,cJ} : tbat .. l baX

a 
..;hax ' >. r .: : tor each . a. Since . "-

. �•-:���Ctr·�::8,U.�ne:t.:ot�.·{h
8

}·· .�ň��rgea·:.·�� an ,hĚ:Jt,:� ._we. 1

� ·��-·•�i •••�•: t��t { h8} � co�v��g_&é .'.t9. · h�. _Clearl.Y
� . � .   
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,�axa-hax t i:€ I ha· X�� t + I h X -hx l •
. a ·a 

Since h
8

-----+h �n Je , ( hax-hxl--+ O, and since � is jo-

intly· pointwise continuous, I hax
8
-hxf--+O. -This contra-

.
dicts the ineq�ali ty ( hax

8
-h

8
x I> r > o. ·

· . The following Theorem 2 gives an important example 

oť poin.twise jointly conťinuous families. 

Theorem 2. If Jl is a lattice (in the pointwise 

order), then dl is pointwise jointly continuous. 

Two s-elf-evident iemmas are ne-�ded · for thé pro·or. 

·Lemma i. Iť X is a lattice in a pointwise order;

then J(, ·is a·complete lattice in the pointwise order. 

Proo.f. Let �t'c Jt , and let. Ň be the smallest

among u�l sub-lattices containing X. Let k be the p�int

wise supremum of Je , or equivalei:ttly, of X�

· C_leary X is a ne.t in the up-w�rd pointw.is.e order,

and converg'e's to k in J(, • Hence k·i X ' and, k=sup X

in the pointwise order on dll functions, and_ hence •in ·the. 

order ot Je. Of course, sup X,; = supJ,e in.both mean�ngs.

Lemma �. Let . 
{ha} be a net in <Z • Put

h' = sup {hb ·t b � a } , 
a 

.h li = inf l hb fb?!a].a 
Then {ha} converges i.f and only iť f ' ,,. Jthe net · ha-ha. 

pointwise decreases to zero • 

. Proof. Obvious by Lemma 1. It should be remarked 

that {h�J decreases to thE! upper limit of Íha}, and

{ h� }:- increases to the l.ower limit of { ha 1 · •
Proof oť Theorem 2. ASsume that Ji is a .lattice

. in tne.· pointwise · order. By· Lemma l,' J(,, is a complet-e lat- · .

,ti�e„ uj · ti:te '-�i,ntwia·� or-ďer, and Lemma. 2 holds. Asaume
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that lha) converges to h in Jt, and {xb} · converges 
show 

to x in X
8 Jt 

• We must f'that {haxb J converges to hx.

If h� and h; are defined as in Lemma 2, then \ h� -h; 

is a net oť continuous functions on X
8 Jt 

decreasing to z 

ro pointwise, and it .is enough to show that 

$ I 
JI '} 

l haxb-haxb -+O 

because 

h" � H � h1 

axb-= axb - axb 

:ťor each a and b. And this is qui te easy. For convenie 

ce oť the reader we shall state what is needed 0xactly. 

Lemma J. Assume that a net {fa} of functions on

X decreaaes to zero pointwise. If XEX, and {xb} isa

net in X such that 

lim 
b 

f X = f Xa b a 

for each u. Then 

lim :ť
8

xb;: O. 
a,b 

Note the following interesting corollary to Theorems 1 an 

2. 

Theorem 3. A topological space T is metrizable 1

and only if T is projectively generated by a pointwise 

compact lattice of functions (bounded if you want). 

Proo:ť. If T is projectively generated by a point 

wise compact lattice Je of continuous functions, then by 

Theorems 1 and 2 the pseudometric d� metrizes T. 

The converae is quite obvious. Assume that a pseu

·dometric d metrizes T. Put

·�(d) � \:f' E": aT l \tf li� 1, :f' � o, . I f'x-:f'y.\ � d < x,y > ·

:f'or·• each x and y in · T }• 



. 

. 

I-t. is welÍ' known _and obv"ious that- · ·.

· Lemma 4. _Je(d) .. is a pointwlse compa_�t· la�tic.e, and
d ·ie: (a·)< x,y > ·,.· = mii1-: (1, _d � x,Ý-

.-? }· · ·
' :, ·. 

for each x - and y •.

Hence bl'(d):· projective�y genera�es ·T, because

T8 I,(, (d) .Snd . T bG(d) are topOlogically_ equivalént by

Theorems 1· and 2. 

Remark--1. Let--_-..(X,�)•_ be-well o_rdered, and let 

hx:Y·- = .O if i• X

= 1 •if : y >X • 

Thén the set dl o:f _all ·hx' _ JC � X ·, -:g:iven -the po-intwise

order, is' orci-er isomorphic ·to -·<X-,�>. ... ,_ th·e·.išomÓrphism 

being { x--'-+ hx } : X -:Jl •. Thils .if · < X, � > .. is Ť.he space

of' all ordinals � 4.1 __ 1, then ·dl -· is ciompact· in the order. 

to po logy · {n·ot� . tha t :· t;tie order is .the pointwis·e order). ·Ón 
. ' . . . . . ·  

the · other · hana·, tf{. ._·is- ·almost never -:compac·t in _the · point-

wise - topology. Also note that . d�. -is ·'l:ln'if'ormly ·aiscrete 

(d <x,y') attains at ·most two v�lues, nameiy O �nd 1). 

Reinark 2. A pointwise compact -Je · is p·ointwise jo

int�y continuous if and . only if there exis�s a_ pointwise 

. compact 1·attice 

§ 2. Metrizability-· of ;/(;,.

Wi thouť any addi tional assum.p_tions on :K, we have

just .thé tollowing �imple result. 
. . . 

· Theorem 1. The following four cond-itions·are·�qui-

,va-lent.:· � . -·. 

_ ·_($) 1f.t .·is -metrizab:)..e ·· 



(b) xlt 
is a · separable topological space (i.e.

xdl has a countable. dense set). 

(c) xsJlt is a separable topological space.

(d) There· is u countable set Yc X such that the

projection of :Je. onto :Jf./y is injective. 

Proof •. (a) >(b) : ff d! is metrizable, then C(l 

is separable, and hence . X
o! 

is separable (because. X�

embeds in C ( )C) by Proposition 1, 2). 

(b)�(c) : Because the identity X
JC

� X
5c1e is co

tinuous. 

( c) �( d) : Let Y be a countable dense set in

X
8% 

• Since all f'unctions in )t are continuous on . X� ,

if two of them are equal on Y, they are equal at all. 

(d)�(a) : Let y 

such that the projection 

be s countable subset of ,�

X� x1 Y is one-to�one. Since 

.� . is compact (and � / Y is Hausdor.ff) the proj ec t ion is 

a homoemorphism. 1-�inallr, �/Y is met.rizable as cl subsp:1· 

ce of a countable product of metrie spaces, namely �s &

y aubepace of' R •

Remark : J.F.Lavigne, Approximation des fonctions 

unif'ormément continues. J. de M.ath. púres et Appl. 51 

(1972), proved· that a unif'orm space X is separable íf 

and only i:ť �ach unif'ormly equicontinuous family Jl on X 

is metrizable in the pointwise topology. 

Corollary. If' � is metrizable then there exists 

a o-additive probability on X .., ( in f'act a Radon mea
Sd\.· 

sure .on X endowed wi th the discrete topology) such that 

no. two di.atinct ·e1ements of. dl ·are equal almost every

where •. 
• • I , __ .._ ••~ .,-



Proof. By Theorem l ·there exist·s a .count�ble set 

Y c. X such t.ha t the projection � -+X,/ Y is· one-t o-o.ne •.

Arrange Y in a sequence { Yn} and put

where 

tion at 

F·=

ó 
Yn 
Yn, 

.L 1/2 n 
óYn 

is the Dirac 

that means 

f{h) =.f 1/2 n.hyn 

measure 

•

at :, ,. i.e. -the ·evalua· n 

Obvioualy two functions .h and k on X are equal al-

most everywhere if and only if bfY = k/Y. 

It is an open problem if the metrizability ot K,

is implied· by the existence of .a probability on X

8,t. dis

tinguishing the elemente 0f dl, .  It ia easy to see that· 

the ·answer is yes if :K. is sequentially compact, and· it 

has been proved by A.J.Tulcea-Below [5] that the answer

is yes if X is convex. 

§ ). Ascoli Theorem •

. The main resul t saye: . ·

Theorem 1. A set Yc. X is precompact in X
1l 

if

and only if the uniform convergence in �/Y coincides 

with the pointwise convergence in �/I, -and eac� tunction 

in dl is bounded. 

Corollary. X� ia precompact if and only if every 

pointwiae converging net· in dl converge� uniformly, ·and 

every function in 3l is bounded. 

One part is an immediate consequence of the follow

ing Ascoli.Theorem. 

Lemma· 1. Let -X· be a unifo·rm space, and let X, be 



an equi-unif'orm set of' f'unctions. Then if' a net \ha_}

converges ·t.o h p6intwiae, then { h
8

} converges to h 

unilormly on each precompact subset of' X. 

It should be remarked that one may replace R by 

any unif'orm apace in Lemma 1. 

It remains to show that Y is precompact in X /ft

if' the point�ise convergence implies the unif'orm convergen

ce in Jl/I and each f'unction in �/Y is bounded. Since 

d dl/Y ia a restriction of d .re ,. i t is enough to show

that X :K. . is precompact whenever the�ointwise convergence 

implies the uniform convergence in :Jt , and each f'unction 

in � is bounded.

Let T be a completion of' the unif'orm spacea X
8

�.

Since .eaeh of' the :functions in � is bounded, X
8

J'l is 

precompact, and hence T is a c9mpact space. Since T is 

a completion oť " X
8

� , each f'unetion in X extends uni

quely to a uni:torm f'unction on T; let X be the set of' 

all these extensions to T. Since the pointwise convergen-
coincides 

cefwith the unif'orin convergence in Jt, the same ia true 

f'or X, and the projection X-+X. ia a homoemorphism. 

Since the pointwise.convergence coincidea with the uniťorm 

convergence in X , neceasarily X is pointwise jointly 

continuou$, and hence by Theorem·1.1 T� is  topologically 

equiva1ent to T8.t • _But T8_x is the topology of' T, and

·hence, f� ia a compact metrie space. Since X� is a sub-
.

.

space of T � , X� is necessarily preeompact. This con-

cludee the proot. 

Remark. In the proot we used completions of unif'orm 
..

..-.- epaces •hi� are not neceasarily Hausdortt. lf one. doee 



ot want to do that, he may assume that � distinguishea 

pointa of X. 

It may be worth noting: 

· Corollary. ·If' · X is a pointwise compact set ot

ontinuous f'unctions on a compact space, then 3Í i.s equi-

1continuous if and only if the pointwiae convergence coin

cides wi th the unif'orm convergence in dl, • 

§ 4. Wh•n compact metrizable seta of uniform f'unc

tions are equi-unif'orm. · 

The main result aays: 

Theorem l. The following three prQperties of a uni-

form space X are equivalent: 

(a) It' X c Ub (X) is pointwise compact and metri

zable, then :ft is equi-uniform (i.e. dJlt is unif'órmly 

continuous on X).

(b) Every countable partition of X by Baire seta

ia a unit'orm cover of X. 
•' 

(c) It' f : X-+Y is Baire measurable (i.e. the

Preimages of the .Baire aets in Y are Baire seta in X), 

ana it' Y ia a separable metrie apace, then f : X_. Y 

is uniformly continuous � 
·-

The easiest part ia (b) implies (c): One just usee

the fact that every uniform cover of a separable metrie 

8Pace is ret'ined by a countable open cover, and hence by 

a countable Baire partition. We assume the definition, and 

the elementary properties of Baire seta in uniform spacea. 

The implication (c)===t(a) follows t'rom the follow-
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Lemma 1. Aasume tbat K is a compact metrizable 

space. Then tbe Baire seta in C(K) and C
9

(K) coincide 

(recall that C(K) bas the sup-norm, and C
8

(K) is a 

aubapace ot ř).

Proot. Since the identity C(K)-C
8

(K) ia unit'orm, 

and aince · C(K) is aeparable (because · K is compact me

trizable), it is enough to show tbat ev�ry open ball in 

C(K) is a Baire aet in C
8 

(K) .Cboose a countable dense 

aet y in K. For each y in y let fy be a continu-

ous pseudonorm on C
8

(K) detined as tollows: 

Clearly 

fl h U = sup { f yhl y € Y J •
lt.tollows that the sup-norm is a Baire measurable functi

on on C
8

(K).·And this impli.ea that the balls in C(K) 

are ·aaire aets in · C
8 

CIC). 

Another proot ot Lemma 1. Choose a countable dense 

set Y #in K, and let C be C(K) endowed with the topo

logy ot pointwiae convergence in the pointa of Y. Then 

the identity mappings 

C(K)�c
8 

(K)�c

are unitorm, ben�e Baire measurable. Since C(K) is ana

lytic (becauae C(K) ia a separable metrie space) and C 

is metrizable, the identity mapping 

C(K)-C 

is a Baire isomorphism by a deep theorem of N.Luzin. Hen

ce 

C (K) �es (K)

ia a Baire isomorphism. It should be noted that the theo-



9't. -

-rem used is much deeper than Lemma l. 

It remains to show (a) implies (b). The main step· 

is in 

Lemma 2. Condition (a) in Theorem 1 implies that 

the indicator function (= characťeristic f'unction) o.f each 

Baire- set is uniform. 

Proof. One checka immedi�tely that it ia enough to 

show: 

There exists a compact metrizable 'K, c C (X) ť where 

I is the unit Ú1térv·al to,1.] , auch thať the indicator 

function of the singleton (O) is uni.form. 

�d this is easy. Construct a aequence { f �
-} · o;

continuous fWlctions such that {coz �n} is point-firiite,

and f = sup {r
0

} ia O · at o, and � 1 otherwise. 

Then { f'
0 
! -converges to the zero function pointwise, and 

the indicat-or function of (O) is 1-min (l,f), and this 

is uni:form on X� , b�cause all

ona on X� , and so f is. 

f. are Lipschftz f'unctin 

The most importani example o:f spaces with the pro

.perties in Theorem l (called Xo-measurable· by the authór 

in [2J) is the following: 

Take any u-algebra a on a _set X ·and consider 

the uniformity on X which has all countable -partitions 

ranging in Cl,- for a basis oť uniform covere. The resul

ting apace is denoted. �Y uw
1
a in [2] • ·These meas·urab-

·le fl.Ulctions on < X, a. > coincide wi th the uniform func

tion. on u�4 a; .  This space can bé used-in studying measu

rable :tunctions. For example, Theo;rem l says that every

metrizable ·compac-t set of meas-u;able functions is · equi-



- unif'orm on u"1-t a, • As an application we shall prove the

P.Meyer generalization of' the Jegorov theorem [6].

· Theorem 2. If � is a compact metrizable set of

bounded meaaurable functions on < X, a.,> an.d if' F ie 

a G" -additive probapility on a, then there exists a dia

joint sequence l � l in a , such that 

(1) (1,v(X-Ui�J) =O.

(2) Pointwise convergence impliee the unif'orm con

vergence in each i/(,/ An •

Proof. Consider u W-t Cl defined above. By Theorem 
.Iv 

� is eq�i-unif'orm, ahd hence ;Jl : u
t.J_,

a,, - C{�)

is uniformly continuoua. Hence f, ia a ()-additive pro

bability on a separable metrie apace X�, and hence a Ra-
/\ /\ 

don-measure f' on the completion XX . of' X� • Hence

there exists a disjoint sequence { 8
0 } of' compact seta, 

such that its union supports F. Put An = X rtBn, and ap

ply Theorem 3.1.

§ 5. When compact metrizable lattices are equi

- Wlif'orm? 

The main result says: 

Theorem 1. The f'ollowing four propertiea of' a uni

form space are eq�ivalent: 

(a) If' dl, c. Ub (X) is a pointwise compact ·metri

zable lattice then jt is equi-unif'orm. 

(b) If ·y j.s a separable metrie space, and if'

f: x�Y is a coz-mapping (the preimages of' cozero seta 

are cozero sets), then f' :· x-Y is unif'orm. 

(c) Every countab,le cozero cover of X 1s uniform.
.......... ·�·----------- -·---- "' ··.-·----·------ .. ·-· · 



(d) If Y is a sep·arable metrie space, and 1f

f: x__..y· is u.niform, then·so is f: X---,.tfY (where tfY

is the finest uniformity topolog·cally equivalent to Y). 

The equivalence of the conditions {b), (c) and (d) 

is essentif:1lly due to A.Hager [41 , for an obvious proof

see e.g. (1] or [3]. Here we are going to prove that 

(a) is equivalent to (b). We start with more important

part (b) implies {a). For the proof we need the follo ing

Lemma 1. If dl, is a compact lattice then the open 

balls in the mat.ric space X� _are cozero seta in X8x • .

Consequently, if X� is separable ( i. e. · ct, is m�triza·ble

by Theorem 2.1) then

coz X� = coz X
8

� •

Proof' of (a)=>{b) (using Lemma 1): Assume .(b),

and let J{, be a compact metrizable lattice. By Lemma 1 

the mapping dl, :· X-+ X '1' is a cozero mapping, ·and Xx
is separable, and hence, by Condition (b). the mapping 

f : X-+X
_r

is uniform (because

coz X
8 )t 

C coz X

in general), and this. means by the definition that Je, is 

equi-uni.torm. 

· Example. If. XK is not separable, then 

coz X 3e, # coz x
s �

in general. 

Let X be ·a linearly ordered S€t, and let d(, be·

the let of all non-decreasing functiona with the values 

betwee�· O and 1. 

Since the indicator f'unctions of intervale _[.x, -+ ]

are in j(, , d attains just two valqes, O and 1, and 
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h,mce X� is unif'ormly discrete. Thus coz X� = exp X. 

On the other hand, it is easy to check that 

coz X8
� consists of' countable unions of intervals, and

theref'ore 

aoz X
8

� 'F coz X ;1<, 

whenever X ie measurable. 

It should be noted that in many cases the equality 

holde even in the space X� · being not separable. A gene

ral example is the set oť Lipschitz functions (with res

pect to a pseudometric). I do not know of any condition 

which is close to being necessary and sufficient. It may 

be a wrong question, anyway. 

The prooť of' Lemma l follows easily from the fol

lowing basic 

Theorem 2. Let d(.. be a compact lattice, and let 

x e X. �--or each r > O there exists a ťini te subset X oť 

;/(., such that 

· q are. < x,y-> � d J<.; < x,y > + r

for eacb y in Y. Hence, all f'unctions {y-d )l<z,y>J, 

z EX, are uniform on X8 1e •
Remar}c. Theorem 2 implies that i:f' X, is a compact 

lattice, then X� = X8� topologically.

Proof of' Lemma 1 (using Theorem 2): It is obvious 

that if' � is a f'inite set then 

C(�) = C8(�)

unif'ormly, and hence 

co z C ( ll, ) = co z é 8 ( K, ) ,

and hence 

coz X" = coz X8 1G •
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Hence, if • � is fini te subset of 1l, , then 

coz x·� c_ coz X8� • 

It follows immediately from Theorem 2 that every ball in 

X 
dl is a countable union of ·balis in various x·�• Xc �

:fini te, and hence, each bull in. X� is a· cozero set in 

xsl' . 

�emark. Leiimia 1 follows immediately from the last 

statemant in Theorem 2. 

Proof of Theerem 2. The set [dl]x of all ·hx, 

he ·jt ., is compact because d{,. is pointwiae compact. Hence 

[�J x is contained in a compact interval J. Sub-divide • 

J. into a f'ini t·e number of intervals, eay { Jn In� k} such

that the length of each J
0

_ .is lesa than r. Put

dť,n ={hlhe<l , mceJ0}.
If -:Jln # �, p�t

·h' = sup 3ť_ , h" .- inf � •�� n .n n 
Let j( be the s�t of all · h� and h� with j'Cn � � • It

is obvious that ·i.f h € �n then 

·.for

for

\ hx-hy\ � r + max(f h�x-h�y 1 , { hrix-hri_Y I),
each y in X ' and hence 

d 3t <. x,y > � d
X, 

< .x,y > + r 

each y.

This completes the proo.f of (bJ implies .(a) in The-

orem 1. For (a) implies (b) we need the followi�g · 

Lemma-2. Condition (c) in Theorem 1 implies.tha� X· 

is inversion closed (every cozero ťunction is unif.orm). 

Pro-of of' (a_) implie� (b) (using Lemma. 2): Let· � 

be the set of all Lipschi tz functions o�·· Y be_tween . O · 

and 1. Sinee Y� · = Y wliforinly, and since Y · is sepa-
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rabl•, the compact lattice st is me·trizable. Let -� be 

the eet ot all ,l, o t, ,le � • Then · � is a co_mpact metri-

zable lattice ot functions on X, and each ·of these tunc-

tiona is a cozero tunction. dy Lemma 2, all these ftmcti�

ona are uniform. Hence X is equ-�-:uni:form bf .C.ondition 

a, thie means tha-t X__.,X � is· uniform, · and since 

t : . x·��y (=I� ) is uniform, necessarily :t : X-+ Y is 

unitorm. 

Proot of Lemma.2. If {:tn} is a sequence in Ub(X)

, pointwis, decreaaing to zero, then { :tnJ is a compact me

trizable lattice, and hen�e, {:tnJ is equi-uniform by

Condition· (a) in Theorem 1. This statement implies that. X 

is inversion-cloaed (in f"act it i.s· equivalent), see, ·e.g., 

(71 •. Thie .c_ompletes the proo_t. 

In.cQnclusion we state a problem (which may be 

· wrolig):

Under what. condi tions on -� the uni:form space X
J!

ie diátal? 

A su:tficiant-condition is given in [3J: 

z: f 1 �x r thE. � } 

ia ·a bounded tunction .• 

Thie ·ie a consequence ot the resul t [3 J that the 

un�t: b�l- .t1 is a distal subspacé of l.
o0

.

·Another exampl�:-� i/{, = \hnto} �- hi4; 1, then X_�

ia distal, impii·citely �? [ 7] • 

Thia ,text wiil be to1lowed, and · essentially comple-.
ted, by a paper ·on tiniformly wealcly compact sets of uni

t�rmly•�ontinuous t�ctiona. 
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