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SEMINAR UNIFORM SPACES 1975-=T76

Freckle refinement of uniform spaces
Pavel Pték

A refinement of the category Unif of (Hausdorff) unifor
spaces is a concrete category X having for the objects 11
uniform spaces and for the morphisms mappings satisfying
Unif (X,Y) ¢ X (X,Y) for all spaces X, Y. The notion of the
refinement of a category was introduced by Z. Frolfk in (FI].
The freckle refinement defined amd examined here has for
the orphisms the so called freckle continuous ( F# continu-
ous) mappings £: X — Y determined by the following property:
If §xo (¢ € I3 18 set of points of X which is not unir
formly discrete in X then { f(x_) | € I} 1s not uniferm-
ly discrete as well.

The first part of this note brings some properties and
examples concerning the corresponding freckle structure (5
structure) of a unifor space (e.g. the connection F fine
spaces ~ selective ultrafilters and 7 structures - pro-
duct of ultrafilters). The second part is an examination of
the plus and mimms functors associated with F and with a
similar refinement 3’2 (in the sense of the definitions
stated by Z. Frolfk in [F, 1)e It is shown that .T is t
distal functer, & _ is the identity and both 3' ’ 3'2
are identities.

This paper originated in the Seminar Uniform Spaces in
Prague. I should like to express my gratitude to Z. Frolik -
the leader of the Seminar = for hi encouragement and to J.
Pelant and J. Reiterman for the inter st paid to my work.

§ 1, Basics. Examples of freckle fine spaces. Frec -
le structure of a space.
The words space and discrete ean Hausdorff uniform

épace and uniformly discrete.
Definition 1.1: A space X i called freckle fin (3F
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fine) if F(X,Y) = Unif (X,Y) for any space Y. Similarly,
X is freckle coarse ( & coarse) if & (Y,X) = Unif (Y,X)

for any space Y,

Proposition l.1: The singleton space {x3% 1is the on-
Iy 4 coarse space. The ¥ fine spaces form a coreflecti-
ve subcategory of Unif (see [Vil),

Proof is easy - the § <fine spaces are closed under
formation of sums and quotients in Unif,

Proposition 1.2: Let X be ¥ <fine.
(1) Any subspace of X 1s & <fine.
(11) The space p*X is 2% fine for any cardinal reflexion
P .
(111) If X 4s precompact then X = p® X where £ is endowed
with the discrete uniformity.
(1v) If D) = §x |[«xe X3, D, = £y |x€ IS are dis-
crete in X then so is Dlu Da o

Proof: The statement (1) is evident. For the part
(11) recall that p*X has for a base uniform covers of the
cardinality smaller than %X, . let £: p*X—> X be F con-
timous, Then p¥Y = Y because the contrary case implies
that there is a discrete set in Y of the cardinality
and 8o £ is not & contimuous, The statement (iii) follows
from the fact that any mapping between precompact spaces
is & continuous. Finally, put A = Uix %, c€ I for a
discrete set {x_ Joc e I3, Then {x |Jx€ I3 u {X - A}
is uniform cover of X since it is refined by the meet of
a cover realizing the discreteness of {x ‘oc e I¢ and
the cover 4 A,X = A%,

Starting with X discrete, Proposition 1.2 (ii) gives
some examples of "% fine spaces. We shall show once more
example of a different kind. It bases on a special property
of ultrafilters on the countable set,

Definitionle2: Let N be countable set. An ultrafilter
? on N is said to be selective if, for any partition
P, | € 1% of K, either some P, belongs to F or there
is a set Se F such that card (SAP ) =1 for any o« & I,



- 10% -

Remark l.1: One can prove under continuous hypothe-
8is that there is a selective ultrafilter on N.

Definition 1.3: Let F be & filter on X, The symbol
XF denotes the uniform space on X having for a base the
covers 4{x3 | xexjuv s, seF.

Proposition 1l.3: Let F be an ultrafilter on N, Then
is F fine iff 7 1is selective.

Proof: Let F fail to be selective. Then there 1is a
partitiomr {Py |[ac € I of N such that no F, belongs to
F and, for every choice of Ic € Py , the set fx . |oc e IS
does not belong to F, Let N’ be a space which has for a sub~-
base the covers of N plus the cover { P,|< € I%. Then

’ and HF have the same discrete sets but N is finer than
o So, Ny is not 3 fine.

The proof of the second implication bases on the tech-
nique used in the paper [PR). Suppose F is selective. Let
£: Np—> N be an 3 continuous mapping onto a countable
metric space Mo Take a uniform cover ¥ of M, As N is
countable £ can be refined by a point-finite uniform co-
ver Y= 4Y | neN3} (see V1), We have to show that L =

= 4%, |neN3 where X, = £7-(Y) belones to Ng.

Let d’a {Y |neNE be a star-refinement of ¥ and
let X’= 1%, \neN} be a cover with X = £ (I *). Define
a partition -iP | neN} as follows: P, = {xeNI st (x,T)c
CX and n 1s the first such number § » If some P, belongs
to F then & belongs to HF’ If it is not the case then
there is a set SeF such that card (P,NS) = I for all neX,
As L 1is point=finite, St (x,T)n S is finite. This fact
and the selectivity of F makes it possible to find & set
S’e F such that St (x, NN St (y,X’) =P for all distinct
points x,y6 S’ . Using again a star-refinement to ¥’ we
obtain that £{S”) is discrete in M but S’ is not discrete
in N -~ & contradiction. The proof is complete,

Let us define a freckle structure ( F structure) on &
set as a set of all discrete sets of points in a uniformity.
We shall ghow that the F structures are not naturally as-

Kp

NF
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sociated with uniformities (in contrast to proximity and
distal structures, see [KPl).

Proposition l.4: Let. 4 be the 9 structure on an
infinite set such that ¥ consists of all finite sets.
Then there 1is no coarsest uniformity among those which
induce 4§ . Proof is easy.

'On the other hand, there is an ¥ structure without
the finest uniformity inducing it as follows from the fol-
Iowing obeervation (compare with proximity structures, see
(K] and [(D1),

Proposition 1.,5: There are two uniformities Ul, 'U‘...h
inducing the same nondiscrete F structure but the great-
est lower bound UlA Uz is discrete.

Proef: First an easy lemma:

Lemama 1.,1: lLet F be an ultrafilter on X. Then any
nondiscrete space finer than I, has the same F estructure
as

For the proof of the lemma, suppose Z is a discrete
set in a finer space Yo Then X = Ze F and therefore Z 1is
diserete in Xr :

' Let us continue the proof of Proposition l.4. Take
two free ultrafilters F;, F, on N and form the Katdtov pro=-
duct F;x Fyo Recall that Py x P, is the ultrafilter on Nx N
such that Se F) x F, iff there exists a set SC F) with $ >
> “Le}s“({xix §,) where S;€F, for my x6€S,. Let U; be

& uniformity having for a base ‘the covers of Nx Hzl‘Fz plus

*he cover ££x3x<B3| x€N3 and let U, arise in the same
wag by adjoining the cover tNx £x? | x€N3. Then U;, T,
have the same nondiscrete ¥ structures (Lemma 1.1) but
oA E’z u discrete.

Remark 1.2: The fact that N, for F selectite is an
atom in the lattice of uniformities suggests the question
_whether any atom isyfine. Th~ answer is in the negative as
there are two noncomparable spaces with the same & struc-
ture and so, according to Lemma 1,1, two atoms with the
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same F structure. Therefore one of those is ndt ¥ fine.

Let us denote by p° A 9 the refinement of Unif has~
ving for the morphisms the mappings which are simultaneous-
ly proximally and freckle continuous, Of course, any dis-
tally contimious mapping is p° A F contimious because,
by the definition, a mapping f£: X —>Y 4s distally conti-
nuous if {f-l(Y«') |t € I3 1s discrete whensver 1Y, Jxe
€ I3 1s, The following example shows that the refinement
P°A & 1s strictly finer than the distal one (even in the
sense of the fine spacea)s So it follows e.ge that there is
a smaller coreflective category than the distally fine
spaces which contains the metric and the preeompact spaces.

Example: Let X be a space which has for a base the
countable partitions of X with at most finite.ly“mny clas~-
ses of the same cardinality as X, Let card X>2 © , Then
X 1s distally fine but not p°A F fine.

Proof: Suppose that £: X— R is a distally continu-
ous mapping onto the metric space M, Since M has at most
countable discrete sets then M is separable and card K <

ezx" o Take a cover e M. We may and shall assume that
€ = {X | neNE 4is countable and point-finite. Let J°=
= -(PnlneN} be the partition of M constructing by the
procedure P) = Xy, P, =X, = Xy, P; = X3 = (X3v tz’_g""'
Then P <2 L and it suffices to prove that card £ (p) =
= card X for at most finitely many ne N. Suppose it is not
the case. Then there is a discrete set {pn\ neN? in_l
sueh that card r"l-t Ppd = card X (it follows from point-
finiteness of 4 and from card x>2% ), s¢ {£” £pn}\né
e ¥ is not discrete in X and it is a contradictions
Finally, the space X is not p°A & fine becsuse
the space x’ having for a base all countable partitions of
X is strictly finer than X but p°A & disomorphic to X.

§ 2, Plus and mimus functors
First state the basic defimition of this paragraph.
Definition 2.1: Let g( be a refinement of Unif., De-
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note by Inv G the class of all concrete functors F:
. Unif —» Unif such that F preserves q, structure, i.e.
FX is isomorphic to X in G . Further, denote by Inv, G

.Inv_ @-) the positive (negative) functors in Inv G- ,i.e.
the functors in Inv G such that FX is coarser (finer)
than X. The coarsest element of Inv*gf , 1f 1t exists,

is denoted by &, and the finest element of Inv_G- 1is
denoted by G ..

Theorem 2,1: The functor F_ is the distal func-
tor. It means, ¢, X has for a base the finite dimensio-
nal covers of X.

Proof: Observe that the distal functor D belongs to
Inv,% because X and DX have the same discréte sets
(see [KP] and [W]). We shall prove that any functor F &
€ Inv, § 18 finer than D. The space .DX, for any X, is
mojectively generated by all uniformly continuous mapp-
ings of X into the hedgehog H(A), card A = card X (see
[F;1). Recall that the space H(A), for any set A, is a met-
ric space of non negative real-valued functions f such
that f£(cc )> 0 for at most one o € A and f(oc)£€ 1 for all
o € A. The distance in H(A) is given by ll-norm.

The <functor F in question preserves mappings and so
it euffices to prove that F is constant on all hedgehogs.
We shall prove it in the following lemmas.

Lemma 2.1: F<O,L> =2{0,1> .
Proof is evident.

Lemma 2.2: If F H(A) = H(A) then ¥ H(B) = H(B) for
all sets B with card B<£ card A,

Proof: There exist mappings i: H(B)—» H(A),

j: H(A) —> H(B) such that §i = 4dy(py » So F 1 is an en-
bedding.

It follows from Lemma 2.2 that 1t suffices to exami-
ne the hedgehogas over the sets witfx great cardinslities.
The idea of the following lemma is due to Z. Frolik,

Lemma 2.3: Let A have a sequentially regular cardi-.
nality. Put I = {f€H(A) |€ £ £(<)£137 . Then there
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is anV1 > € > 0 such that the family {I%¥ |« € AZ4s dis-
crete in F H(A).

Proof: The set {I,"" | o« € Kk 7 is discrete in
F H(A). So, for any o« € A there is an n(xc)eN such

that {IT | o € A7 1s a discrete family in F H(A). As
m(x)

card A is sequentially regulsr then there is a set B, Bc
c A, card B = card A and a number né N such that

{Ig_ , 3 € B31is discrete in F H(A). The proof now fol-
n

lows via the natural isomorphism between H(A) and H(B).

Lemma 2.4: Suppose that O < € <1 and that card A 1is
sequentially regular. Then the spaces F H(A) and H(A) in-
duce the same uniformities on the set U IF , o« € A
and the same topological neighbourhoods of the point 0. So,
F H(A) = H(4).

Proof: The complement of the € =-neighbournood O
of O in H(A) is the joint of a discrete family of closed
sets in F H(A) and so it is closed in F H(A). Therefore O,
is open in F H(A). The remaining parts of Lemma 2.4 are
easy.

Theorem 2.2 : The functor J_ is the identity on
Unif.

Proof: It holds the following statement: For any spa-
ce X there is a space X such that
le X1is =& quotient space of x in Unif
2. The space ¥ 1e bl niniml, it means, if X and Y have
the same & structures then Y is not finer than X.

Using this, the proof £ollowe in the following way.
Let FeInv_F and let h: X—> X be the quotient mapping.
Since F X = 4 and Fh: A—> F X 1s uniformly continuous
then F X = X because h was a quotient mapping. So F is the
identity.

It remsins to prove the starting statement. First the
construction of X for a space X (see [C1, p. 699, [I1, p.
32 for the introduction and [H] for further interesting in-
vestigations). Let 7C be a cover of X and 1let D (or E)
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be & discrete (or indiscrete, resp.) two-point space with
points ¢, d. Put Xp, = = § x(x,y)l x$y, yeSt (x,L)?2 +

+ Z{D<x,y> | x+y, y¢st (x,)7 for n(x,y) = B,

D<x,y> = D, Finally put X = A X, , o € T and define

h: X— X such that h(c) = x, h(d) = y for h partiali-
zed on D(x,y) or E(x,y) « Then h is a quotient mapping.

Take a uniformity U strictly finer than the unifor-
mity Yor?. Let YeU-T. By the construction, for any

cover L € T there is a two-point set which is discrete
of arder J but not of order {L{ . Then the join of these
two-point sets taken over all L e T is discrete of or-
der I but it is not discrete in U . So, X is & mini-

mal.

Definition 2,2: Let us denote by 3"'2 the refinement
having for morphisms the mappings f: X—> Y such that £x £:
: XXX —>I®Y is J continuous.

Theorem 2.3: Both 9’2 amd &2 are identities.

Proof: Evidently 3’., = Id because F2< F . We
shall prove that 9’ = Id, In fact, we shall prove that
Inv, 52 = {143 . '

Lenn 2.5: Let Uy» U, be two uniformities on a set.
For any cover & of X put T, =4(x,y)6 IxX |yésSt (x,X)}.
If for any X & U; there is a cover J& W, mch that
12: c !J then U2 is finper than Ul'

Proof: Let X* be a star refinement of IC and let

Tyx & T, for a cover J e U,. It is easy to check that

IJ<4 .

Lemma 2.6: lLet Fe Inv, 3"2 and let the space X have
s discrete set D with the same cardinality as X. Then
FX=1X.

Proof: Suppose F X is strictly coarser than X for a
space X in question. Take a cover X e X - F X. Then
card T = card D and so there is a bijection @: D> Tz
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Put M =¢LeJD{<d, @(d),> ,<d,q(d),>3 where gld),,

@(d), mean the first and the second coordinate of g(d).
Then M is discrete in XX X but not in F Ix F X because
there is no cover J € F X with Ty € 'Eg .

Now, the proof can be completed as follows. Let F «
€ Inv, 2, For any space Y form a space X on the set
'5%" I3 where o =card Y and Yg = Y for all B £ « .

The covers ’J'--J forming a base of the space X are in-

dexed by covers J € Y such that 0‘.'3, = p%«c I

dp =J . According to T.emms 2.6, F X = X, Moreover, we
have uniformly continuous mappings j: Y—= X, ki X — Y
such that k §J = id!‘ Hence F j is an embedding and F Y =
=Y,
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